freebsd-src/usr.sbin/bhyve/pci_emul.c
Elyes Haouas ec8a394d9c usr.sbin: Remove repeated words
Signed-off-by: Elyes Haouas <ehaouas@noos.fr>
Reviewed by: imp
Pull Request: https://github.com/freebsd/freebsd-src/pull/887
2024-04-11 11:53:37 -06:00

2784 lines
65 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/linker_set.h>
#include <sys/mman.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <stdbool.h>
#include <sysexits.h>
#include <machine/vmm.h>
#include <machine/vmm_snapshot.h>
#include <vmmapi.h>
#include "acpi.h"
#include "bhyverun.h"
#include "config.h"
#include "debug.h"
#ifdef __amd64__
#include "amd64/inout.h"
#endif
#include "mem.h"
#include "pci_emul.h"
#ifdef __amd64__
#include "amd64/pci_lpc.h"
#include "pci_passthru.h"
#endif
#include "qemu_fwcfg.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CONF1_ENABLE 0x80000000ul
#define MAXBUSES (PCI_BUSMAX + 1)
#define MAXSLOTS (PCI_SLOTMAX + 1)
#define MAXFUNCS (PCI_FUNCMAX + 1)
#define GB (1024 * 1024 * 1024UL)
struct funcinfo {
nvlist_t *fi_config;
struct pci_devemu *fi_pde;
struct pci_devinst *fi_devi;
};
struct intxinfo {
int ii_count;
struct pci_irq ii_irq;
};
struct slotinfo {
struct intxinfo si_intpins[4];
struct funcinfo si_funcs[MAXFUNCS];
};
struct businfo {
uint16_t iobase, iolimit; /* I/O window */
uint32_t membase32, memlimit32; /* mmio window below 4GB */
uint64_t membase64, memlimit64; /* mmio window above 4GB */
struct slotinfo slotinfo[MAXSLOTS];
};
static struct businfo *pci_businfo[MAXBUSES];
SET_DECLARE(pci_devemu_set, struct pci_devemu);
static uint64_t pci_emul_iobase;
static uint8_t *pci_emul_rombase;
static uint64_t pci_emul_romoffset;
static uint8_t *pci_emul_romlim;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
static uint64_t pci_emul_memlim64;
struct pci_bar_allocation {
TAILQ_ENTRY(pci_bar_allocation) chain;
struct pci_devinst *pdi;
int idx;
enum pcibar_type type;
uint64_t size;
};
static TAILQ_HEAD(pci_bar_list, pci_bar_allocation) pci_bars =
TAILQ_HEAD_INITIALIZER(pci_bars);
struct boot_device {
TAILQ_ENTRY(boot_device) boot_device_chain;
struct pci_devinst *pdi;
int bootindex;
};
static TAILQ_HEAD(boot_list, boot_device) boot_devices = TAILQ_HEAD_INITIALIZER(
boot_devices);
#if defined(__amd64__)
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_IOMASK 0xffff
/*
* OVMF always uses 0xc0000000 as base address for 32 bit PCI MMIO. Don't
* change this address without changing it in OVMF.
*/
#define PCI_EMUL_MEMBASE32 0xc0000000
#elif defined(__aarch64__)
#define PCI_EMUL_IOBASE 0xdf000000UL
#define PCI_EMUL_IOLIMIT 0xe0000000UL
#define PCI_EMUL_MEMBASE32 0xa0000000UL
#else
#error Unsupported platform
#endif
#define PCI_EMUL_ROMSIZE 0x10000000
#define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */
#define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */
#ifdef __amd64__
SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
#endif
#define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE
#define PCI_EMUL_MEMSIZE64 (32*GB)
static void pci_lintr_route(struct pci_devinst *pi);
static void pci_lintr_update(struct pci_devinst *pi);
static struct pci_devemu *pci_emul_finddev(const char *name);
static void pci_cfgrw(int in, int bus, int slot, int func, int coff,
int bytes, uint32_t *val);
static __inline void
CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
{
if (bytes == 1)
pci_set_cfgdata8(pi, coff, val);
else if (bytes == 2)
pci_set_cfgdata16(pi, coff, val);
else
pci_set_cfgdata32(pi, coff, val);
}
static __inline uint32_t
CFGREAD(struct pci_devinst *pi, int coff, int bytes)
{
if (bytes == 1)
return (pci_get_cfgdata8(pi, coff));
else if (bytes == 2)
return (pci_get_cfgdata16(pi, coff));
else
return (pci_get_cfgdata32(pi, coff));
}
static int
is_pcir_bar(int coff)
{
return (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1));
}
static int
is_pcir_bios(int coff)
{
return (coff >= PCIR_BIOS && coff < PCIR_BIOS + 4);
}
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <bus>:<slot>:<func>,<emul>[,<config>]
* <slot>[:<func>],<emul>[,<config>]
*
* slot is 0..31
* func is 0..7
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3:0,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
EPRINTLN("Invalid PCI slot info field \"%s\"", aopt);
}
/*
* Helper function to parse a list of comma-separated options where
* each option is formatted as "name[=value]". If no value is
* provided, the option is treated as a boolean and is given a value
* of true.
*/
int
pci_parse_legacy_config(nvlist_t *nvl, const char *opt)
{
char *config, *name, *tofree, *value;
if (opt == NULL)
return (0);
config = tofree = strdup(opt);
while ((name = strsep(&config, ",")) != NULL) {
value = strchr(name, '=');
if (value != NULL) {
*value = '\0';
value++;
set_config_value_node(nvl, name, value);
} else
set_config_bool_node(nvl, name, true);
}
free(tofree);
return (0);
}
/*
* PCI device configuration is stored in MIBs that encode the device's
* location:
*
* pci.<bus>.<slot>.<func>
*
* Where "bus", "slot", and "func" are all decimal values without
* leading zeroes. Each valid device must have a "device" node which
* identifies the driver model of the device.
*
* Device backends can provide a parser for the "config" string. If
* a custom parser is not provided, pci_parse_legacy_config() is used
* to parse the string.
*/
int
pci_parse_slot(char *opt)
{
char node_name[sizeof("pci.XXX.XX.X")];
struct pci_devemu *pde;
char *emul, *config, *str, *cp;
int error, bnum, snum, fnum;
nvlist_t *nvl;
error = -1;
str = strdup(opt);
emul = config = NULL;
if ((cp = strchr(str, ',')) != NULL) {
*cp = '\0';
emul = cp + 1;
if ((cp = strchr(emul, ',')) != NULL) {
*cp = '\0';
config = cp + 1;
}
} else {
pci_parse_slot_usage(opt);
goto done;
}
/* <bus>:<slot>:<func> */
if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
bnum = 0;
/* <slot>:<func> */
if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
fnum = 0;
/* <slot> */
if (sscanf(str, "%d", &snum) != 1) {
snum = -1;
}
}
}
if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
fnum < 0 || fnum >= MAXFUNCS) {
pci_parse_slot_usage(opt);
goto done;
}
pde = pci_emul_finddev(emul);
if (pde == NULL) {
EPRINTLN("pci slot %d:%d:%d: unknown device \"%s\"", bnum, snum,
fnum, emul);
goto done;
}
snprintf(node_name, sizeof(node_name), "pci.%d.%d.%d", bnum, snum,
fnum);
nvl = find_config_node(node_name);
if (nvl != NULL) {
EPRINTLN("pci slot %d:%d:%d already occupied!", bnum, snum,
fnum);
goto done;
}
nvl = create_config_node(node_name);
if (pde->pe_alias != NULL)
set_config_value_node(nvl, "device", pde->pe_alias);
else
set_config_value_node(nvl, "device", pde->pe_emu);
if (pde->pe_legacy_config != NULL)
error = pde->pe_legacy_config(nvl, config);
else
error = pci_parse_legacy_config(nvl, config);
done:
free(str);
return (error);
}
void
pci_print_supported_devices(void)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
printf("%s\n", pdp->pe_emu);
}
}
uint32_t
pci_config_read_reg(const struct pcisel *const host_sel, nvlist_t *nvl,
const uint32_t reg, const uint8_t size, const uint32_t def)
{
const char *config;
const nvlist_t *pci_regs;
assert(size == 1 || size == 2 || size == 4);
pci_regs = find_relative_config_node(nvl, "pcireg");
if (pci_regs == NULL) {
return def;
}
switch (reg) {
case PCIR_DEVICE:
config = get_config_value_node(pci_regs, "device");
break;
case PCIR_VENDOR:
config = get_config_value_node(pci_regs, "vendor");
break;
case PCIR_REVID:
config = get_config_value_node(pci_regs, "revid");
break;
case PCIR_SUBVEND_0:
config = get_config_value_node(pci_regs, "subvendor");
break;
case PCIR_SUBDEV_0:
config = get_config_value_node(pci_regs, "subdevice");
break;
default:
return (-1);
}
if (config == NULL) {
return def;
} else if (host_sel != NULL && strcmp(config, "host") == 0) {
#ifdef __amd64__
return pci_host_read_config(host_sel, reg, size);
#else
errx(1, "cannot fetch host PCI configuration");
#endif
} else {
return strtol(config, NULL, 16);
}
}
static int
pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
{
if (offset < pi->pi_msix.pba_offset)
return (0);
if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
return (0);
}
return (1);
}
int
pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
uint64_t value)
{
int msix_entry_offset;
int tab_index;
char *dest;
/* support only 4 or 8 byte writes */
if (size != 4 && size != 8)
return (-1);
/*
* Return if table index is beyond what device supports
*/
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index >= pi->pi_msix.table_count)
return (-1);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned writes */
if ((msix_entry_offset % size) != 0)
return (-1);
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 4)
*((uint32_t *)dest) = value;
else
*((uint64_t *)dest) = value;
return (0);
}
uint64_t
pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
{
char *dest;
int msix_entry_offset;
int tab_index;
uint64_t retval = ~0;
/*
* The PCI standard only allows 4 and 8 byte accesses to the MSI-X
* table but we also allow 1 byte access to accommodate reads from
* ddb.
*/
if (size != 1 && size != 4 && size != 8)
return (retval);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned reads */
if ((msix_entry_offset % size) != 0) {
return (retval);
}
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index < pi->pi_msix.table_count) {
/* valid MSI-X Table access */
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 1)
retval = *((uint8_t *)dest);
else if (size == 4)
retval = *((uint32_t *)dest);
else
retval = *((uint64_t *)dest);
} else if (pci_valid_pba_offset(pi, offset)) {
/* return 0 for PBA access */
retval = 0;
}
return (retval);
}
int
pci_msix_table_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.table_bar);
else
return (-1);
}
int
pci_msix_pba_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.pba_bar);
else
return (-1);
}
#ifdef __amd64__
static int
pci_emul_io_handler(struct vmctx *ctx __unused, int in, int port,
int bytes, uint32_t *eax, void *arg)
{
struct pci_devinst *pdi = arg;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int i;
assert(port >= 0);
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->pi_bar[i].type == PCIBAR_IO &&
(uint64_t)port >= pdi->pi_bar[i].addr &&
(uint64_t)port + bytes <=
pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
offset = port - pdi->pi_bar[i].addr;
if (in)
*eax = (*pe->pe_barread)(pdi, i,
offset, bytes);
else
(*pe->pe_barwrite)(pdi, i, offset,
bytes, *eax);
return (0);
}
}
return (-1);
}
#else
static int
pci_emul_iomem_handler(struct vcpu *vcpu __unused, int dir,
uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_devinst *pdi = arg1;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int bidx = (int)arg2;
assert(bidx <= PCI_BARMAX);
assert(pdi->pi_bar[bidx].type == PCIBAR_IO);
assert(addr >= pdi->pi_bar[bidx].addr &&
addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
assert(size == 1 || size == 2 || size == 4);
offset = addr - pdi->pi_bar[bidx].addr;
if (dir == MEM_F_READ)
*val = (*pe->pe_barread)(pdi, bidx, offset, size);
else
(*pe->pe_barwrite)(pdi, bidx, offset, size, *val);
return (0);
}
#endif /* !__amd64__ */
static int
pci_emul_mem_handler(struct vcpu *vcpu __unused, int dir,
uint64_t addr, int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_devinst *pdi = arg1;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int bidx = (int)arg2;
assert(bidx <= PCI_BARMAX);
assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
pdi->pi_bar[bidx].type == PCIBAR_MEM64);
assert(addr >= pdi->pi_bar[bidx].addr &&
addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
offset = addr - pdi->pi_bar[bidx].addr;
if (dir == MEM_F_WRITE) {
if (size == 8) {
(*pe->pe_barwrite)(pdi, bidx, offset,
4, *val & 0xffffffff);
(*pe->pe_barwrite)(pdi, bidx, offset + 4,
4, *val >> 32);
} else {
(*pe->pe_barwrite)(pdi, bidx, offset,
size, *val);
}
} else {
if (size == 8) {
*val = (*pe->pe_barread)(pdi, bidx,
offset, 4);
*val |= (*pe->pe_barread)(pdi, bidx,
offset + 4, 4) << 32;
} else {
*val = (*pe->pe_barread)(pdi, bidx,
offset, size);
}
}
return (0);
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr)
{
uint64_t base;
assert((size & (size - 1)) == 0); /* must be a power of 2 */
base = roundup2(*baseptr, size);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return (0);
} else
return (-1);
}
/*
* Register (or unregister) the MMIO or I/O region associated with the BAR
* register 'idx' of an emulated pci device.
*/
static void
modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
{
struct pci_devemu *pe;
int error;
enum pcibar_type type;
pe = pi->pi_d;
type = pi->pi_bar[idx].type;
switch (type) {
case PCIBAR_IO:
{
#ifdef __amd64__
struct inout_port iop;
bzero(&iop, sizeof(struct inout_port));
iop.name = pi->pi_name;
iop.port = pi->pi_bar[idx].addr;
iop.size = pi->pi_bar[idx].size;
if (registration) {
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_io_handler;
iop.arg = pi;
error = register_inout(&iop);
} else
error = unregister_inout(&iop);
#else
struct mem_range mr;
bzero(&mr, sizeof(struct mem_range));
mr.name = pi->pi_name;
mr.base = pi->pi_bar[idx].addr;
mr.size = pi->pi_bar[idx].size;
if (registration) {
mr.flags = MEM_F_RW;
mr.handler = pci_emul_iomem_handler;
mr.arg1 = pi;
mr.arg2 = idx;
error = register_mem(&mr);
} else
error = unregister_mem(&mr);
#endif
break;
}
case PCIBAR_MEM32:
case PCIBAR_MEM64:
{
struct mem_range mr;
bzero(&mr, sizeof(struct mem_range));
mr.name = pi->pi_name;
mr.base = pi->pi_bar[idx].addr;
mr.size = pi->pi_bar[idx].size;
if (registration) {
mr.flags = MEM_F_RW;
mr.handler = pci_emul_mem_handler;
mr.arg1 = pi;
mr.arg2 = idx;
error = register_mem(&mr);
} else
error = unregister_mem(&mr);
break;
}
case PCIBAR_ROM:
error = 0;
break;
default:
error = EINVAL;
break;
}
assert(error == 0);
if (pe->pe_baraddr != NULL)
(*pe->pe_baraddr)(pi, idx, registration, pi->pi_bar[idx].addr);
}
static void
unregister_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 0);
}
static void
register_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 1);
}
/* Is the ROM enabled for the emulated pci device? */
static int
romen(struct pci_devinst *pi)
{
return (pi->pi_bar[PCI_ROM_IDX].lobits & PCIM_BIOS_ENABLE) ==
PCIM_BIOS_ENABLE;
}
/* Are we decoding i/o port accesses for the emulated pci device? */
static int
porten(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_PORTEN);
}
/* Are we decoding memory accesses for the emulated pci device? */
static int
memen(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_MEMEN);
}
/*
* Update the MMIO or I/O address that is decoded by the BAR register.
*
* If the pci device has enabled the address space decoding then intercept
* the address range decoded by the BAR register.
*/
static void
update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
{
int decode;
if (pi->pi_bar[idx].type == PCIBAR_IO)
decode = porten(pi);
else
decode = memen(pi);
if (decode)
unregister_bar(pi, idx);
switch (type) {
case PCIBAR_IO:
case PCIBAR_MEM32:
pi->pi_bar[idx].addr = addr;
break;
case PCIBAR_MEM64:
pi->pi_bar[idx].addr &= ~0xffffffffUL;
pi->pi_bar[idx].addr |= addr;
break;
case PCIBAR_MEMHI64:
pi->pi_bar[idx].addr &= 0xffffffff;
pi->pi_bar[idx].addr |= addr;
break;
default:
assert(0);
}
if (decode)
register_bar(pi, idx);
}
int
pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
uint64_t size)
{
assert((type == PCIBAR_ROM) || (idx >= 0 && idx <= PCI_BARMAX));
assert((type != PCIBAR_ROM) || (idx == PCI_ROM_IDX));
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
/* Enforce minimum BAR sizes required by the PCI standard */
if (type == PCIBAR_IO) {
if (size < 4)
size = 4;
} else if (type == PCIBAR_ROM) {
if (size < ~PCIM_BIOS_ADDR_MASK + 1)
size = ~PCIM_BIOS_ADDR_MASK + 1;
} else {
if (size < 16)
size = 16;
}
/*
* To reduce fragmentation of the MMIO space, we allocate the BARs by
* size. Therefore, don't allocate the BAR yet. We create a list of all
* BAR allocation which is sorted by BAR size. When all PCI devices are
* initialized, we will assign an address to the BARs.
*/
/* create a new list entry */
struct pci_bar_allocation *const new_bar = malloc(sizeof(*new_bar));
memset(new_bar, 0, sizeof(*new_bar));
new_bar->pdi = pdi;
new_bar->idx = idx;
new_bar->type = type;
new_bar->size = size;
/*
* Search for a BAR which size is lower than the size of our newly
* allocated BAR.
*/
struct pci_bar_allocation *bar = NULL;
TAILQ_FOREACH(bar, &pci_bars, chain) {
if (bar->size < size) {
break;
}
}
if (bar == NULL) {
/*
* Either the list is empty or new BAR is the smallest BAR of
* the list. Append it to the end of our list.
*/
TAILQ_INSERT_TAIL(&pci_bars, new_bar, chain);
} else {
/*
* The found BAR is smaller than our new BAR. For that reason,
* insert our new BAR before the found BAR.
*/
TAILQ_INSERT_BEFORE(bar, new_bar, chain);
}
/*
* pci_passthru devices synchronize their physical and virtual command
* register on init. For that reason, the virtual cmd reg should be
* updated as early as possible.
*/
uint16_t enbit = 0;
switch (type) {
case PCIBAR_IO:
enbit = PCIM_CMD_PORTEN;
break;
case PCIBAR_MEM64:
case PCIBAR_MEM32:
enbit = PCIM_CMD_MEMEN;
break;
default:
enbit = 0;
break;
}
const uint16_t cmd = pci_get_cfgdata16(pdi, PCIR_COMMAND);
pci_set_cfgdata16(pdi, PCIR_COMMAND, cmd | enbit);
return (0);
}
static int
pci_emul_assign_bar(struct pci_devinst *const pdi, const int idx,
const enum pcibar_type type, const uint64_t size)
{
int error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
baseptr = &pci_emul_iobase;
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
/*
* XXX
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (128MB currently).
*/
if (size > 128 * 1024 * 1024) {
baseptr = &pci_emul_membase64;
limit = pci_emul_memlim64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
} else {
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
}
break;
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
case PCIBAR_ROM:
/* do not claim memory for ROM. OVMF will do it for us. */
baseptr = NULL;
limit = 0;
mask = PCIM_BIOS_ADDR_MASK;
lobits = 0;
break;
default:
printf("pci_emul_alloc_base: invalid bar type %d\n", type);
assert(0);
}
if (baseptr != NULL) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
if (error != 0)
return (error);
} else {
addr = 0;
}
pdi->pi_bar[idx].type = type;
pdi->pi_bar[idx].addr = addr;
pdi->pi_bar[idx].size = size;
/*
* passthru devices are using same lobits as physical device they set
* this property
*/
if (pdi->pi_bar[idx].lobits != 0) {
lobits = pdi->pi_bar[idx].lobits;
} else {
pdi->pi_bar[idx].lobits = lobits;
}
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
assert(idx + 1 <= PCI_BARMAX);
pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
if (type != PCIBAR_ROM) {
register_bar(pdi, idx);
}
return (0);
}
int
pci_emul_alloc_rom(struct pci_devinst *const pdi, const uint64_t size,
void **const addr)
{
/* allocate ROM space once on first call */
if (pci_emul_rombase == 0) {
pci_emul_rombase = vm_create_devmem(pdi->pi_vmctx, VM_PCIROM,
"pcirom", PCI_EMUL_ROMSIZE);
if (pci_emul_rombase == MAP_FAILED) {
warnx("%s: failed to create rom segment", __func__);
return (-1);
}
pci_emul_romlim = pci_emul_rombase + PCI_EMUL_ROMSIZE;
pci_emul_romoffset = 0;
}
/* ROM size should be a power of 2 and greater than 2 KB */
const uint64_t rom_size = MAX(1UL << flsl(size),
~PCIM_BIOS_ADDR_MASK + 1);
/* check if ROM fits into ROM space */
if (pci_emul_romoffset + rom_size > PCI_EMUL_ROMSIZE) {
warnx("%s: no space left in rom segment:", __func__);
warnx("%16lu bytes left",
PCI_EMUL_ROMSIZE - pci_emul_romoffset);
warnx("%16lu bytes required by %d/%d/%d", rom_size, pdi->pi_bus,
pdi->pi_slot, pdi->pi_func);
return (-1);
}
/* allocate ROM BAR */
const int error = pci_emul_alloc_bar(pdi, PCI_ROM_IDX, PCIBAR_ROM,
rom_size);
if (error)
return error;
/* return address */
*addr = pci_emul_rombase + pci_emul_romoffset;
/* save offset into ROM Space */
pdi->pi_romoffset = pci_emul_romoffset;
/* increase offset for next ROM */
pci_emul_romoffset += rom_size;
return (0);
}
int
pci_emul_add_boot_device(struct pci_devinst *pi, int bootindex)
{
struct boot_device *new_device, *device;
/* don't permit a negative bootindex */
if (bootindex < 0) {
errx(4, "Invalid bootindex %d for %s", bootindex, pi->pi_name);
}
/* alloc new boot device */
new_device = calloc(1, sizeof(struct boot_device));
if (new_device == NULL) {
return (ENOMEM);
}
new_device->pdi = pi;
new_device->bootindex = bootindex;
/* search for boot device with higher boot index */
TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
if (device->bootindex == bootindex) {
errx(4,
"Could not set bootindex %d for %s. Bootindex already occupied by %s",
bootindex, pi->pi_name, device->pdi->pi_name);
} else if (device->bootindex > bootindex) {
break;
}
}
/* add boot device to queue */
if (device == NULL) {
TAILQ_INSERT_TAIL(&boot_devices, new_device, boot_device_chain);
} else {
TAILQ_INSERT_BEFORE(device, new_device, boot_device_chain);
}
return (0);
}
#define CAP_START_OFFSET 0x40
static int
pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
{
int i, capoff, reallen;
uint16_t sts;
assert(caplen > 0);
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
capoff = CAP_START_OFFSET;
else
capoff = pi->pi_capend + 1;
/* Check if we have enough space */
if (capoff + reallen > PCI_REGMAX + 1)
return (-1);
/* Set the previous capability pointer */
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else
pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(pi, capoff + 1, 0);
pi->pi_prevcap = capoff;
pi->pi_capend = capoff + reallen - 1;
return (0);
}
static struct pci_devemu *
pci_emul_finddev(const char *name)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
if (!strcmp(pdp->pe_emu, name)) {
return (pdp);
}
}
return (NULL);
}
static int
pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
int func, struct funcinfo *fi)
{
struct pci_devinst *pdi;
int err;
pdi = calloc(1, sizeof(struct pci_devinst));
pdi->pi_vmctx = ctx;
pdi->pi_bus = bus;
pdi->pi_slot = slot;
pdi->pi_func = func;
pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
pdi->pi_lintr.pin = 0;
pdi->pi_lintr.state = IDLE;
pci_irq_init_irq(&pdi->pi_lintr.irq);
pdi->pi_d = pde;
snprintf(pdi->pi_name, PI_NAMESZ, "%s@pci.%d.%d.%d", pde->pe_emu, bus,
slot, func);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND, PCIM_CMD_BUSMASTEREN);
err = (*pde->pe_init)(pdi, fi->fi_config);
if (err == 0)
fi->fi_devi = pdi;
else
free(pdi);
return (err);
}
void
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
/* Number of msi messages must be a power of 2 between 1 and 32 */
assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
}
int
pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
{
struct msicap msicap;
pci_populate_msicap(&msicap, msgnum, 0);
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
static void
pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
uint32_t msix_tab_size)
{
assert(msix_tab_size % 4096 == 0);
bzero(msixcap, sizeof(struct msixcap));
msixcap->capid = PCIY_MSIX;
/*
* Message Control Register, all fields set to
* zero except for the Table Size.
* Note: Table size N is encoded as N-1
*/
msixcap->msgctrl = msgnum - 1;
/*
* MSI-X BAR setup:
* - MSI-X table start at offset 0
* - PBA table starts at a 4K aligned offset after the MSI-X table
*/
msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
}
static void
pci_msix_table_init(struct pci_devinst *pi, int table_entries)
{
int i, table_size;
assert(table_entries > 0);
assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
pi->pi_msix.table = calloc(1, table_size);
/* set mask bit of vector control register */
for (i = 0; i < table_entries; i++)
pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
}
int
pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
{
uint32_t tab_size;
struct msixcap msixcap;
assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
/* Align table size to nearest 4K */
tab_size = roundup2(tab_size, 4096);
pi->pi_msix.table_bar = barnum;
pi->pi_msix.pba_bar = barnum;
pi->pi_msix.table_offset = 0;
pi->pi_msix.table_count = msgnum;
pi->pi_msix.pba_offset = tab_size;
pi->pi_msix.pba_size = PBA_SIZE(msgnum);
pci_msix_table_init(pi, msgnum);
pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
/* allocate memory for MSI-X Table and PBA */
pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
tab_size + pi->pi_msix.pba_size);
return (pci_emul_add_capability(pi, (u_char *)&msixcap,
sizeof(msixcap)));
}
static void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off;
off = offset - capoff;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
pci_lintr_update(pi);
}
CFGWRITE(pi, offset, val, bytes);
}
static void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
}
CFGWRITE(pi, offset, val, bytes);
msgctrl = pci_get_cfgdata16(pi, capoff + 2);
addrlo = pci_get_cfgdata32(pi, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(pi, capoff + 12);
else
msgdata = pci_get_cfgdata16(pi, capoff + 8);
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (pi->pi_msi.enabled) {
pi->pi_msi.addr = addrlo;
pi->pi_msi.msg_data = msgdata;
pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
} else {
pi->pi_msi.maxmsgnum = 0;
}
pci_lintr_update(pi);
}
static void
pciecap_cfgwrite(struct pci_devinst *pi, int capoff __unused, int offset,
int bytes, uint32_t val)
{
/* XXX don't write to the readonly parts */
CFGWRITE(pi, offset, val, bytes);
}
#define PCIECAP_VERSION 0x2
int
pci_emul_add_pciecap(struct pci_devinst *pi, int type)
{
int err;
struct pciecap pciecap;
bzero(&pciecap, sizeof(pciecap));
/*
* Use the integrated endpoint type for endpoints on a root complex bus.
*
* NB: bhyve currently only supports a single PCI bus that is the root
* complex bus, so all endpoints are integrated.
*/
if ((type == PCIEM_TYPE_ENDPOINT) && (pi->pi_bus == 0))
type = PCIEM_TYPE_ROOT_INT_EP;
pciecap.capid = PCIY_EXPRESS;
pciecap.pcie_capabilities = PCIECAP_VERSION | type;
if (type != PCIEM_TYPE_ROOT_INT_EP) {
pciecap.link_capabilities = 0x411; /* gen1, x1 */
pciecap.link_status = 0x11; /* gen1, x1 */
}
err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
return (err);
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space. A capoff parameter of zero will force a search for the
* offset and type.
*/
void
pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val,
uint8_t capoff, int capid)
{
uint8_t nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
if (capoff == 0) {
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
nextoff = pci_get_cfgdata8(pi, capoff + 1);
if (nextoff == 0)
break;
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
assert(offset >= capoff);
capid = pci_get_cfgdata8(pi, capoff);
}
/*
* Capability ID and Next Capability Pointer are readonly.
* However, some o/s's do 4-byte writes that include these.
* For this case, trim the write back to 2 bytes and adjust
* the data.
*/
if (offset == capoff || offset == capoff + 1) {
if (offset == capoff && bytes == 4) {
bytes = 2;
offset += 2;
val >>= 16;
} else
return;
}
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_MSIX:
msixcap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_EXPRESS:
pciecap_cfgwrite(pi, capoff, offset, bytes, val);
break;
default:
break;
}
}
static int
pci_emul_iscap(struct pci_devinst *pi, int offset)
{
uint16_t sts;
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
return (1);
}
return (0);
}
static int
pci_emul_fallback_handler(struct vcpu *vcpu __unused, int dir,
uint64_t addr __unused, int size __unused, uint64_t *val,
void *arg1 __unused, long arg2 __unused)
{
/*
* Ignore writes; return 0xff's for reads. The mem read code
* will take care of truncating to the correct size.
*/
if (dir == MEM_F_READ) {
*val = 0xffffffffffffffff;
}
return (0);
}
static int
pci_emul_ecfg_handler(struct vcpu *vcpu __unused, int dir, uint64_t addr,
int bytes, uint64_t *val, void *arg1 __unused, long arg2 __unused)
{
int bus, slot, func, coff, in;
coff = addr & 0xfff;
func = (addr >> 12) & 0x7;
slot = (addr >> 15) & 0x1f;
bus = (addr >> 20) & 0xff;
in = (dir == MEM_F_READ);
if (in)
*val = ~0UL;
pci_cfgrw(in, bus, slot, func, coff, bytes, (uint32_t *)val);
return (0);
}
uint64_t
pci_ecfg_base(void)
{
return (PCI_EMUL_ECFG_BASE);
}
static int
init_bootorder(void)
{
struct boot_device *device;
FILE *fp;
char *bootorder;
size_t bootorder_len;
if (TAILQ_EMPTY(&boot_devices))
return (0);
fp = open_memstream(&bootorder, &bootorder_len);
TAILQ_FOREACH(device, &boot_devices, boot_device_chain) {
fprintf(fp, "/pci@i0cf8/pci@%d,%d\n",
device->pdi->pi_slot, device->pdi->pi_func);
}
fclose(fp);
return (qemu_fwcfg_add_file("bootorder", bootorder_len, bootorder));
}
#define BUSIO_ROUNDUP 32
#define BUSMEM32_ROUNDUP (1024 * 1024)
#define BUSMEM64_ROUNDUP (512 * 1024 * 1024)
int
init_pci(struct vmctx *ctx)
{
char node_name[sizeof("pci.XXX.XX.X")];
struct mem_range mr;
struct pci_devemu *pde;
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
nvlist_t *nvl;
const char *emul;
size_t lowmem;
int bus, slot, func;
int error;
if (vm_get_lowmem_limit(ctx) > PCI_EMUL_MEMBASE32)
errx(EX_OSERR, "Invalid lowmem limit");
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = PCI_EMUL_MEMBASE32;
pci_emul_membase64 = vm_get_highmem_base(ctx) +
vm_get_highmem_size(ctx);
pci_emul_membase64 = roundup2(pci_emul_membase64, PCI_EMUL_MEMSIZE64);
pci_emul_memlim64 = pci_emul_membase64 + PCI_EMUL_MEMSIZE64;
TAILQ_INIT(&boot_devices);
for (bus = 0; bus < MAXBUSES; bus++) {
snprintf(node_name, sizeof(node_name), "pci.%d", bus);
nvl = find_config_node(node_name);
if (nvl == NULL)
continue;
pci_businfo[bus] = calloc(1, sizeof(struct businfo));
bi = pci_businfo[bus];
/*
* Keep track of the i/o and memory resources allocated to
* this bus.
*/
bi->iobase = pci_emul_iobase;
bi->membase32 = pci_emul_membase32;
bi->membase64 = pci_emul_membase64;
/* first run: init devices */
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
snprintf(node_name, sizeof(node_name),
"pci.%d.%d.%d", bus, slot, func);
nvl = find_config_node(node_name);
if (nvl == NULL)
continue;
fi->fi_config = nvl;
emul = get_config_value_node(nvl, "device");
if (emul == NULL) {
EPRINTLN("pci slot %d:%d:%d: missing "
"\"device\" value", bus, slot, func);
return (EINVAL);
}
pde = pci_emul_finddev(emul);
if (pde == NULL) {
EPRINTLN("pci slot %d:%d:%d: unknown "
"device \"%s\"", bus, slot, func,
emul);
return (EINVAL);
}
if (pde->pe_alias != NULL) {
EPRINTLN("pci slot %d:%d:%d: legacy "
"device \"%s\", use \"%s\" instead",
bus, slot, func, emul,
pde->pe_alias);
return (EINVAL);
}
fi->fi_pde = pde;
error = pci_emul_init(ctx, pde, bus, slot,
func, fi);
if (error)
return (error);
}
}
/* second run: assign BARs and free list */
struct pci_bar_allocation *bar;
struct pci_bar_allocation *bar_tmp;
TAILQ_FOREACH_SAFE(bar, &pci_bars, chain, bar_tmp) {
pci_emul_assign_bar(bar->pdi, bar->idx, bar->type,
bar->size);
free(bar);
}
TAILQ_INIT(&pci_bars);
/*
* Add some slop to the I/O and memory resources decoded by
* this bus to give a guest some flexibility if it wants to
* reprogram the BARs.
*/
pci_emul_iobase += BUSIO_ROUNDUP;
pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
bi->iolimit = pci_emul_iobase;
pci_emul_membase32 += BUSMEM32_ROUNDUP;
pci_emul_membase32 = roundup2(pci_emul_membase32,
BUSMEM32_ROUNDUP);
bi->memlimit32 = pci_emul_membase32;
pci_emul_membase64 += BUSMEM64_ROUNDUP;
pci_emul_membase64 = roundup2(pci_emul_membase64,
BUSMEM64_ROUNDUP);
bi->memlimit64 = pci_emul_membase64;
}
/*
* PCI backends are initialized before routing INTx interrupts
* so that LPC devices are able to reserve ISA IRQs before
* routing PIRQ pins.
*/
for (bus = 0; bus < MAXBUSES; bus++) {
if ((bi = pci_businfo[bus]) == NULL)
continue;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_devi == NULL)
continue;
pci_lintr_route(fi->fi_devi);
}
}
}
#ifdef __amd64__
lpc_pirq_routed();
#endif
if ((error = init_bootorder()) != 0) {
warnx("%s: Unable to init bootorder", __func__);
return (error);
}
/*
* The guest physical memory map looks like the following on amd64:
* [0, lowmem) guest system memory
* [lowmem, 0xC0000000) memory hole (may be absent)
* [0xC0000000, 0xE0000000) PCI hole (32-bit BAR allocation)
* [0xE0000000, 0xF0000000) PCI extended config window
* [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware
* [4GB, 4GB + highmem) guest system memory
* [roundup(4GB + highmem, 32GB), ...) PCI 64-bit BAR allocation
*
* On arm64 the guest physical memory map looks like this:
* [0x0DF00000, 0x10000000) PCI I/O memory
* [0xA0000000, 0xE0000000) PCI 32-bit BAR allocation
* [0xE0000000, 0xF0000000) PCI extended config window
* [4GB, 4GB + highmem) guest system memory
* [roundup(4GB + highmem, 32GB), ...) PCI 64-bit BAR allocation
*
* "lowmem" is guest memory below 0xC0000000. amd64 guests provisioned
* with less than 3GB of RAM will have no memory above the 4GB boundary.
* System memory for arm64 guests is all above the 4GB boundary.
*/
/*
* Accesses to memory addresses that are not allocated to system
* memory or PCI devices return 0xff's.
*/
lowmem = vm_get_lowmem_size(ctx);
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole";
mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
mr.base = lowmem;
mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
mr.handler = pci_emul_fallback_handler;
error = register_mem_fallback(&mr);
assert(error == 0);
/* PCI extended config space */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI ECFG";
mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
mr.base = PCI_EMUL_ECFG_BASE;
mr.size = PCI_EMUL_ECFG_SIZE;
mr.handler = pci_emul_ecfg_handler;
error = register_mem(&mr);
assert(error == 0);
return (0);
}
#ifdef __amd64__
static void
pci_apic_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq,
void *arg __unused)
{
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" Zero,");
dsdt_line(" 0x%X", irq->ioapic_irq);
dsdt_line(" },");
}
static void
pci_pirq_prt_entry(int bus __unused, int slot, int pin, struct pci_irq *irq,
void *arg __unused)
{
char *name;
name = lpc_pirq_name(irq->pirq_pin);
if (name == NULL)
return;
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" %s,", name);
dsdt_line(" 0x00");
dsdt_line(" },");
free(name);
}
#endif
/*
* A bhyve virtual machine has a flat PCI hierarchy with a root port
* corresponding to each PCI bus.
*/
static void
pci_bus_write_dsdt(int bus)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_devinst *pi;
int func, slot;
/*
* If there are no devices on this 'bus' then just return.
*/
if ((bi = pci_businfo[bus]) == NULL) {
/*
* Bus 0 is special because it decodes the I/O ports used
* for PCI config space access even if there are no devices
* on it.
*/
if (bus != 0)
return;
}
dsdt_line(" Device (PC%02X)", bus);
dsdt_line(" {");
dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))");
dsdt_line(" Method (_BBN, 0, NotSerialized)");
dsdt_line(" {");
dsdt_line(" Return (0x%08X)", bus);
dsdt_line(" }");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, "
"MaxFixed, PosDecode,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bus);
dsdt_line(" 0x%04X, // Range Maximum", bus);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0001, // Length");
dsdt_line(" ,, )");
#ifdef __amd64__
if (bus == 0) {
dsdt_indent(3);
dsdt_fixed_ioport(0xCF8, 8);
dsdt_unindent(3);
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0000, // Range Minimum");
dsdt_line(" 0x0CF7, // Range Maximum");
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0CF8, // Length");
dsdt_line(" ,, , TypeStatic)");
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0D00, // Range Minimum");
dsdt_line(" 0x%04X, // Range Maximum",
PCI_EMUL_IOBASE - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
PCI_EMUL_IOBASE - 0x0D00);
dsdt_line(" ,, , TypeStatic)");
if (bi == NULL) {
dsdt_line(" })");
goto done;
}
}
#endif
assert(bi != NULL);
/* i/o window */
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bi->iobase);
dsdt_line(" 0x%04X, // Range Maximum",
bi->iolimit - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
bi->iolimit - bi->iobase);
dsdt_line(" ,, , TypeStatic)");
/* mmio window (32-bit) */
dsdt_line(" DWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x00000000, // Granularity");
dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32);
dsdt_line(" 0x%08X, // Range Maximum\n",
bi->memlimit32 - 1);
dsdt_line(" 0x00000000, // Translation Offset");
dsdt_line(" 0x%08X, // Length\n",
bi->memlimit32 - bi->membase32);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
/* mmio window (64-bit) */
dsdt_line(" QWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x0000000000000000, // Granularity");
dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64);
dsdt_line(" 0x%016lX, // Range Maximum\n",
bi->memlimit64 - 1);
dsdt_line(" 0x0000000000000000, // Translation Offset");
dsdt_line(" 0x%016lX, // Length\n",
bi->memlimit64 - bi->membase64);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
dsdt_line(" })");
#ifdef __amd64__
if (pci_count_lintr(bus) != 0) {
dsdt_indent(2);
dsdt_line("Name (PPRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Name (APRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Method (_PRT, 0, NotSerialized)");
dsdt_line("{");
dsdt_line(" If (PICM)");
dsdt_line(" {");
dsdt_line(" Return (APRT)");
dsdt_line(" }");
dsdt_line(" Else");
dsdt_line(" {");
dsdt_line(" Return (PPRT)");
dsdt_line(" }");
dsdt_line("}");
dsdt_unindent(2);
}
#endif
dsdt_indent(2);
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
pi = si->si_funcs[func].fi_devi;
if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
pi->pi_d->pe_write_dsdt(pi);
}
}
dsdt_unindent(2);
#ifdef __amd64__
done:
#endif
dsdt_line(" }");
}
void
pci_write_dsdt(void)
{
int bus;
dsdt_indent(1);
dsdt_line("Name (PICM, 0x00)");
dsdt_line("Method (_PIC, 1, NotSerialized)");
dsdt_line("{");
dsdt_line(" Store (Arg0, PICM)");
dsdt_line("}");
dsdt_line("");
dsdt_line("Scope (_SB)");
dsdt_line("{");
for (bus = 0; bus < MAXBUSES; bus++)
pci_bus_write_dsdt(bus);
dsdt_line("}");
dsdt_unindent(1);
}
int
pci_bus_configured(int bus)
{
assert(bus >= 0 && bus < MAXBUSES);
return (pci_businfo[bus] != NULL);
}
int
pci_msi_enabled(struct pci_devinst *pi)
{
return (pi->pi_msi.enabled);
}
int
pci_msi_maxmsgnum(struct pci_devinst *pi)
{
if (pi->pi_msi.enabled)
return (pi->pi_msi.maxmsgnum);
else
return (0);
}
int
pci_msix_enabled(struct pci_devinst *pi)
{
return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
}
void
pci_generate_msix(struct pci_devinst *pi, int index)
{
struct msix_table_entry *mte;
if (!pci_msix_enabled(pi))
return;
if (pi->pi_msix.function_mask)
return;
if (index >= pi->pi_msix.table_count)
return;
mte = &pi->pi_msix.table[index];
if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
/* XXX Set PBA bit if interrupt is disabled */
vm_raise_msi(pi->pi_vmctx, mte->addr, mte->msg_data,
pi->pi_bus, pi->pi_slot, pi->pi_func);
}
}
void
pci_generate_msi(struct pci_devinst *pi, int index)
{
if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
vm_raise_msi(pi->pi_vmctx, pi->pi_msi.addr,
pi->pi_msi.msg_data + index,
pi->pi_bus, pi->pi_slot, pi->pi_func);
}
}
static bool
pci_lintr_permitted(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
(cmd & PCIM_CMD_INTxDIS)));
}
void
pci_lintr_request(struct pci_devinst *pi)
{
struct businfo *bi;
struct slotinfo *si;
int bestpin, bestcount, pin;
bi = pci_businfo[pi->pi_bus];
assert(bi != NULL);
/*
* Just allocate a pin from our slot. The pin will be
* assigned IRQs later when interrupts are routed.
*/
si = &bi->slotinfo[pi->pi_slot];
bestpin = 0;
bestcount = si->si_intpins[0].ii_count;
for (pin = 1; pin < 4; pin++) {
if (si->si_intpins[pin].ii_count < bestcount) {
bestpin = pin;
bestcount = si->si_intpins[pin].ii_count;
}
}
si->si_intpins[bestpin].ii_count++;
pi->pi_lintr.pin = bestpin + 1;
pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
}
static void
pci_lintr_route(struct pci_devinst *pi)
{
struct businfo *bi;
struct intxinfo *ii;
struct pci_irq *irq;
if (pi->pi_lintr.pin == 0)
return;
bi = pci_businfo[pi->pi_bus];
assert(bi != NULL);
ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
irq = &ii->ii_irq;
pci_irq_route(pi, irq);
pi->pi_lintr.irq = *irq;
pci_set_cfgdata8(pi, PCIR_INTLINE, pci_irq_intline(irq));
}
void
pci_lintr_assert(struct pci_devinst *pi)
{
assert(pi->pi_lintr.pin > 0);
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == IDLE) {
if (pci_lintr_permitted(pi)) {
pi->pi_lintr.state = ASSERTED;
pci_irq_assert(pi);
} else
pi->pi_lintr.state = PENDING;
}
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
void
pci_lintr_deassert(struct pci_devinst *pi)
{
assert(pi->pi_lintr.pin > 0);
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == ASSERTED) {
pi->pi_lintr.state = IDLE;
pci_irq_deassert(pi);
} else if (pi->pi_lintr.state == PENDING)
pi->pi_lintr.state = IDLE;
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
static void
pci_lintr_update(struct pci_devinst *pi)
{
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
pci_irq_deassert(pi);
pi->pi_lintr.state = PENDING;
} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
pi->pi_lintr.state = ASSERTED;
pci_irq_assert(pi);
}
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
int
pci_count_lintr(int bus)
{
int count, slot, pin;
struct slotinfo *slotinfo;
count = 0;
if (pci_businfo[bus] != NULL) {
for (slot = 0; slot < MAXSLOTS; slot++) {
slotinfo = &pci_businfo[bus]->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
if (slotinfo->si_intpins[pin].ii_count != 0)
count++;
}
}
}
return (count);
}
void
pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
{
struct businfo *bi;
struct slotinfo *si;
struct intxinfo *ii;
int slot, pin;
if ((bi = pci_businfo[bus]) == NULL)
return;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
ii = &si->si_intpins[pin];
if (ii->ii_count != 0)
cb(bus, slot, pin + 1, &ii->ii_irq, arg);
}
}
}
/*
* Return 1 if the emulated device in 'slot' is a multi-function device.
* Return 0 otherwise.
*/
static int
pci_emul_is_mfdev(int bus, int slot)
{
struct businfo *bi;
struct slotinfo *si;
int f, numfuncs;
numfuncs = 0;
if ((bi = pci_businfo[bus]) != NULL) {
si = &bi->slotinfo[slot];
for (f = 0; f < MAXFUNCS; f++) {
if (si->si_funcs[f].fi_devi != NULL) {
numfuncs++;
}
}
}
return (numfuncs > 1);
}
/*
* Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
* whether or not is a multi-function being emulated in the pci 'slot'.
*/
static void
pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
{
int mfdev;
if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
mfdev = pci_emul_is_mfdev(bus, slot);
switch (bytes) {
case 1:
case 2:
*rv &= ~PCIM_MFDEV;
if (mfdev) {
*rv |= PCIM_MFDEV;
}
break;
case 4:
*rv &= ~(PCIM_MFDEV << 16);
if (mfdev) {
*rv |= (PCIM_MFDEV << 16);
}
break;
}
}
}
/*
* Update device state in response to changes to the PCI command
* register.
*/
void
pci_emul_cmd_changed(struct pci_devinst *pi, uint16_t old)
{
int i;
uint16_t changed, new;
new = pci_get_cfgdata16(pi, PCIR_COMMAND);
changed = old ^ new;
/*
* If the MMIO or I/O address space decoding has changed then
* register/unregister all BARs that decode that address space.
*/
for (i = 0; i <= PCI_BARMAX_WITH_ROM; i++) {
switch (pi->pi_bar[i].type) {
case PCIBAR_NONE:
case PCIBAR_MEMHI64:
break;
case PCIBAR_IO:
/* I/O address space decoding changed? */
if (changed & PCIM_CMD_PORTEN) {
if (new & PCIM_CMD_PORTEN)
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
case PCIBAR_ROM:
/* skip (un-)register of ROM if it disabled */
if (!romen(pi))
break;
/* fallthrough */
case PCIBAR_MEM32:
case PCIBAR_MEM64:
/* MMIO address space decoding changed? */
if (changed & PCIM_CMD_MEMEN) {
if (new & PCIM_CMD_MEMEN)
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
default:
assert(0);
}
}
/*
* If INTx has been unmasked and is pending, assert the
* interrupt.
*/
pci_lintr_update(pi);
}
static void
pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
{
int rshift;
uint32_t cmd, old, readonly;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */
/*
* From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
*
* XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
* 'write 1 to clear'. However these bits are not set to '1' by
* any device emulation so it is simpler to treat them as readonly.
*/
rshift = (coff & 0x3) * 8;
readonly = 0xFFFFF880 >> rshift;
old = CFGREAD(pi, coff, bytes);
new &= ~readonly;
new |= (old & readonly);
CFGWRITE(pi, coff, new, bytes); /* update config */
pci_emul_cmd_changed(pi, cmd);
}
static void
pci_cfgrw(int in, int bus, int slot, int func, int coff, int bytes,
uint32_t *valp)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_devinst *pi;
struct pci_devemu *pe;
int idx, needcfg;
uint64_t addr, bar, mask;
if ((bi = pci_businfo[bus]) != NULL) {
si = &bi->slotinfo[slot];
pi = si->si_funcs[func].fi_devi;
} else
pi = NULL;
/*
* Just return if there is no device at this slot:func or if the
* guest is doing an un-aligned access.
*/
if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
(coff & (bytes - 1)) != 0) {
if (in)
*valp = 0xffffffff;
return;
}
/*
* Ignore all writes beyond the standard config space and return all
* ones on reads.
*/
if (coff >= PCI_REGMAX + 1) {
if (in) {
*valp = 0xffffffff;
/*
* Extended capabilities begin at offset 256 in config
* space. Absence of extended capabilities is signaled
* with all 0s in the extended capability header at
* offset 256.
*/
if (coff <= PCI_REGMAX + 4)
*valp = 0x00000000;
}
return;
}
pe = pi->pi_d;
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (pe->pe_cfgread != NULL) {
needcfg = pe->pe_cfgread(pi, coff, bytes, valp);
} else {
needcfg = 1;
}
if (needcfg)
*valp = CFGREAD(pi, coff, bytes);
pci_emul_hdrtype_fixup(bus, slot, coff, bytes, valp);
} else {
/* Let the device emulation override the default handler */
if (pe->pe_cfgwrite != NULL &&
(*pe->pe_cfgwrite)(pi, coff, bytes, *valp) == 0)
return;
/*
* Special handling for write to BAR and ROM registers
*/
if (is_pcir_bar(coff) || is_pcir_bios(coff)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return;
if (is_pcir_bar(coff)) {
idx = (coff - PCIR_BAR(0)) / 4;
} else if (is_pcir_bios(coff)) {
idx = PCI_ROM_IDX;
} else {
errx(4, "%s: invalid BAR offset %d", __func__,
coff);
}
mask = ~(pi->pi_bar[idx].size - 1);
switch (pi->pi_bar[idx].type) {
case PCIBAR_NONE:
pi->pi_bar[idx].addr = bar = 0;
break;
case PCIBAR_IO:
addr = *valp & mask;
#if defined(PCI_EMUL_IOMASK)
addr &= PCI_EMUL_IOMASK;
#endif
bar = addr | pi->pi_bar[idx].lobits;
/*
* Register the new BAR value for interception
*/
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_IO);
}
break;
case PCIBAR_MEM32:
addr = bar = *valp & mask;
bar |= pi->pi_bar[idx].lobits;
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM32);
}
break;
case PCIBAR_MEM64:
addr = bar = *valp & mask;
bar |= pi->pi_bar[idx].lobits;
if (addr != (uint32_t)pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM64);
}
break;
case PCIBAR_MEMHI64:
mask = ~(pi->pi_bar[idx - 1].size - 1);
addr = ((uint64_t)*valp << 32) & mask;
bar = addr >> 32;
if (bar != pi->pi_bar[idx - 1].addr >> 32) {
update_bar_address(pi, addr, idx - 1,
PCIBAR_MEMHI64);
}
break;
case PCIBAR_ROM:
addr = bar = *valp & mask;
if (memen(pi) && romen(pi)) {
unregister_bar(pi, idx);
}
pi->pi_bar[idx].addr = addr;
pi->pi_bar[idx].lobits = *valp &
PCIM_BIOS_ENABLE;
/* romen could have changed it value */
if (memen(pi) && romen(pi)) {
register_bar(pi, idx);
}
bar |= pi->pi_bar[idx].lobits;
break;
default:
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *valp, 0, 0);
} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
pci_emul_cmdsts_write(pi, coff, *valp, bytes);
} else {
CFGWRITE(pi, coff, *valp, bytes);
}
}
}
#ifdef __amd64__
static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
static int
pci_emul_cfgaddr(struct vmctx *ctx __unused, int in,
int port __unused, int bytes, uint32_t *eax, void *arg __unused)
{
uint32_t x;
if (bytes != 4) {
if (in)
*eax = (bytes == 2) ? 0xffff : 0xff;
return (0);
}
if (in) {
x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
if (cfgenable)
x |= CONF1_ENABLE;
*eax = x;
} else {
x = *eax;
cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
cfgoff = (x & PCI_REGMAX) & ~0x03;
cfgfunc = (x >> 8) & PCI_FUNCMAX;
cfgslot = (x >> 11) & PCI_SLOTMAX;
cfgbus = (x >> 16) & PCI_BUSMAX;
}
return (0);
}
INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
static int
pci_emul_cfgdata(struct vmctx *ctx __unused, int in, int port,
int bytes, uint32_t *eax, void *arg __unused)
{
int coff;
assert(bytes == 1 || bytes == 2 || bytes == 4);
coff = cfgoff + (port - CONF1_DATA_PORT);
if (cfgenable) {
pci_cfgrw(in, cfgbus, cfgslot, cfgfunc, coff, bytes, eax);
} else {
/* Ignore accesses to cfgdata if not enabled by cfgaddr */
if (in)
*eax = 0xffffffff;
}
return (0);
}
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
#endif
#ifdef BHYVE_SNAPSHOT
/*
* Saves/restores PCI device emulated state. Returns 0 on success.
*/
static int
pci_snapshot_pci_dev(struct vm_snapshot_meta *meta)
{
struct pci_devinst *pi;
int i;
int ret;
pi = meta->dev_data;
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.enabled, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.addr, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.msg_data, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msi.maxmsgnum, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.enabled, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_bar, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_bar, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_offset, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table_count, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_offset, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.pba_size, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.function_mask, meta, ret, done);
SNAPSHOT_BUF_OR_LEAVE(pi->pi_cfgdata, sizeof(pi->pi_cfgdata),
meta, ret, done);
for (i = 0; i < (int)nitems(pi->pi_bar); i++) {
SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].type, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].size, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_bar[i].addr, meta, ret, done);
}
/* Restore MSI-X table. */
for (i = 0; i < pi->pi_msix.table_count; i++) {
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].addr,
meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].msg_data,
meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(pi->pi_msix.table[i].vector_control,
meta, ret, done);
}
done:
return (ret);
}
int
pci_snapshot(struct vm_snapshot_meta *meta)
{
struct pci_devemu *pde;
struct pci_devinst *pdi;
int ret;
assert(meta->dev_name != NULL);
pdi = meta->dev_data;
pde = pdi->pi_d;
if (pde->pe_snapshot == NULL)
return (ENOTSUP);
ret = pci_snapshot_pci_dev(meta);
if (ret == 0)
ret = (*pde->pe_snapshot)(meta);
return (ret);
}
int
pci_pause(struct pci_devinst *pdi)
{
struct pci_devemu *pde = pdi->pi_d;
if (pde->pe_pause == NULL) {
/* The pause/resume functionality is optional. */
return (0);
}
return (*pde->pe_pause)(pdi);
}
int
pci_resume(struct pci_devinst *pdi)
{
struct pci_devemu *pde = pdi->pi_d;
if (pde->pe_resume == NULL) {
/* The pause/resume functionality is optional. */
return (0);
}
return (*pde->pe_resume)(pdi);
}
#endif
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DIOSZ 8
#define DMEMSZ 4096
struct pci_emul_dsoftc {
uint8_t ioregs[DIOSZ];
uint8_t memregs[2][DMEMSZ];
};
#define PCI_EMUL_MSI_MSGS 4
#define PCI_EMUL_MSIX_MSGS 16
static int
pci_emul_dinit(struct pci_devinst *pi, nvlist_t *nvl __unused)
{
int error;
struct pci_emul_dsoftc *sc;
sc = calloc(1, sizeof(struct pci_emul_dsoftc));
pi->pi_arg = sc;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
return (0);
}
static void
pci_emul_diow(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
uint64_t value)
{
int i;
struct pci_emul_dsoftc *sc = pi->pi_arg;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("diow: iow too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->ioregs[offset] = value & 0xff;
} else if (size == 2) {
*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
} else if (size == 4) {
*(uint32_t *)&sc->ioregs[offset] = value;
} else {
printf("diow: iow unknown size %d\n", size);
}
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(pi))
pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
pci_generate_msi(pi, i);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
printf("diow: memw too large, offset %ld size %d\n",
offset, size);
return;
}
i = baridx - 1; /* 'memregs' index */
if (size == 1) {
sc->memregs[i][offset] = value;
} else if (size == 2) {
*(uint16_t *)&sc->memregs[i][offset] = value;
} else if (size == 4) {
*(uint32_t *)&sc->memregs[i][offset] = value;
} else if (size == 8) {
*(uint64_t *)&sc->memregs[i][offset] = value;
} else {
printf("diow: memw unknown size %d\n", size);
}
/*
* magic interrupt ??
*/
}
if (baridx > 2 || baridx < 0) {
printf("diow: unknown bar idx %d\n", baridx);
}
}
static uint64_t
pci_emul_dior(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
{
struct pci_emul_dsoftc *sc = pi->pi_arg;
uint32_t value;
int i;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("dior: ior too large, offset %ld size %d\n",
offset, size);
return (0);
}
value = 0;
if (size == 1) {
value = sc->ioregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->ioregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->ioregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
printf("dior: memr too large, offset %ld size %d\n",
offset, size);
return (0);
}
i = baridx - 1; /* 'memregs' index */
if (size == 1) {
value = sc->memregs[i][offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->memregs[i][offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->memregs[i][offset];
} else if (size == 8) {
value = *(uint64_t *) &sc->memregs[i][offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx > 2 || baridx < 0) {
printf("dior: unknown bar idx %d\n", baridx);
return (0);
}
return (value);
}
#ifdef BHYVE_SNAPSHOT
struct pci_devinst *
pci_next(const struct pci_devinst *cursor)
{
unsigned bus = 0, slot = 0, func = 0;
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
bus = cursor ? cursor->pi_bus : 0;
slot = cursor ? cursor->pi_slot : 0;
func = cursor ? (cursor->pi_func + 1) : 0;
for (; bus < MAXBUSES; bus++) {
if ((bi = pci_businfo[bus]) == NULL)
continue;
if (slot >= MAXSLOTS)
slot = 0;
for (; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
if (func >= MAXFUNCS)
func = 0;
for (; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_devi == NULL)
continue;
return (fi->fi_devi);
}
}
}
return (NULL);
}
static int
pci_emul_snapshot(struct vm_snapshot_meta *meta __unused)
{
return (0);
}
#endif
static const struct pci_devemu pci_dummy = {
.pe_emu = "dummy",
.pe_init = pci_emul_dinit,
.pe_barwrite = pci_emul_diow,
.pe_barread = pci_emul_dior,
#ifdef BHYVE_SNAPSHOT
.pe_snapshot = pci_emul_snapshot,
#endif
};
PCI_EMUL_SET(pci_dummy);
#endif /* PCI_EMUL_TEST */