freebsd-src/sys/arm64/vmm/vmm_arm64.c
Andrew Turner 0cdd0032a7 arm64/vmm: Fix the SPAN check
When raising an exception we may need to set the SPSR_EL1.PAN field.
The check for this was incorrect meaning it would be set when it
shouldn't be.

Reviewed by:	markj
Sponsored by:	Arm Ltd
Differential Revision:	https://reviews.freebsd.org/D45717
2024-06-25 09:07:19 +00:00

1413 lines
34 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/smp.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_extern.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_param.h>
#include <machine/armreg.h>
#include <machine/vm.h>
#include <machine/cpufunc.h>
#include <machine/cpu.h>
#include <machine/machdep.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/atomic.h>
#include <machine/hypervisor.h>
#include <machine/pmap.h>
#include "mmu.h"
#include "arm64.h"
#include "hyp.h"
#include "reset.h"
#include "io/vgic.h"
#include "io/vgic_v3.h"
#include "io/vtimer.h"
#include "vmm_stat.h"
#define HANDLED 1
#define UNHANDLED 0
/* Number of bits in an EL2 virtual address */
#define EL2_VIRT_BITS 48
CTASSERT((1ul << EL2_VIRT_BITS) >= HYP_VM_MAX_ADDRESS);
/* TODO: Move the host hypctx off the stack */
#define VMM_STACK_PAGES 4
#define VMM_STACK_SIZE (VMM_STACK_PAGES * PAGE_SIZE)
static int vmm_pmap_levels, vmm_virt_bits, vmm_max_ipa_bits;
/* Register values passed to arm_setup_vectors to set in the hypervisor */
struct vmm_init_regs {
uint64_t tcr_el2;
uint64_t vtcr_el2;
};
MALLOC_DEFINE(M_HYP, "ARM VMM HYP", "ARM VMM HYP");
extern char hyp_init_vectors[];
extern char hyp_vectors[];
extern char hyp_stub_vectors[];
static vm_paddr_t hyp_code_base;
static size_t hyp_code_len;
static char *stack[MAXCPU];
static vm_offset_t stack_hyp_va[MAXCPU];
static vmem_t *el2_mem_alloc;
static void arm_setup_vectors(void *arg);
static void vmm_pmap_clean_stage2_tlbi(void);
static void vmm_pmap_invalidate_range(uint64_t, vm_offset_t, vm_offset_t, bool);
static void vmm_pmap_invalidate_all(uint64_t);
DPCPU_DEFINE_STATIC(struct hypctx *, vcpu);
static inline void
arm64_set_active_vcpu(struct hypctx *hypctx)
{
DPCPU_SET(vcpu, hypctx);
}
struct hypctx *
arm64_get_active_vcpu(void)
{
return (DPCPU_GET(vcpu));
}
static void
arm_setup_vectors(void *arg)
{
struct vmm_init_regs *el2_regs;
uintptr_t stack_top;
uint32_t sctlr_el2;
register_t daif;
el2_regs = arg;
arm64_set_active_vcpu(NULL);
daif = intr_disable();
/*
* Install the temporary vectors which will be responsible for
* initializing the VMM when we next trap into EL2.
*
* x0: the exception vector table responsible for hypervisor
* initialization on the next call.
*/
vmm_call_hyp(vtophys(&vmm_hyp_code));
/* Create and map the hypervisor stack */
stack_top = stack_hyp_va[PCPU_GET(cpuid)] + VMM_STACK_SIZE;
/*
* Configure the system control register for EL2:
*
* SCTLR_EL2_M: MMU on
* SCTLR_EL2_C: Data cacheability not affected
* SCTLR_EL2_I: Instruction cacheability not affected
* SCTLR_EL2_A: Instruction alignment check
* SCTLR_EL2_SA: Stack pointer alignment check
* SCTLR_EL2_WXN: Treat writable memory as execute never
* ~SCTLR_EL2_EE: Data accesses are little-endian
*/
sctlr_el2 = SCTLR_EL2_RES1;
sctlr_el2 |= SCTLR_EL2_M | SCTLR_EL2_C | SCTLR_EL2_I;
sctlr_el2 |= SCTLR_EL2_A | SCTLR_EL2_SA;
sctlr_el2 |= SCTLR_EL2_WXN;
sctlr_el2 &= ~SCTLR_EL2_EE;
/* Special call to initialize EL2 */
vmm_call_hyp(vmmpmap_to_ttbr0(), stack_top, el2_regs->tcr_el2,
sctlr_el2, el2_regs->vtcr_el2);
intr_restore(daif);
}
static void
arm_teardown_vectors(void *arg)
{
register_t daif;
/*
* vmm_cleanup() will disable the MMU. For the next few instructions,
* before the hardware disables the MMU, one of the following is
* possible:
*
* a. The instruction addresses are fetched with the MMU disabled,
* and they must represent the actual physical addresses. This will work
* because we call the vmm_cleanup() function by its physical address.
*
* b. The instruction addresses are fetched using the old translation
* tables. This will work because we have an identity mapping in place
* in the translation tables and vmm_cleanup() is called by its physical
* address.
*/
daif = intr_disable();
/* TODO: Invalidate the cache */
vmm_call_hyp(HYP_CLEANUP, vtophys(hyp_stub_vectors));
intr_restore(daif);
arm64_set_active_vcpu(NULL);
}
static uint64_t
vmm_vtcr_el2_sl(u_int levels)
{
#if PAGE_SIZE == PAGE_SIZE_4K
switch (levels) {
case 2:
return (VTCR_EL2_SL0_4K_LVL2);
case 3:
return (VTCR_EL2_SL0_4K_LVL1);
case 4:
return (VTCR_EL2_SL0_4K_LVL0);
default:
panic("%s: Invalid number of page table levels %u", __func__,
levels);
}
#elif PAGE_SIZE == PAGE_SIZE_16K
switch (levels) {
case 2:
return (VTCR_EL2_SL0_16K_LVL2);
case 3:
return (VTCR_EL2_SL0_16K_LVL1);
case 4:
return (VTCR_EL2_SL0_16K_LVL0);
default:
panic("%s: Invalid number of page table levels %u", __func__,
levels);
}
#else
#error Unsupported page size
#endif
}
int
vmmops_modinit(int ipinum)
{
struct vmm_init_regs el2_regs;
vm_offset_t next_hyp_va;
vm_paddr_t vmm_base;
uint64_t id_aa64mmfr0_el1, pa_range_bits, pa_range_field;
uint64_t cnthctl_el2;
register_t daif;
int cpu, i;
bool rv __diagused;
if (!has_hyp()) {
printf(
"vmm: Processor doesn't have support for virtualization\n");
return (ENXIO);
}
/* TODO: Support VHE */
if (in_vhe()) {
printf("vmm: VHE is unsupported\n");
return (ENXIO);
}
if (!vgic_present()) {
printf("vmm: No vgic found\n");
return (ENODEV);
}
if (!get_kernel_reg(ID_AA64MMFR0_EL1, &id_aa64mmfr0_el1)) {
printf("vmm: Unable to read ID_AA64MMFR0_EL1\n");
return (ENXIO);
}
pa_range_field = ID_AA64MMFR0_PARange_VAL(id_aa64mmfr0_el1);
/*
* Use 3 levels to give us up to 39 bits with 4k pages, or
* 47 bits with 16k pages.
*/
/* TODO: Check the number of levels for 64k pages */
vmm_pmap_levels = 3;
switch (pa_range_field) {
case ID_AA64MMFR0_PARange_4G:
printf("vmm: Not enough physical address bits\n");
return (ENXIO);
case ID_AA64MMFR0_PARange_64G:
vmm_virt_bits = 36;
#if PAGE_SIZE == PAGE_SIZE_16K
vmm_pmap_levels = 2;
#endif
break;
default:
vmm_virt_bits = 39;
break;
}
pa_range_bits = pa_range_field >> ID_AA64MMFR0_PARange_SHIFT;
/* Initialise the EL2 MMU */
if (!vmmpmap_init()) {
printf("vmm: Failed to init the EL2 MMU\n");
return (ENOMEM);
}
/* Set up the stage 2 pmap callbacks */
MPASS(pmap_clean_stage2_tlbi == NULL);
pmap_clean_stage2_tlbi = vmm_pmap_clean_stage2_tlbi;
pmap_stage2_invalidate_range = vmm_pmap_invalidate_range;
pmap_stage2_invalidate_all = vmm_pmap_invalidate_all;
/*
* Create an allocator for the virtual address space used by EL2.
* EL2 code is identity-mapped; the allocator is used to find space for
* VM structures.
*/
el2_mem_alloc = vmem_create("VMM EL2", 0, 0, PAGE_SIZE, 0, M_WAITOK);
/* Create the mappings for the hypervisor translation table. */
hyp_code_len = round_page(&vmm_hyp_code_end - &vmm_hyp_code);
/* We need an physical identity mapping for when we activate the MMU */
hyp_code_base = vmm_base = vtophys(&vmm_hyp_code);
rv = vmmpmap_enter(vmm_base, hyp_code_len, vmm_base,
VM_PROT_READ | VM_PROT_EXECUTE);
MPASS(rv);
next_hyp_va = roundup2(vmm_base + hyp_code_len, L2_SIZE);
/* Create a per-CPU hypervisor stack */
CPU_FOREACH(cpu) {
stack[cpu] = malloc(VMM_STACK_SIZE, M_HYP, M_WAITOK | M_ZERO);
stack_hyp_va[cpu] = next_hyp_va;
for (i = 0; i < VMM_STACK_PAGES; i++) {
rv = vmmpmap_enter(stack_hyp_va[cpu] + ptoa(i),
PAGE_SIZE, vtophys(stack[cpu] + ptoa(i)),
VM_PROT_READ | VM_PROT_WRITE);
MPASS(rv);
}
next_hyp_va += L2_SIZE;
}
el2_regs.tcr_el2 = TCR_EL2_RES1;
el2_regs.tcr_el2 |= min(pa_range_bits << TCR_EL2_PS_SHIFT,
TCR_EL2_PS_52BITS);
el2_regs.tcr_el2 |= TCR_EL2_T0SZ(64 - EL2_VIRT_BITS);
el2_regs.tcr_el2 |= TCR_EL2_IRGN0_WBWA | TCR_EL2_ORGN0_WBWA;
#if PAGE_SIZE == PAGE_SIZE_4K
el2_regs.tcr_el2 |= TCR_EL2_TG0_4K;
#elif PAGE_SIZE == PAGE_SIZE_16K
el2_regs.tcr_el2 |= TCR_EL2_TG0_16K;
#else
#error Unsupported page size
#endif
#ifdef SMP
el2_regs.tcr_el2 |= TCR_EL2_SH0_IS;
#endif
switch (el2_regs.tcr_el2 & TCR_EL2_PS_MASK) {
case TCR_EL2_PS_32BITS:
vmm_max_ipa_bits = 32;
break;
case TCR_EL2_PS_36BITS:
vmm_max_ipa_bits = 36;
break;
case TCR_EL2_PS_40BITS:
vmm_max_ipa_bits = 40;
break;
case TCR_EL2_PS_42BITS:
vmm_max_ipa_bits = 42;
break;
case TCR_EL2_PS_44BITS:
vmm_max_ipa_bits = 44;
break;
case TCR_EL2_PS_48BITS:
vmm_max_ipa_bits = 48;
break;
case TCR_EL2_PS_52BITS:
default:
vmm_max_ipa_bits = 52;
break;
}
/*
* Configure the Stage 2 translation control register:
*
* VTCR_IRGN0_WBWA: Translation table walks access inner cacheable
* normal memory
* VTCR_ORGN0_WBWA: Translation table walks access outer cacheable
* normal memory
* VTCR_EL2_TG0_4K/16K: Stage 2 uses the same page size as the kernel
* VTCR_EL2_SL0_4K_LVL1: Stage 2 uses concatenated level 1 tables
* VTCR_EL2_SH0_IS: Memory associated with Stage 2 walks is inner
* shareable
*/
el2_regs.vtcr_el2 = VTCR_EL2_RES1;
el2_regs.vtcr_el2 |=
min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_48BIT);
el2_regs.vtcr_el2 |= VTCR_EL2_IRGN0_WBWA | VTCR_EL2_ORGN0_WBWA;
el2_regs.vtcr_el2 |= VTCR_EL2_T0SZ(64 - vmm_virt_bits);
el2_regs.vtcr_el2 |= vmm_vtcr_el2_sl(vmm_pmap_levels);
#if PAGE_SIZE == PAGE_SIZE_4K
el2_regs.vtcr_el2 |= VTCR_EL2_TG0_4K;
#elif PAGE_SIZE == PAGE_SIZE_16K
el2_regs.vtcr_el2 |= VTCR_EL2_TG0_16K;
#else
#error Unsupported page size
#endif
#ifdef SMP
el2_regs.vtcr_el2 |= VTCR_EL2_SH0_IS;
#endif
smp_rendezvous(NULL, arm_setup_vectors, NULL, &el2_regs);
/* Add memory to the vmem allocator (checking there is space) */
if (vmm_base > (L2_SIZE + PAGE_SIZE)) {
/*
* Ensure there is an L2 block before the vmm code to check
* for buffer overflows on earlier data. Include the PAGE_SIZE
* of the minimum we can allocate.
*/
vmm_base -= L2_SIZE + PAGE_SIZE;
vmm_base = rounddown2(vmm_base, L2_SIZE);
/*
* Check there is memory before the vmm code to add.
*
* Reserve the L2 block at address 0 so NULL dereference will
* raise an exception.
*/
if (vmm_base > L2_SIZE)
vmem_add(el2_mem_alloc, L2_SIZE, vmm_base - L2_SIZE,
M_WAITOK);
}
/*
* Add the memory after the stacks. There is most of an L2 block
* between the last stack and the first allocation so this should
* be safe without adding more padding.
*/
if (next_hyp_va < HYP_VM_MAX_ADDRESS - PAGE_SIZE)
vmem_add(el2_mem_alloc, next_hyp_va,
HYP_VM_MAX_ADDRESS - next_hyp_va, M_WAITOK);
daif = intr_disable();
cnthctl_el2 = vmm_call_hyp(HYP_READ_REGISTER, HYP_REG_CNTHCTL);
intr_restore(daif);
vgic_init();
vtimer_init(cnthctl_el2);
return (0);
}
int
vmmops_modcleanup(void)
{
int cpu;
smp_rendezvous(NULL, arm_teardown_vectors, NULL, NULL);
CPU_FOREACH(cpu) {
vmmpmap_remove(stack_hyp_va[cpu], VMM_STACK_PAGES * PAGE_SIZE,
false);
}
vmmpmap_remove(hyp_code_base, hyp_code_len, false);
vtimer_cleanup();
vmmpmap_fini();
CPU_FOREACH(cpu)
free(stack[cpu], M_HYP);
pmap_clean_stage2_tlbi = NULL;
pmap_stage2_invalidate_range = NULL;
pmap_stage2_invalidate_all = NULL;
return (0);
}
static vm_size_t
el2_hyp_size(struct vm *vm)
{
return (round_page(sizeof(struct hyp) +
sizeof(struct hypctx *) * vm_get_maxcpus(vm)));
}
static vm_size_t
el2_hypctx_size(void)
{
return (round_page(sizeof(struct hypctx)));
}
static vm_offset_t
el2_map_enter(vm_offset_t data, vm_size_t size, vm_prot_t prot)
{
vmem_addr_t addr;
int err __diagused;
bool rv __diagused;
err = vmem_alloc(el2_mem_alloc, size, M_NEXTFIT | M_WAITOK, &addr);
MPASS(err == 0);
rv = vmmpmap_enter(addr, size, vtophys(data), prot);
MPASS(rv);
return (addr);
}
void *
vmmops_init(struct vm *vm, pmap_t pmap)
{
struct hyp *hyp;
vm_size_t size;
size = el2_hyp_size(vm);
hyp = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
hyp->vm = vm;
hyp->vgic_attached = false;
vtimer_vminit(hyp);
vgic_vminit(hyp);
hyp->el2_addr = el2_map_enter((vm_offset_t)hyp, size,
VM_PROT_READ | VM_PROT_WRITE);
return (hyp);
}
void *
vmmops_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
{
struct hyp *hyp = vmi;
struct hypctx *hypctx;
vm_size_t size;
size = el2_hypctx_size();
hypctx = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
KASSERT(vcpuid >= 0 && vcpuid < vm_get_maxcpus(hyp->vm),
("%s: Invalid vcpuid %d", __func__, vcpuid));
hyp->ctx[vcpuid] = hypctx;
hypctx->hyp = hyp;
hypctx->vcpu = vcpu1;
reset_vm_el01_regs(hypctx);
reset_vm_el2_regs(hypctx);
vtimer_cpuinit(hypctx);
vgic_cpuinit(hypctx);
hypctx->el2_addr = el2_map_enter((vm_offset_t)hypctx, size,
VM_PROT_READ | VM_PROT_WRITE);
return (hypctx);
}
static int
arm_vmm_pinit(pmap_t pmap)
{
pmap_pinit_stage(pmap, PM_STAGE2, vmm_pmap_levels);
return (1);
}
struct vmspace *
vmmops_vmspace_alloc(vm_offset_t min, vm_offset_t max)
{
return (vmspace_alloc(min, max, arm_vmm_pinit));
}
void
vmmops_vmspace_free(struct vmspace *vmspace)
{
pmap_remove_pages(vmspace_pmap(vmspace));
vmspace_free(vmspace);
}
static void
vmm_pmap_clean_stage2_tlbi(void)
{
vmm_call_hyp(HYP_CLEAN_S2_TLBI);
}
static void
vmm_pmap_invalidate_range(uint64_t vttbr, vm_offset_t sva, vm_offset_t eva,
bool final_only)
{
MPASS(eva > sva);
vmm_call_hyp(HYP_S2_TLBI_RANGE, vttbr, sva, eva, final_only);
}
static void
vmm_pmap_invalidate_all(uint64_t vttbr)
{
vmm_call_hyp(HYP_S2_TLBI_ALL, vttbr);
}
static inline void
arm64_print_hyp_regs(struct vm_exit *vme)
{
printf("esr_el2: 0x%016lx\n", vme->u.hyp.esr_el2);
printf("far_el2: 0x%016lx\n", vme->u.hyp.far_el2);
printf("hpfar_el2: 0x%016lx\n", vme->u.hyp.hpfar_el2);
printf("elr_el2: 0x%016lx\n", vme->pc);
}
static void
arm64_gen_inst_emul_data(struct hypctx *hypctx, uint32_t esr_iss,
struct vm_exit *vme_ret)
{
struct vm_guest_paging *paging;
struct vie *vie;
uint32_t esr_sas, reg_num;
/*
* Get the page address from HPFAR_EL2.
*/
vme_ret->u.inst_emul.gpa =
HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
/* Bits [11:0] are the same as bits [11:0] from the virtual address. */
vme_ret->u.inst_emul.gpa += hypctx->exit_info.far_el2 &
FAR_EL2_HPFAR_PAGE_MASK;
esr_sas = (esr_iss & ISS_DATA_SAS_MASK) >> ISS_DATA_SAS_SHIFT;
reg_num = (esr_iss & ISS_DATA_SRT_MASK) >> ISS_DATA_SRT_SHIFT;
vie = &vme_ret->u.inst_emul.vie;
vie->access_size = 1 << esr_sas;
vie->sign_extend = (esr_iss & ISS_DATA_SSE) ? 1 : 0;
vie->dir = (esr_iss & ISS_DATA_WnR) ? VM_DIR_WRITE : VM_DIR_READ;
vie->reg = reg_num;
paging = &vme_ret->u.inst_emul.paging;
paging->ttbr0_addr = hypctx->ttbr0_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
paging->ttbr1_addr = hypctx->ttbr1_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
paging->tcr_el1 = hypctx->tcr_el1;
paging->tcr2_el1 = hypctx->tcr2_el1;
paging->flags = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
if ((hypctx->sctlr_el1 & SCTLR_M) != 0)
paging->flags |= VM_GP_MMU_ENABLED;
}
static void
arm64_gen_reg_emul_data(uint32_t esr_iss, struct vm_exit *vme_ret)
{
uint32_t reg_num;
struct vre *vre;
/* u.hyp member will be replaced by u.reg_emul */
vre = &vme_ret->u.reg_emul.vre;
vre->inst_syndrome = esr_iss;
/* ARMv8 Architecture Manual, p. D7-2273: 1 means read */
vre->dir = (esr_iss & ISS_MSR_DIR) ? VM_DIR_READ : VM_DIR_WRITE;
reg_num = ISS_MSR_Rt(esr_iss);
vre->reg = reg_num;
}
void
raise_data_insn_abort(struct hypctx *hypctx, uint64_t far, bool dabort, int fsc)
{
uint64_t esr;
if ((hypctx->tf.tf_spsr & PSR_M_MASK) == PSR_M_EL0t)
esr = EXCP_INSN_ABORT_L << ESR_ELx_EC_SHIFT;
else
esr = EXCP_INSN_ABORT << ESR_ELx_EC_SHIFT;
/* Set the bit that changes from insn -> data abort */
if (dabort)
esr |= EXCP_DATA_ABORT_L << ESR_ELx_EC_SHIFT;
/* Set the IL bit if set by hardware */
esr |= hypctx->tf.tf_esr & ESR_ELx_IL;
vmmops_exception(hypctx, esr | fsc, far);
}
static int
handle_el1_sync_excp(struct hypctx *hypctx, struct vm_exit *vme_ret,
pmap_t pmap)
{
uint64_t gpa;
uint32_t esr_ec, esr_iss;
esr_ec = ESR_ELx_EXCEPTION(hypctx->tf.tf_esr);
esr_iss = hypctx->tf.tf_esr & ESR_ELx_ISS_MASK;
switch (esr_ec) {
case EXCP_UNKNOWN:
vmm_stat_incr(hypctx->vcpu, VMEXIT_UNKNOWN, 1);
arm64_print_hyp_regs(vme_ret);
vme_ret->exitcode = VM_EXITCODE_HYP;
break;
case EXCP_TRAP_WFI_WFE:
if ((hypctx->tf.tf_esr & 0x3) == 0) { /* WFI */
vmm_stat_incr(hypctx->vcpu, VMEXIT_WFI, 1);
vme_ret->exitcode = VM_EXITCODE_WFI;
} else {
vmm_stat_incr(hypctx->vcpu, VMEXIT_WFE, 1);
vme_ret->exitcode = VM_EXITCODE_HYP;
}
break;
case EXCP_HVC:
vmm_stat_incr(hypctx->vcpu, VMEXIT_HVC, 1);
vme_ret->exitcode = VM_EXITCODE_HVC;
break;
case EXCP_MSR:
vmm_stat_incr(hypctx->vcpu, VMEXIT_MSR, 1);
arm64_gen_reg_emul_data(esr_iss, vme_ret);
vme_ret->exitcode = VM_EXITCODE_REG_EMUL;
break;
case EXCP_BRK:
vmm_stat_incr(hypctx->vcpu, VMEXIT_BRK, 1);
vme_ret->exitcode = VM_EXITCODE_BRK;
break;
case EXCP_SOFTSTP_EL0:
vmm_stat_incr(hypctx->vcpu, VMEXIT_SS, 1);
vme_ret->exitcode = VM_EXITCODE_SS;
break;
case EXCP_INSN_ABORT_L:
case EXCP_DATA_ABORT_L:
vmm_stat_incr(hypctx->vcpu, esr_ec == EXCP_DATA_ABORT_L ?
VMEXIT_DATA_ABORT : VMEXIT_INSN_ABORT, 1);
switch (hypctx->tf.tf_esr & ISS_DATA_DFSC_MASK) {
case ISS_DATA_DFSC_TF_L0:
case ISS_DATA_DFSC_TF_L1:
case ISS_DATA_DFSC_TF_L2:
case ISS_DATA_DFSC_TF_L3:
case ISS_DATA_DFSC_AFF_L1:
case ISS_DATA_DFSC_AFF_L2:
case ISS_DATA_DFSC_AFF_L3:
case ISS_DATA_DFSC_PF_L1:
case ISS_DATA_DFSC_PF_L2:
case ISS_DATA_DFSC_PF_L3:
gpa = HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
/* Check the IPA is valid */
if (gpa >= (1ul << vmm_max_ipa_bits)) {
raise_data_insn_abort(hypctx,
hypctx->exit_info.far_el2,
esr_ec == EXCP_DATA_ABORT_L,
ISS_DATA_DFSC_ASF_L0);
vme_ret->inst_length = 0;
return (HANDLED);
}
if (vm_mem_allocated(hypctx->vcpu, gpa)) {
vme_ret->exitcode = VM_EXITCODE_PAGING;
vme_ret->inst_length = 0;
vme_ret->u.paging.esr = hypctx->tf.tf_esr;
vme_ret->u.paging.gpa = gpa;
} else if (esr_ec == EXCP_INSN_ABORT_L) {
/*
* Raise an external abort. Device memory is
* not executable
*/
raise_data_insn_abort(hypctx,
hypctx->exit_info.far_el2, false,
ISS_DATA_DFSC_EXT);
vme_ret->inst_length = 0;
return (HANDLED);
} else {
arm64_gen_inst_emul_data(hypctx, esr_iss,
vme_ret);
vme_ret->exitcode = VM_EXITCODE_INST_EMUL;
}
break;
default:
arm64_print_hyp_regs(vme_ret);
vme_ret->exitcode = VM_EXITCODE_HYP;
break;
}
break;
default:
vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_SYNC, 1);
arm64_print_hyp_regs(vme_ret);
vme_ret->exitcode = VM_EXITCODE_HYP;
break;
}
/* We don't don't do any instruction emulation here */
return (UNHANDLED);
}
static int
arm64_handle_world_switch(struct hypctx *hypctx, int excp_type,
struct vm_exit *vme, pmap_t pmap)
{
int handled;
switch (excp_type) {
case EXCP_TYPE_EL1_SYNC:
/* The exit code will be set by handle_el1_sync_excp(). */
handled = handle_el1_sync_excp(hypctx, vme, pmap);
break;
case EXCP_TYPE_EL1_IRQ:
case EXCP_TYPE_EL1_FIQ:
/* The host kernel will handle IRQs and FIQs. */
vmm_stat_incr(hypctx->vcpu,
excp_type == EXCP_TYPE_EL1_IRQ ? VMEXIT_IRQ : VMEXIT_FIQ,1);
vme->exitcode = VM_EXITCODE_BOGUS;
handled = UNHANDLED;
break;
case EXCP_TYPE_EL1_ERROR:
case EXCP_TYPE_EL2_SYNC:
case EXCP_TYPE_EL2_IRQ:
case EXCP_TYPE_EL2_FIQ:
case EXCP_TYPE_EL2_ERROR:
vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_EL2, 1);
vme->exitcode = VM_EXITCODE_BOGUS;
handled = UNHANDLED;
break;
default:
vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED, 1);
vme->exitcode = VM_EXITCODE_BOGUS;
handled = UNHANDLED;
break;
}
return (handled);
}
static void
ptp_release(void **cookie)
{
if (*cookie != NULL) {
vm_gpa_release(*cookie);
*cookie = NULL;
}
}
static void *
ptp_hold(struct vcpu *vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
{
void *ptr;
ptp_release(cookie);
ptr = vm_gpa_hold(vcpu, ptpphys, len, VM_PROT_RW, cookie);
return (ptr);
}
/* log2 of the number of bytes in a page table entry */
#define PTE_SHIFT 3
int
vmmops_gla2gpa(void *vcpui, struct vm_guest_paging *paging, uint64_t gla,
int prot, uint64_t *gpa, int *is_fault)
{
struct hypctx *hypctx;
void *cookie;
uint64_t mask, *ptep, pte, pte_addr;
int address_bits, granule_shift, ia_bits, levels, pte_shift, tsz;
bool is_el0;
/* Check if the MMU is off */
if ((paging->flags & VM_GP_MMU_ENABLED) == 0) {
*is_fault = 0;
*gpa = gla;
return (0);
}
is_el0 = (paging->flags & PSR_M_MASK) == PSR_M_EL0t;
if (ADDR_IS_KERNEL(gla)) {
/* If address translation is disabled raise an exception */
if ((paging->tcr_el1 & TCR_EPD1) != 0) {
*is_fault = 1;
return (0);
}
if (is_el0 && (paging->tcr_el1 & TCR_E0PD1) != 0) {
*is_fault = 1;
return (0);
}
pte_addr = paging->ttbr1_addr;
tsz = (paging->tcr_el1 & TCR_T1SZ_MASK) >> TCR_T1SZ_SHIFT;
/* Clear the top byte if TBI is on */
if ((paging->tcr_el1 & TCR_TBI1) != 0)
gla |= (0xfful << 56);
switch (paging->tcr_el1 & TCR_TG1_MASK) {
case TCR_TG1_4K:
granule_shift = PAGE_SHIFT_4K;
break;
case TCR_TG1_16K:
granule_shift = PAGE_SHIFT_16K;
break;
case TCR_TG1_64K:
granule_shift = PAGE_SHIFT_64K;
break;
default:
*is_fault = 1;
return (EINVAL);
}
} else {
/* If address translation is disabled raise an exception */
if ((paging->tcr_el1 & TCR_EPD0) != 0) {
*is_fault = 1;
return (0);
}
if (is_el0 && (paging->tcr_el1 & TCR_E0PD0) != 0) {
*is_fault = 1;
return (0);
}
pte_addr = paging->ttbr0_addr;
tsz = (paging->tcr_el1 & TCR_T0SZ_MASK) >> TCR_T0SZ_SHIFT;
/* Clear the top byte if TBI is on */
if ((paging->tcr_el1 & TCR_TBI0) != 0)
gla &= ~(0xfful << 56);
switch (paging->tcr_el1 & TCR_TG0_MASK) {
case TCR_TG0_4K:
granule_shift = PAGE_SHIFT_4K;
break;
case TCR_TG0_16K:
granule_shift = PAGE_SHIFT_16K;
break;
case TCR_TG0_64K:
granule_shift = PAGE_SHIFT_64K;
break;
default:
*is_fault = 1;
return (EINVAL);
}
}
/*
* TODO: Support FEAT_TTST for smaller tsz values and FEAT_LPA2
* for larger values.
*/
switch (granule_shift) {
case PAGE_SHIFT_4K:
case PAGE_SHIFT_16K:
/*
* See "Table D8-11 4KB granule, determining stage 1 initial
* lookup level" and "Table D8-21 16KB granule, determining
* stage 1 initial lookup level" from the "Arm Architecture
* Reference Manual for A-Profile architecture" revision I.a
* for the minimum and maximum values.
*
* TODO: Support less than 16 when FEAT_LPA2 is implemented
* and TCR_EL1.DS == 1
* TODO: Support more than 39 when FEAT_TTST is implemented
*/
if (tsz < 16 || tsz > 39) {
*is_fault = 1;
return (EINVAL);
}
break;
case PAGE_SHIFT_64K:
/* TODO: Support 64k granule. It will probably work, but is untested */
default:
*is_fault = 1;
return (EINVAL);
}
/*
* Calculate the input address bits. These are 64 bit in an address
* with the top tsz bits being all 0 or all 1.
*/
ia_bits = 64 - tsz;
/*
* Calculate the number of address bits used in the page table
* calculation. This is ia_bits minus the bottom granule_shift
* bits that are passed to the output address.
*/
address_bits = ia_bits - granule_shift;
/*
* Calculate the number of levels. Each level uses
* granule_shift - PTE_SHIFT bits of the input address.
* This is because the table is 1 << granule_shift and each
* entry is 1 << PTE_SHIFT bytes.
*/
levels = howmany(address_bits, granule_shift - PTE_SHIFT);
/* Mask of the upper unused bits in the virtual address */
gla &= (1ul << ia_bits) - 1;
hypctx = (struct hypctx *)vcpui;
cookie = NULL;
/* TODO: Check if the level supports block descriptors */
for (;levels > 0; levels--) {
int idx;
pte_shift = (levels - 1) * (granule_shift - PTE_SHIFT) +
granule_shift;
idx = (gla >> pte_shift) &
((1ul << (granule_shift - PTE_SHIFT)) - 1);
while (idx > PAGE_SIZE / sizeof(pte)) {
idx -= PAGE_SIZE / sizeof(pte);
pte_addr += PAGE_SIZE;
}
ptep = ptp_hold(hypctx->vcpu, pte_addr, PAGE_SIZE, &cookie);
if (ptep == NULL)
goto error;
pte = ptep[idx];
/* Calculate the level we are looking at */
switch (levels) {
default:
goto fault;
/* TODO: Level -1 when FEAT_LPA2 is implemented */
case 4: /* Level 0 */
if ((pte & ATTR_DESCR_MASK) != L0_TABLE)
goto fault;
/* FALLTHROUGH */
case 3: /* Level 1 */
case 2: /* Level 2 */
switch (pte & ATTR_DESCR_MASK) {
/* Use L1 macro as all levels are the same */
case L1_TABLE:
/* Check if EL0 can access this address space */
if (is_el0 &&
(pte & TATTR_AP_TABLE_NO_EL0) != 0)
goto fault;
/* Check if the address space is writable */
if ((prot & PROT_WRITE) != 0 &&
(pte & TATTR_AP_TABLE_RO) != 0)
goto fault;
if ((prot & PROT_EXEC) != 0) {
/* Check the table exec attribute */
if ((is_el0 &&
(pte & TATTR_UXN_TABLE) != 0) ||
(!is_el0 &&
(pte & TATTR_PXN_TABLE) != 0))
goto fault;
}
pte_addr = pte & ~ATTR_MASK;
break;
case L1_BLOCK:
goto done;
default:
goto fault;
}
break;
case 1: /* Level 3 */
if ((pte & ATTR_DESCR_MASK) == L3_PAGE)
goto done;
goto fault;
}
}
done:
/* Check if EL0 has access to the block/page */
if (is_el0 && (pte & ATTR_S1_AP(ATTR_S1_AP_USER)) == 0)
goto fault;
if ((prot & PROT_WRITE) != 0 && (pte & ATTR_S1_AP_RW_BIT) != 0)
goto fault;
if ((prot & PROT_EXEC) != 0) {
if ((is_el0 && (pte & ATTR_S1_UXN) != 0) ||
(!is_el0 && (pte & ATTR_S1_PXN) != 0))
goto fault;
}
mask = (1ul << pte_shift) - 1;
*gpa = (pte & ~ATTR_MASK) | (gla & mask);
*is_fault = 0;
ptp_release(&cookie);
return (0);
error:
ptp_release(&cookie);
return (EFAULT);
fault:
*is_fault = 1;
ptp_release(&cookie);
return (0);
}
int
vmmops_run(void *vcpui, register_t pc, pmap_t pmap, struct vm_eventinfo *evinfo)
{
uint64_t excp_type;
int handled;
register_t daif;
struct hyp *hyp;
struct hypctx *hypctx;
struct vcpu *vcpu;
struct vm_exit *vme;
int mode;
hypctx = (struct hypctx *)vcpui;
hyp = hypctx->hyp;
vcpu = hypctx->vcpu;
vme = vm_exitinfo(vcpu);
hypctx->tf.tf_elr = (uint64_t)pc;
for (;;) {
if (hypctx->has_exception) {
hypctx->has_exception = false;
hypctx->elr_el1 = hypctx->tf.tf_elr;
mode = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
if (mode == PSR_M_EL1t) {
hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x0;
} else if (mode == PSR_M_EL1h) {
hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x200;
} else if ((mode & PSR_M_32) == PSR_M_64) {
/* 64-bit EL0 */
hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x400;
} else {
/* 32-bit EL0 */
hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x600;
}
/* Set the new spsr */
hypctx->spsr_el1 = hypctx->tf.tf_spsr;
/* Set the new cpsr */
hypctx->tf.tf_spsr = hypctx->spsr_el1 & PSR_FLAGS;
hypctx->tf.tf_spsr |= PSR_DAIF | PSR_M_EL1h;
/*
* Update fields that may change on exeption entry
* based on how sctlr_el1 is configured.
*/
if ((hypctx->sctlr_el1 & SCTLR_SPAN) == 0)
hypctx->tf.tf_spsr |= PSR_PAN;
if ((hypctx->sctlr_el1 & SCTLR_DSSBS) == 0)
hypctx->tf.tf_spsr &= ~PSR_SSBS;
else
hypctx->tf.tf_spsr |= PSR_SSBS;
}
daif = intr_disable();
/* Check if the vcpu is suspended */
if (vcpu_suspended(evinfo)) {
intr_restore(daif);
vm_exit_suspended(vcpu, pc);
break;
}
if (vcpu_debugged(vcpu)) {
intr_restore(daif);
vm_exit_debug(vcpu, pc);
break;
}
/* Activate the stage2 pmap so the vmid is valid */
pmap_activate_vm(pmap);
hyp->vttbr_el2 = pmap_to_ttbr0(pmap);
/*
* TODO: What happens if a timer interrupt is asserted exactly
* here, but for the previous VM?
*/
arm64_set_active_vcpu(hypctx);
vgic_flush_hwstate(hypctx);
/* Call into EL2 to switch to the guest */
excp_type = vmm_call_hyp(HYP_ENTER_GUEST,
hyp->el2_addr, hypctx->el2_addr);
vgic_sync_hwstate(hypctx);
vtimer_sync_hwstate(hypctx);
/*
* Deactivate the stage2 pmap. vmm_pmap_clean_stage2_tlbi
* depends on this meaning we activate the VM before entering
* the vm again
*/
PCPU_SET(curvmpmap, NULL);
intr_restore(daif);
vmm_stat_incr(vcpu, VMEXIT_COUNT, 1);
if (excp_type == EXCP_TYPE_MAINT_IRQ)
continue;
vme->pc = hypctx->tf.tf_elr;
vme->inst_length = INSN_SIZE;
vme->u.hyp.exception_nr = excp_type;
vme->u.hyp.esr_el2 = hypctx->tf.tf_esr;
vme->u.hyp.far_el2 = hypctx->exit_info.far_el2;
vme->u.hyp.hpfar_el2 = hypctx->exit_info.hpfar_el2;
handled = arm64_handle_world_switch(hypctx, excp_type, vme,
pmap);
if (handled == UNHANDLED)
/* Exit loop to emulate instruction. */
break;
else
/* Resume guest execution from the next instruction. */
hypctx->tf.tf_elr += vme->inst_length;
}
return (0);
}
static void
arm_pcpu_vmcleanup(void *arg)
{
struct hyp *hyp;
int i, maxcpus;
hyp = arg;
maxcpus = vm_get_maxcpus(hyp->vm);
for (i = 0; i < maxcpus; i++) {
if (arm64_get_active_vcpu() == hyp->ctx[i]) {
arm64_set_active_vcpu(NULL);
break;
}
}
}
void
vmmops_vcpu_cleanup(void *vcpui)
{
struct hypctx *hypctx = vcpui;
vtimer_cpucleanup(hypctx);
vgic_cpucleanup(hypctx);
vmmpmap_remove(hypctx->el2_addr, el2_hypctx_size(), true);
free(hypctx, M_HYP);
}
void
vmmops_cleanup(void *vmi)
{
struct hyp *hyp = vmi;
vtimer_vmcleanup(hyp);
vgic_vmcleanup(hyp);
smp_rendezvous(NULL, arm_pcpu_vmcleanup, NULL, hyp);
vmmpmap_remove(hyp->el2_addr, el2_hyp_size(hyp->vm), true);
free(hyp, M_HYP);
}
/*
* Return register value. Registers have different sizes and an explicit cast
* must be made to ensure proper conversion.
*/
static uint64_t *
hypctx_regptr(struct hypctx *hypctx, int reg)
{
switch (reg) {
case VM_REG_GUEST_X0 ... VM_REG_GUEST_X29:
return (&hypctx->tf.tf_x[reg]);
case VM_REG_GUEST_LR:
return (&hypctx->tf.tf_lr);
case VM_REG_GUEST_SP:
return (&hypctx->tf.tf_sp);
case VM_REG_GUEST_CPSR:
return (&hypctx->tf.tf_spsr);
case VM_REG_GUEST_PC:
return (&hypctx->tf.tf_elr);
case VM_REG_GUEST_SCTLR_EL1:
return (&hypctx->sctlr_el1);
case VM_REG_GUEST_TTBR0_EL1:
return (&hypctx->ttbr0_el1);
case VM_REG_GUEST_TTBR1_EL1:
return (&hypctx->ttbr1_el1);
case VM_REG_GUEST_TCR_EL1:
return (&hypctx->tcr_el1);
case VM_REG_GUEST_TCR2_EL1:
return (&hypctx->tcr2_el1);
default:
break;
}
return (NULL);
}
int
vmmops_getreg(void *vcpui, int reg, uint64_t *retval)
{
uint64_t *regp;
int running, hostcpu;
struct hypctx *hypctx = vcpui;
running = vcpu_is_running(hypctx->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("arm_getreg: %s%d is running", vm_name(hypctx->hyp->vm),
vcpu_vcpuid(hypctx->vcpu));
regp = hypctx_regptr(hypctx, reg);
if (regp == NULL)
return (EINVAL);
*retval = *regp;
return (0);
}
int
vmmops_setreg(void *vcpui, int reg, uint64_t val)
{
uint64_t *regp;
struct hypctx *hypctx = vcpui;
int running, hostcpu;
running = vcpu_is_running(hypctx->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("arm_setreg: %s%d is running", vm_name(hypctx->hyp->vm),
vcpu_vcpuid(hypctx->vcpu));
regp = hypctx_regptr(hypctx, reg);
if (regp == NULL)
return (EINVAL);
*regp = val;
return (0);
}
int
vmmops_exception(void *vcpui, uint64_t esr, uint64_t far)
{
struct hypctx *hypctx = vcpui;
int running, hostcpu;
running = vcpu_is_running(hypctx->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("%s: %s%d is running", __func__, vm_name(hypctx->hyp->vm),
vcpu_vcpuid(hypctx->vcpu));
hypctx->far_el1 = far;
hypctx->esr_el1 = esr;
hypctx->has_exception = true;
return (0);
}
int
vmmops_getcap(void *vcpui, int num, int *retval)
{
struct hypctx *hypctx = vcpui;
int ret;
ret = ENOENT;
switch (num) {
case VM_CAP_UNRESTRICTED_GUEST:
*retval = 1;
ret = 0;
break;
case VM_CAP_BRK_EXIT:
case VM_CAP_SS_EXIT:
case VM_CAP_MASK_HWINTR:
*retval = (hypctx->setcaps & (1ul << num)) != 0;
break;
default:
break;
}
return (ret);
}
int
vmmops_setcap(void *vcpui, int num, int val)
{
struct hypctx *hypctx = vcpui;
int ret;
ret = 0;
switch (num) {
case VM_CAP_BRK_EXIT:
if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
break;
if (val != 0)
hypctx->mdcr_el2 |= MDCR_EL2_TDE;
else
hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
break;
case VM_CAP_SS_EXIT:
if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
break;
if (val != 0) {
hypctx->debug_spsr |= (hypctx->tf.tf_spsr & PSR_SS);
hypctx->debug_mdscr |= hypctx->mdscr_el1 &
(MDSCR_SS | MDSCR_KDE);
hypctx->tf.tf_spsr |= PSR_SS;
hypctx->mdscr_el1 |= MDSCR_SS | MDSCR_KDE;
hypctx->mdcr_el2 |= MDCR_EL2_TDE;
} else {
hypctx->tf.tf_spsr &= ~PSR_SS;
hypctx->tf.tf_spsr |= hypctx->debug_spsr;
hypctx->debug_spsr &= ~PSR_SS;
hypctx->mdscr_el1 &= ~(MDSCR_SS | MDSCR_KDE);
hypctx->mdscr_el1 |= hypctx->debug_mdscr;
hypctx->debug_mdscr &= ~(MDSCR_SS | MDSCR_KDE);
hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
}
break;
case VM_CAP_MASK_HWINTR:
if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
break;
if (val != 0) {
hypctx->debug_spsr |= (hypctx->tf.tf_spsr &
(PSR_I | PSR_F));
hypctx->tf.tf_spsr |= PSR_I | PSR_F;
} else {
hypctx->tf.tf_spsr &= ~(PSR_I | PSR_F);
hypctx->tf.tf_spsr |= (hypctx->debug_spsr &
(PSR_I | PSR_F));
hypctx->debug_spsr &= ~(PSR_I | PSR_F);
}
break;
default:
ret = ENOENT;
break;
}
if (ret == 0) {
if (val == 0)
hypctx->setcaps &= ~(1ul << num);
else
hypctx->setcaps |= (1ul << num);
}
return (ret);
}