freebsd-src/sys/netlink/netlink_domain.c
2024-01-02 13:09:37 -08:00

1016 lines
26 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2021 Ng Peng Nam Sean
* Copyright (c) 2022 Alexander V. Chernikov <melifaro@FreeBSD.org>
* Copyright (c) 2023 Gleb Smirnoff <glebius@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This file contains socket and protocol bindings for netlink.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/rmlock.h>
#include <sys/domain.h>
#include <sys/jail.h>
#include <sys/mbuf.h>
#include <sys/osd.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/ck.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysent.h>
#include <sys/syslog.h>
#include <sys/priv.h> /* priv_check */
#include <sys/uio.h>
#include <netlink/netlink.h>
#include <netlink/netlink_ctl.h>
#include <netlink/netlink_var.h>
#define DEBUG_MOD_NAME nl_domain
#define DEBUG_MAX_LEVEL LOG_DEBUG3
#include <netlink/netlink_debug.h>
_DECLARE_DEBUG(LOG_INFO);
_Static_assert((NLP_MAX_GROUPS % 64) == 0,
"NLP_MAX_GROUPS has to be multiple of 64");
_Static_assert(NLP_MAX_GROUPS >= 64,
"NLP_MAX_GROUPS has to be at least 64");
#define NLCTL_TRACKER struct rm_priotracker nl_tracker
#define NLCTL_RLOCK(_ctl) rm_rlock(&((_ctl)->ctl_lock), &nl_tracker)
#define NLCTL_RUNLOCK(_ctl) rm_runlock(&((_ctl)->ctl_lock), &nl_tracker)
#define NLCTL_WLOCK(_ctl) rm_wlock(&((_ctl)->ctl_lock))
#define NLCTL_WUNLOCK(_ctl) rm_wunlock(&((_ctl)->ctl_lock))
static u_long nl_sendspace = NLSNDQ;
SYSCTL_ULONG(_net_netlink, OID_AUTO, sendspace, CTLFLAG_RW, &nl_sendspace, 0,
"Default netlink socket send space");
static u_long nl_recvspace = NLSNDQ;
SYSCTL_ULONG(_net_netlink, OID_AUTO, recvspace, CTLFLAG_RW, &nl_recvspace, 0,
"Default netlink socket receive space");
extern u_long sb_max_adj;
static u_long nl_maxsockbuf = 512 * 1024 * 1024; /* 512M, XXX: init based on physmem */
static int sysctl_handle_nl_maxsockbuf(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_net_netlink, OID_AUTO, nl_maxsockbuf,
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, &nl_maxsockbuf, 0,
sysctl_handle_nl_maxsockbuf, "LU",
"Maximum Netlink socket buffer size");
static unsigned int osd_slot_id = 0;
void
nl_osd_register(void)
{
osd_slot_id = osd_register(OSD_THREAD, NULL, NULL);
}
void
nl_osd_unregister(void)
{
osd_deregister(OSD_THREAD, osd_slot_id);
}
struct nlpcb *
_nl_get_thread_nlp(struct thread *td)
{
return (osd_get(OSD_THREAD, &td->td_osd, osd_slot_id));
}
void
nl_set_thread_nlp(struct thread *td, struct nlpcb *nlp)
{
NLP_LOG(LOG_DEBUG2, nlp, "Set thread %p nlp to %p (slot %u)", td, nlp, osd_slot_id);
if (osd_set(OSD_THREAD, &td->td_osd, osd_slot_id, nlp) == 0)
return;
/* Failed, need to realloc */
void **rsv = osd_reserve(osd_slot_id);
osd_set_reserved(OSD_THREAD, &td->td_osd, osd_slot_id, rsv, nlp);
}
/*
* Looks up a nlpcb struct based on the @portid. Need to claim nlsock_mtx.
* Returns nlpcb pointer if present else NULL
*/
static struct nlpcb *
nl_port_lookup(uint32_t port_id)
{
struct nlpcb *nlp;
CK_LIST_FOREACH(nlp, &V_nl_ctl->ctl_port_head, nl_port_next) {
if (nlp->nl_port == port_id)
return (nlp);
}
return (NULL);
}
static void
nl_add_group_locked(struct nlpcb *nlp, unsigned int group_id)
{
MPASS(group_id <= NLP_MAX_GROUPS);
--group_id;
/* TODO: add family handler callback */
if (!nlp_unconstrained_vnet(nlp))
return;
nlp->nl_groups[group_id / 64] |= (uint64_t)1 << (group_id % 64);
}
static void
nl_del_group_locked(struct nlpcb *nlp, unsigned int group_id)
{
MPASS(group_id <= NLP_MAX_GROUPS);
--group_id;
nlp->nl_groups[group_id / 64] &= ~((uint64_t)1 << (group_id % 64));
}
static bool
nl_isset_group_locked(struct nlpcb *nlp, unsigned int group_id)
{
MPASS(group_id <= NLP_MAX_GROUPS);
--group_id;
return (nlp->nl_groups[group_id / 64] & ((uint64_t)1 << (group_id % 64)));
}
static uint32_t
nl_get_groups_compat(struct nlpcb *nlp)
{
uint32_t groups_mask = 0;
for (int i = 0; i < 32; i++) {
if (nl_isset_group_locked(nlp, i + 1))
groups_mask |= (1 << i);
}
return (groups_mask);
}
static struct nl_buf *
nl_buf_copy(struct nl_buf *nb)
{
struct nl_buf *copy;
copy = nl_buf_alloc(nb->buflen, M_NOWAIT);
if (__predict_false(copy == NULL))
return (NULL);
memcpy(copy, nb, sizeof(*nb) + nb->buflen);
return (copy);
}
/*
* Broadcasts in the writer's buffer.
*/
bool
nl_send_group(struct nl_writer *nw)
{
struct nl_buf *nb = nw->buf;
struct nlpcb *nlp_last = NULL;
struct nlpcb *nlp;
NLCTL_TRACKER;
IF_DEBUG_LEVEL(LOG_DEBUG2) {
struct nlmsghdr *hdr = (struct nlmsghdr *)nb->data;
NL_LOG(LOG_DEBUG2, "MCAST len %u msg type %d len %u to group %d/%d",
nb->datalen, hdr->nlmsg_type, hdr->nlmsg_len,
nw->group.proto, nw->group.id);
}
nw->buf = NULL;
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
if (__predict_false(ctl == NULL)) {
/*
* Can be the case when notification is sent within VNET
* which doesn't have any netlink sockets.
*/
nl_buf_free(nb);
return (false);
}
NLCTL_RLOCK(ctl);
CK_LIST_FOREACH(nlp, &ctl->ctl_pcb_head, nl_next) {
if (nl_isset_group_locked(nlp, nw->group.id) &&
nlp->nl_proto == nw->group.proto) {
if (nlp_last != NULL) {
struct nl_buf *copy;
copy = nl_buf_copy(nb);
if (copy != NULL) {
nw->buf = copy;
(void)nl_send_one(nw);
} else {
NLP_LOCK(nlp_last);
if (nlp_last->nl_socket != NULL)
sorwakeup(nlp_last->nl_socket);
NLP_UNLOCK(nlp_last);
}
}
nlp_last = nlp;
}
}
if (nlp_last != NULL) {
nw->buf = nb;
(void)nl_send_one(nw);
} else
nl_buf_free(nb);
NLCTL_RUNLOCK(ctl);
return (true);
}
bool
nl_has_listeners(int netlink_family, uint32_t groups_mask)
{
return (V_nl_ctl != NULL);
}
static uint32_t
nl_find_port(void)
{
/*
* app can open multiple netlink sockets.
* Start with current pid, if already taken,
* try random numbers in 65k..256k+65k space,
* avoiding clash with pids.
*/
if (nl_port_lookup(curproc->p_pid) == NULL)
return (curproc->p_pid);
for (int i = 0; i < 16; i++) {
uint32_t nl_port = (arc4random() % 65536) + 65536 * 4;
if (nl_port_lookup(nl_port) == 0)
return (nl_port);
NL_LOG(LOG_DEBUG3, "tried %u\n", nl_port);
}
return (curproc->p_pid);
}
static int
nl_bind_locked(struct nlpcb *nlp, struct sockaddr_nl *snl)
{
if (nlp->nl_bound) {
if (nlp->nl_port != snl->nl_pid) {
NL_LOG(LOG_DEBUG,
"bind() failed: program pid %d "
"is different from provided pid %d",
nlp->nl_port, snl->nl_pid);
return (EINVAL); // XXX: better error
}
} else {
if (snl->nl_pid == 0)
snl->nl_pid = nl_find_port();
if (nl_port_lookup(snl->nl_pid) != NULL)
return (EADDRINUSE);
nlp->nl_port = snl->nl_pid;
nlp->nl_bound = true;
CK_LIST_INSERT_HEAD(&V_nl_ctl->ctl_port_head, nlp, nl_port_next);
}
for (int i = 0; i < 32; i++) {
if (snl->nl_groups & ((uint32_t)1 << i))
nl_add_group_locked(nlp, i + 1);
else
nl_del_group_locked(nlp, i + 1);
}
return (0);
}
static int
nl_pru_attach(struct socket *so, int proto, struct thread *td)
{
struct nlpcb *nlp;
int error;
if (__predict_false(netlink_unloading != 0))
return (EAFNOSUPPORT);
error = nl_verify_proto(proto);
if (error != 0)
return (error);
bool is_linux = SV_PROC_ABI(td->td_proc) == SV_ABI_LINUX;
NL_LOG(LOG_DEBUG2, "socket %p, %sPID %d: attaching socket to %s",
so, is_linux ? "(linux) " : "", curproc->p_pid,
nl_get_proto_name(proto));
/* Create per-VNET state on first socket init */
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
if (ctl == NULL)
ctl = vnet_nl_ctl_init();
KASSERT(V_nl_ctl != NULL, ("nl_attach: vnet_sock_init() failed"));
MPASS(sotonlpcb(so) == NULL);
nlp = malloc(sizeof(struct nlpcb), M_PCB, M_WAITOK | M_ZERO);
error = soreserve(so, nl_sendspace, nl_recvspace);
if (error != 0) {
free(nlp, M_PCB);
return (error);
}
TAILQ_INIT(&so->so_rcv.nl_queue);
TAILQ_INIT(&so->so_snd.nl_queue);
so->so_pcb = nlp;
nlp->nl_socket = so;
/* Copy so_cred to avoid having socket_var.h in every header */
nlp->nl_cred = so->so_cred;
nlp->nl_proto = proto;
nlp->nl_process_id = curproc->p_pid;
nlp->nl_linux = is_linux;
nlp->nl_unconstrained_vnet = !jailed_without_vnet(so->so_cred);
nlp->nl_need_thread_setup = true;
NLP_LOCK_INIT(nlp);
refcount_init(&nlp->nl_refcount, 1);
nlp->nl_taskqueue = taskqueue_create("netlink_socket", M_WAITOK,
taskqueue_thread_enqueue, &nlp->nl_taskqueue);
TASK_INIT(&nlp->nl_task, 0, nl_taskqueue_handler, nlp);
taskqueue_start_threads(&nlp->nl_taskqueue, 1, PWAIT,
"netlink_socket (PID %u)", nlp->nl_process_id);
NLCTL_WLOCK(ctl);
/* XXX: check ctl is still alive */
CK_LIST_INSERT_HEAD(&ctl->ctl_pcb_head, nlp, nl_next);
NLCTL_WUNLOCK(ctl);
soisconnected(so);
return (0);
}
static int
nl_pru_bind(struct socket *so, struct sockaddr *sa, struct thread *td)
{
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
struct nlpcb *nlp = sotonlpcb(so);
struct sockaddr_nl *snl = (struct sockaddr_nl *)sa;
int error;
NL_LOG(LOG_DEBUG3, "socket %p, PID %d", so, curproc->p_pid);
if (snl->nl_len != sizeof(*snl)) {
NL_LOG(LOG_DEBUG, "socket %p, wrong sizeof(), ignoring bind()", so);
return (EINVAL);
}
NLCTL_WLOCK(ctl);
NLP_LOCK(nlp);
error = nl_bind_locked(nlp, snl);
NLP_UNLOCK(nlp);
NLCTL_WUNLOCK(ctl);
NL_LOG(LOG_DEBUG2, "socket %p, bind() to %u, groups %u, error %d", so,
snl->nl_pid, snl->nl_groups, error);
return (error);
}
static int
nl_assign_port(struct nlpcb *nlp, uint32_t port_id)
{
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
struct sockaddr_nl snl = {
.nl_pid = port_id,
};
int error;
NLCTL_WLOCK(ctl);
NLP_LOCK(nlp);
snl.nl_groups = nl_get_groups_compat(nlp);
error = nl_bind_locked(nlp, &snl);
NLP_UNLOCK(nlp);
NLCTL_WUNLOCK(ctl);
NL_LOG(LOG_DEBUG3, "socket %p, port assign: %d, error: %d", nlp->nl_socket, port_id, error);
return (error);
}
/*
* nl_autobind_port binds a unused portid to @nlp
* @nlp: pcb data for the netlink socket
* @candidate_id: first id to consider
*/
static int
nl_autobind_port(struct nlpcb *nlp, uint32_t candidate_id)
{
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
uint32_t port_id = candidate_id;
NLCTL_TRACKER;
bool exist;
int error = EADDRINUSE;
for (int i = 0; i < 10; i++) {
NL_LOG(LOG_DEBUG3, "socket %p, trying to assign port %d", nlp->nl_socket, port_id);
NLCTL_RLOCK(ctl);
exist = nl_port_lookup(port_id) != 0;
NLCTL_RUNLOCK(ctl);
if (!exist) {
error = nl_assign_port(nlp, port_id);
if (error != EADDRINUSE)
break;
}
port_id++;
}
NL_LOG(LOG_DEBUG3, "socket %p, autobind to %d, error: %d", nlp->nl_socket, port_id, error);
return (error);
}
static int
nl_pru_connect(struct socket *so, struct sockaddr *sa, struct thread *td)
{
struct sockaddr_nl *snl = (struct sockaddr_nl *)sa;
struct nlpcb *nlp;
NL_LOG(LOG_DEBUG3, "socket %p, PID %d", so, curproc->p_pid);
if (snl->nl_len != sizeof(*snl)) {
NL_LOG(LOG_DEBUG, "socket %p, wrong sizeof(), ignoring bind()", so);
return (EINVAL);
}
nlp = sotonlpcb(so);
if (!nlp->nl_bound) {
int error = nl_autobind_port(nlp, td->td_proc->p_pid);
if (error != 0) {
NL_LOG(LOG_DEBUG, "socket %p, nl_autobind() failed: %d", so, error);
return (error);
}
}
/* XXX: Handle socket flags & multicast */
soisconnected(so);
NL_LOG(LOG_DEBUG2, "socket %p, connect to %u", so, snl->nl_pid);
return (0);
}
static void
destroy_nlpcb_epoch(epoch_context_t ctx)
{
struct nlpcb *nlp;
nlp = __containerof(ctx, struct nlpcb, nl_epoch_ctx);
NLP_LOCK_DESTROY(nlp);
free(nlp, M_PCB);
}
static void
nl_close(struct socket *so)
{
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
MPASS(sotonlpcb(so) != NULL);
struct nlpcb *nlp;
struct nl_buf *nb;
NL_LOG(LOG_DEBUG2, "detaching socket %p, PID %d", so, curproc->p_pid);
nlp = sotonlpcb(so);
/* Mark as inactive so no new work can be enqueued */
NLP_LOCK(nlp);
bool was_bound = nlp->nl_bound;
NLP_UNLOCK(nlp);
/* Wait till all scheduled work has been completed */
taskqueue_drain_all(nlp->nl_taskqueue);
taskqueue_free(nlp->nl_taskqueue);
NLCTL_WLOCK(ctl);
NLP_LOCK(nlp);
if (was_bound) {
CK_LIST_REMOVE(nlp, nl_port_next);
NL_LOG(LOG_DEBUG3, "socket %p, unlinking bound pid %u", so, nlp->nl_port);
}
CK_LIST_REMOVE(nlp, nl_next);
nlp->nl_socket = NULL;
NLP_UNLOCK(nlp);
NLCTL_WUNLOCK(ctl);
so->so_pcb = NULL;
while ((nb = TAILQ_FIRST(&so->so_snd.nl_queue)) != NULL) {
TAILQ_REMOVE(&so->so_snd.nl_queue, nb, tailq);
nl_buf_free(nb);
}
while ((nb = TAILQ_FIRST(&so->so_rcv.nl_queue)) != NULL) {
TAILQ_REMOVE(&so->so_rcv.nl_queue, nb, tailq);
nl_buf_free(nb);
}
NL_LOG(LOG_DEBUG3, "socket %p, detached", so);
/* XXX: is delayed free needed? */
NET_EPOCH_CALL(destroy_nlpcb_epoch, &nlp->nl_epoch_ctx);
}
static int
nl_pru_disconnect(struct socket *so)
{
NL_LOG(LOG_DEBUG3, "socket %p, PID %d", so, curproc->p_pid);
MPASS(sotonlpcb(so) != NULL);
return (ENOTCONN);
}
static int
nl_pru_shutdown(struct socket *so)
{
NL_LOG(LOG_DEBUG3, "socket %p, PID %d", so, curproc->p_pid);
MPASS(sotonlpcb(so) != NULL);
socantsendmore(so);
return (0);
}
static int
nl_sockaddr(struct socket *so, struct sockaddr *sa)
{
*(struct sockaddr_nl *)sa = (struct sockaddr_nl ){
/* TODO: set other fields */
.nl_len = sizeof(struct sockaddr_nl),
.nl_family = AF_NETLINK,
.nl_pid = sotonlpcb(so)->nl_port,
};
return (0);
}
static int
nl_sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
struct mbuf *m, struct mbuf *control, int flags, struct thread *td)
{
struct nlpcb *nlp = sotonlpcb(so);
struct sockbuf *sb = &so->so_snd;
struct nl_buf *nb;
u_int len;
int error;
MPASS(m == NULL && uio != NULL);
NL_LOG(LOG_DEBUG2, "sending message to kernel");
if (__predict_false(control != NULL)) {
m_freem(control);
return (EINVAL);
}
if (__predict_false(flags & MSG_OOB)) /* XXXGL: or just ignore? */
return (EOPNOTSUPP);
if (__predict_false(uio->uio_resid < sizeof(struct nlmsghdr)))
return (ENOBUFS); /* XXXGL: any better error? */
NL_LOG(LOG_DEBUG3, "sending message to kernel async processing");
error = SOCK_IO_SEND_LOCK(so, SBLOCKWAIT(flags));
if (error)
return (error);
len = roundup2(uio->uio_resid, 8) + SCRATCH_BUFFER_SIZE;
if (nlp->nl_linux)
len += roundup2(uio->uio_resid, 8);
nb = nl_buf_alloc(len, M_WAITOK);
nb->datalen = uio->uio_resid;
error = uiomove(&nb->data[0], uio->uio_resid, uio);
if (__predict_false(error))
goto out;
SOCK_SENDBUF_LOCK(so);
restart:
if (sb->sb_hiwat - sb->sb_ccc >= nb->datalen) {
TAILQ_INSERT_TAIL(&sb->nl_queue, nb, tailq);
sb->sb_acc += nb->datalen;
sb->sb_ccc += nb->datalen;
nb = NULL;
} else if ((so->so_state & SS_NBIO) ||
(flags & (MSG_NBIO | MSG_DONTWAIT)) != 0) {
SOCK_SENDBUF_UNLOCK(so);
error = EWOULDBLOCK;
goto out;
} else {
if ((error = sbwait(so, SO_SND)) != 0) {
SOCK_SENDBUF_UNLOCK(so);
goto out;
} else
goto restart;
}
SOCK_SENDBUF_UNLOCK(so);
if (nb == NULL) {
NL_LOG(LOG_DEBUG3, "enqueue %u bytes", nb->datalen);
NLP_LOCK(nlp);
nl_schedule_taskqueue(nlp);
NLP_UNLOCK(nlp);
}
out:
SOCK_IO_SEND_UNLOCK(so);
if (nb != NULL)
nl_buf_free(nb);
return (error);
}
/* Create control data for recvmsg(2) on Netlink socket. */
static struct mbuf *
nl_createcontrol(struct nlpcb *nlp)
{
struct {
struct nlattr nla;
uint32_t val;
} data[] = {
{
.nla.nla_len = sizeof(struct nlattr) + sizeof(uint32_t),
.nla.nla_type = NLMSGINFO_ATTR_PROCESS_ID,
.val = nlp->nl_process_id,
},
{
.nla.nla_len = sizeof(struct nlattr) + sizeof(uint32_t),
.nla.nla_type = NLMSGINFO_ATTR_PORT_ID,
.val = nlp->nl_port,
},
};
return (sbcreatecontrol(data, sizeof(data), NETLINK_MSG_INFO,
SOL_NETLINK, M_WAITOK));
}
static int
nl_soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
struct mbuf **mp, struct mbuf **controlp, int *flagsp)
{
static const struct sockaddr_nl nl_empty_src = {
.nl_len = sizeof(struct sockaddr_nl),
.nl_family = PF_NETLINK,
.nl_pid = 0 /* comes from the kernel */
};
struct sockbuf *sb = &so->so_rcv;
struct nlpcb *nlp = sotonlpcb(so);
struct nl_buf *first, *last, *nb, *next;
struct nlmsghdr *hdr;
int flags, error;
u_int len, overflow, partoff, partlen, msgrcv, datalen;
bool nonblock, trunc, peek;
MPASS(mp == NULL && uio != NULL);
NL_LOG(LOG_DEBUG3, "socket %p, PID %d", so, curproc->p_pid);
if (psa != NULL)
*psa = sodupsockaddr((const struct sockaddr *)&nl_empty_src,
M_WAITOK);
if (controlp != NULL && (nlp->nl_flags & NLF_MSG_INFO))
*controlp = nl_createcontrol(nlp);
flags = flagsp != NULL ? *flagsp & ~MSG_TRUNC : 0;
trunc = flagsp != NULL ? *flagsp & MSG_TRUNC : false;
nonblock = (so->so_state & SS_NBIO) ||
(flags & (MSG_DONTWAIT | MSG_NBIO));
peek = flags & MSG_PEEK;
error = SOCK_IO_RECV_LOCK(so, SBLOCKWAIT(flags));
if (__predict_false(error))
return (error);
len = 0;
overflow = 0;
msgrcv = 0;
datalen = 0;
SOCK_RECVBUF_LOCK(so);
while ((first = TAILQ_FIRST(&sb->nl_queue)) == NULL) {
if (nonblock) {
SOCK_RECVBUF_UNLOCK(so);
SOCK_IO_RECV_UNLOCK(so);
return (EWOULDBLOCK);
}
error = sbwait(so, SO_RCV);
if (error) {
SOCK_RECVBUF_UNLOCK(so);
SOCK_IO_RECV_UNLOCK(so);
return (error);
}
}
/*
* Netlink socket buffer consists of a queue of nl_bufs, but for the
* userland there should be no boundaries. However, there are Netlink
* messages, that shouldn't be split. Internal invariant is that a
* message never spans two nl_bufs.
* If a large userland buffer is provided, we would traverse the queue
* until either queue end is reached or the buffer is fulfilled. If
* an application provides a buffer that isn't able to fit a single
* message, we would truncate it and lose its tail. This is the only
* condition where we would lose data. If buffer is able to fit at
* least one message, we would return it and won't truncate the next.
*
* We use same code for normal and MSG_PEEK case. At first queue pass
* we scan nl_bufs and count lenght. In case we can read entire buffer
* at one write everything is trivial. In case we can not, we save
* pointer to the last (or partial) nl_buf and in the !peek case we
* split the queue into two pieces. We can safely drop the queue lock,
* as kernel would only append nl_bufs to the end of the queue, and
* we are the exclusive owner of queue beginning due to sleepable lock.
* At the second pass we copy data out and in !peek case free nl_bufs.
*/
TAILQ_FOREACH(nb, &sb->nl_queue, tailq) {
u_int offset;
/*
* XXXGL: zero length buffer may be at the tail of a queue
* when a writer overflows socket buffer. When this is
* improved, use MPASS(nb->offset < nb->datalen).
*/
MPASS(nb->offset <= nb->datalen);
offset = nb->offset;
while (offset < nb->datalen) {
hdr = (struct nlmsghdr *)&nb->data[offset];
if (uio->uio_resid < len + hdr->nlmsg_len) {
overflow = len + hdr->nlmsg_len -
uio->uio_resid;
partoff = nb->offset;
if (offset > partoff) {
partlen = offset - partoff;
if (!peek) {
nb->offset = offset;
datalen += partlen;
}
} else if (len == 0 && uio->uio_resid > 0) {
flags |= MSG_TRUNC;
partlen = uio->uio_resid;
if (!peek) {
/* XXX: may leave empty nb */
nb->offset += hdr->nlmsg_len;
datalen += hdr->nlmsg_len;
}
} else
partlen = 0;
goto nospace;
}
len += hdr->nlmsg_len;
offset += hdr->nlmsg_len;
MPASS(offset <= nb->buflen);
msgrcv++;
}
MPASS(offset == nb->datalen);
datalen += nb->datalen;
}
nospace:
last = nb;
if (!peek) {
if (last == NULL)
TAILQ_INIT(&sb->nl_queue);
else {
/* XXXGL: create TAILQ_SPLIT */
TAILQ_FIRST(&sb->nl_queue) = last;
last->tailq.tqe_prev = &TAILQ_FIRST(&sb->nl_queue);
}
sb->sb_acc -= datalen;
sb->sb_ccc -= datalen;
}
SOCK_RECVBUF_UNLOCK(so);
for (nb = first; nb != last; nb = next) {
next = TAILQ_NEXT(nb, tailq);
if (__predict_true(error == 0))
error = uiomove(&nb->data[nb->offset],
(int)(nb->datalen - nb->offset), uio);
if (!peek)
nl_buf_free(nb);
}
if (last != NULL && partlen > 0 && __predict_true(error == 0))
error = uiomove(&nb->data[partoff], (int)partlen, uio);
if (trunc && overflow > 0) {
uio->uio_resid -= overflow;
MPASS(uio->uio_resid < 0);
} else
MPASS(uio->uio_resid >= 0);
if (uio->uio_td)
uio->uio_td->td_ru.ru_msgrcv += msgrcv;
if (flagsp != NULL)
*flagsp |= flags;
SOCK_IO_RECV_UNLOCK(so);
nl_on_transmit(sotonlpcb(so));
return (error);
}
static int
nl_getoptflag(int sopt_name)
{
switch (sopt_name) {
case NETLINK_CAP_ACK:
return (NLF_CAP_ACK);
case NETLINK_EXT_ACK:
return (NLF_EXT_ACK);
case NETLINK_GET_STRICT_CHK:
return (NLF_STRICT);
case NETLINK_MSG_INFO:
return (NLF_MSG_INFO);
}
return (0);
}
static int
nl_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct nl_control *ctl = atomic_load_ptr(&V_nl_ctl);
struct nlpcb *nlp = sotonlpcb(so);
uint32_t flag;
int optval, error = 0;
NLCTL_TRACKER;
NL_LOG(LOG_DEBUG2, "%ssockopt(%p, %d)", (sopt->sopt_dir) ? "set" : "get",
so, sopt->sopt_name);
switch (sopt->sopt_dir) {
case SOPT_SET:
switch (sopt->sopt_name) {
case NETLINK_ADD_MEMBERSHIP:
case NETLINK_DROP_MEMBERSHIP:
error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
if (error != 0)
break;
if (optval <= 0 || optval >= NLP_MAX_GROUPS) {
error = ERANGE;
break;
}
NL_LOG(LOG_DEBUG2, "ADD/DEL group %d", (uint32_t)optval);
NLCTL_WLOCK(ctl);
if (sopt->sopt_name == NETLINK_ADD_MEMBERSHIP)
nl_add_group_locked(nlp, optval);
else
nl_del_group_locked(nlp, optval);
NLCTL_WUNLOCK(ctl);
break;
case NETLINK_CAP_ACK:
case NETLINK_EXT_ACK:
case NETLINK_GET_STRICT_CHK:
case NETLINK_MSG_INFO:
error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval));
if (error != 0)
break;
flag = nl_getoptflag(sopt->sopt_name);
if ((flag == NLF_MSG_INFO) && nlp->nl_linux) {
error = EINVAL;
break;
}
NLCTL_WLOCK(ctl);
if (optval != 0)
nlp->nl_flags |= flag;
else
nlp->nl_flags &= ~flag;
NLCTL_WUNLOCK(ctl);
break;
default:
error = ENOPROTOOPT;
}
break;
case SOPT_GET:
switch (sopt->sopt_name) {
case NETLINK_LIST_MEMBERSHIPS:
NLCTL_RLOCK(ctl);
optval = nl_get_groups_compat(nlp);
NLCTL_RUNLOCK(ctl);
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
case NETLINK_CAP_ACK:
case NETLINK_EXT_ACK:
case NETLINK_GET_STRICT_CHK:
case NETLINK_MSG_INFO:
NLCTL_RLOCK(ctl);
optval = (nlp->nl_flags & nl_getoptflag(sopt->sopt_name)) != 0;
NLCTL_RUNLOCK(ctl);
error = sooptcopyout(sopt, &optval, sizeof(optval));
break;
default:
error = ENOPROTOOPT;
}
break;
default:
error = ENOPROTOOPT;
}
return (error);
}
static int
sysctl_handle_nl_maxsockbuf(SYSCTL_HANDLER_ARGS)
{
int error = 0;
u_long tmp_maxsockbuf = nl_maxsockbuf;
error = sysctl_handle_long(oidp, &tmp_maxsockbuf, arg2, req);
if (error || !req->newptr)
return (error);
if (tmp_maxsockbuf < MSIZE + MCLBYTES)
return (EINVAL);
nl_maxsockbuf = tmp_maxsockbuf;
return (0);
}
static int
nl_setsbopt(struct socket *so, struct sockopt *sopt)
{
int error, optval;
bool result;
if (sopt->sopt_name != SO_RCVBUF)
return (sbsetopt(so, sopt));
/* Allow to override max buffer size in certain conditions */
error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
if (error != 0)
return (error);
NL_LOG(LOG_DEBUG2, "socket %p, PID %d, SO_RCVBUF=%d", so, curproc->p_pid, optval);
if (optval > sb_max_adj) {
if (priv_check(curthread, PRIV_NET_ROUTE) != 0)
return (EPERM);
}
SOCK_RECVBUF_LOCK(so);
result = sbreserve_locked_limit(so, SO_RCV, optval, nl_maxsockbuf, curthread);
SOCK_RECVBUF_UNLOCK(so);
return (result ? 0 : ENOBUFS);
}
#define NETLINK_PROTOSW \
.pr_flags = PR_ATOMIC | PR_ADDR | PR_SOCKBUF, \
.pr_ctloutput = nl_ctloutput, \
.pr_setsbopt = nl_setsbopt, \
.pr_attach = nl_pru_attach, \
.pr_bind = nl_pru_bind, \
.pr_connect = nl_pru_connect, \
.pr_disconnect = nl_pru_disconnect, \
.pr_sosend = nl_sosend, \
.pr_soreceive = nl_soreceive, \
.pr_shutdown = nl_pru_shutdown, \
.pr_sockaddr = nl_sockaddr, \
.pr_close = nl_close
static struct protosw netlink_raw_sw = {
.pr_type = SOCK_RAW,
NETLINK_PROTOSW
};
static struct protosw netlink_dgram_sw = {
.pr_type = SOCK_DGRAM,
NETLINK_PROTOSW
};
static struct domain netlinkdomain = {
.dom_family = PF_NETLINK,
.dom_name = "netlink",
.dom_flags = DOMF_UNLOADABLE,
.dom_nprotosw = 2,
.dom_protosw = { &netlink_raw_sw, &netlink_dgram_sw },
};
DOMAIN_SET(netlink);