Latest error correction code from Steve Gerakines

This commit is contained in:
Jordan K. Hubbard 1994-05-20 10:09:46 +00:00
parent dbd34b8383
commit b4b08b2982
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=1524
2 changed files with 502 additions and 290 deletions

View file

@ -1,32 +1,41 @@
/*
* ftecc.c 10/30/93 v0.3
* Handle error correction for floppy tape drives.
* Copyright (c) 1994 Steve Gerakines
*
* File contents are copyrighted by David L. Brown and falls under the
* terms of the GPL version 2 or greater. See his original release for
* the specific terms.
* This is freely redistributable software. You may do anything you
* wish with it, so long as the above notice stays intact.
*
* Steve Gerakines
* steve2@genesis.nred.ma.us
* Modified slightly to fit with my tape driver. I'm not at all happy
* with this module and will have it replaced with a more functional one
* in the next release(/RSN). I am close, but progress will continue to
* be slow until I can find a book on the subject where the translator
* understands both the to and from languages. :-( For now it will
* suffice.
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* ftecc.c - QIC-40/80 Reed-Solomon error correction
* 03/22/94 v0.4
* Major re-write. It can handle everything required by QIC now.
*
* 09/14/93 v0.2 pl01
* Modified slightly to fit with my driver. Based entirely upon David
* L. Brown's package.
*/
#include <sys/ftape.h>
/*
* In order to speed up the correction and adjustment, we can compute
* a matrix of coefficients for the multiplication.
*/
/* Inverse matrix */
struct inv_mat {
UCHAR log_denom; /* The log z of the denominator. */
UCHAR zs[3][3]; /* The coefficients for the adjustment matrix. */
UCHAR log_denom; /* Log of the denominator */
UCHAR zs[3][3]; /* The matrix */
};
/* This array is a table of powers of x, from 0 to 254. */
/*
* Powers of x, modulo 255.
*/
static UCHAR alpha_power[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
@ -59,12 +68,12 @@ static UCHAR alpha_power[] = {
0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2,
0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77,
0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3
0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01
};
/*
* This is the reverse lookup table. There is no log of 0, so the
* first element is not valid.
* Log table, modulo 255 + 1.
*/
static UCHAR alpha_log[] = {
0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a,
@ -101,8 +110,12 @@ static UCHAR alpha_log[] = {
0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7
};
/* Return number of sectors available in a segment. */
int sect_count(ULONG badmap)
/*
* Return number of sectors available in a segment.
*/
int
sect_count(ULONG badmap)
{
int i, amt;
@ -111,8 +124,12 @@ int sect_count(ULONG badmap)
return(amt);
}
/* Return number of bytes available in a segment. */
int sect_bytes(ULONG badmap)
/*
* Return number of bytes available in a segment.
*/
int
sect_bytes(ULONG badmap)
{
int i, amt;
@ -121,146 +138,201 @@ int sect_bytes(ULONG badmap)
return(amt);
}
/* Multiply two numbers in the field. */
static UCHAR multiply(UCHAR a, UCHAR b)
{
int tmp;
if (a == 0 || b == 0) return(0);
tmp = (alpha_log[a] + alpha_log[b]);
if (tmp > 254) tmp -= 255;
return (alpha_power[tmp]);
/*
* Multiply two numbers in the field.
*/
static UCHAR
multiply(UCHAR a, UCHAR b)
{
if (!a || !b) return(0);
return(alpha_power[(alpha_log[a] + alpha_log[b]) % 255]);
}
static UCHAR divide(UCHAR a, UCHAR b)
/*
* Multiply by an exponent.
*/
static UCHAR
multiply_out(UCHAR a, int b)
{
if (!a) return(0);
return(alpha_power[(alpha_log[a] + b) % 255]);
}
/*
* Divide two numbers.
*/
static UCHAR
divide(UCHAR a, UCHAR b)
{
int tmp;
if (a == 0 || b == 0) return(0);
tmp = (alpha_log[a] - alpha_log[b]);
if (!a || !b) return(0);
tmp = alpha_log[a] - alpha_log[b];
if (tmp < 0) tmp += 255;
return (alpha_power[tmp]);
}
/*
* This is just like divide, except we have already looked up the log
* of the second number.
* Divide using exponent.
*/
static UCHAR divide_out(UCHAR a, UCHAR b)
static UCHAR
divide_out(UCHAR a, UCHAR b)
{
int tmp;
if (a == 0) return 0;
if (!a) return 0;
tmp = alpha_log[a] - b;
if (tmp < 0) tmp += 255;
return (alpha_power[tmp]);
}
/* This returns the value z^{a-b}. */
static UCHAR z_of_ab(UCHAR a, UCHAR b)
{
int tmp = (int)a - (int)b;
if (tmp < 0)
tmp += 255;
else if (tmp >= 255)
tmp -= 255;
return(alpha_power[tmp]);
/*
* This returns the value z^{a-b}.
*/
static UCHAR
z_of_ab(UCHAR a, UCHAR b)
{
int tmp = a - b;
if (tmp < 0) tmp += 255;
return(alpha_power[tmp % 255]);
}
/* Calculate the inverse matrix. Returns 1 if the matrix is valid, or
* zero if there is no inverse. The i's are the indices of the bytes
* to be corrected.
/*
* Calculate the inverse matrix for two or three errors. Returns 0
* if there is no inverse or 1 if successful.
*/
static int calculate_inverse (int *pblk, struct inv_mat *inv)
static int
calculate_inverse(int nerrs, int *pblk, struct inv_mat *inv)
{
/* First some variables to remember some of the results. */
UCHAR z20, z10, z21, z12, z01, z02;
UCHAR i0, i1, i2;
if (nerrs < 2) return(1);
if (nerrs > 3) return(0);
i0 = pblk[0]; i1 = pblk[1]; i2 = pblk[2];
if (nerrs == 2) {
/* 2 errs */
z01 = alpha_power[255 - i0];
z02 = alpha_power[255 - i1];
inv->log_denom = (z01 ^ z02);
if (!inv->log_denom) return(0);
inv->log_denom = 255 - alpha_log[inv->log_denom];
z20 = z_of_ab (i2, i0); z10 = z_of_ab (i1, i0);
z21 = z_of_ab (i2, i1); z12 = z_of_ab (i1, i2);
z01 = z_of_ab (i0, i1); z02 = z_of_ab (i0, i2);
inv->log_denom = (z20 ^ z10 ^ z21 ^ z12 ^ z01 ^ z02);
if (inv->log_denom == 0) return 0;
inv->log_denom = alpha_log[inv->log_denom];
inv->zs[0][0] = multiply_out( 1, inv->log_denom);
inv->zs[0][1] = multiply_out(z02, inv->log_denom);
inv->zs[1][0] = multiply_out( 1, inv->log_denom);
inv->zs[1][1] = multiply_out(z01, inv->log_denom);
} else {
/* 3 errs */
z20 = z_of_ab (i2, i0);
z10 = z_of_ab (i1, i0);
z21 = z_of_ab (i2, i1);
z12 = z_of_ab (i1, i2);
z01 = z_of_ab (i0, i1);
z02 = z_of_ab (i0, i2);
inv->log_denom = (z20 ^ z10 ^ z21 ^ z12 ^ z01 ^ z02);
if (!inv->log_denom) return(0);
inv->log_denom = 255 - alpha_log[inv->log_denom];
/* Calculate all of the coefficients on the top. */
inv->zs[0][0] = alpha_power[i1] ^ alpha_power[i2];
inv->zs[0][1] = z21 ^ z12;
inv->zs[0][2] = alpha_power[255-i1] ^ alpha_power[255-i2];
inv->zs[1][0] = alpha_power[i0] ^ alpha_power[i2];
inv->zs[1][1] = z20 ^ z02;
inv->zs[1][2] = alpha_power[255-i0] ^ alpha_power[255-i2];
inv->zs[2][0] = alpha_power[i0] ^ alpha_power[i1];
inv->zs[2][1] = z10 ^ z01;
inv->zs[2][2] = alpha_power[255-i0] ^ alpha_power[255-i1];
inv->zs[0][0] = multiply_out(alpha_power[i1] ^ alpha_power[i2],
inv->log_denom);
inv->zs[0][1] = multiply_out(z21 ^ z12, inv->log_denom);
inv->zs[0][2] = multiply_out(alpha_power[255-i1] ^ alpha_power[255-i2],
inv->log_denom);
inv->zs[1][0] = multiply_out(alpha_power[i0] ^ alpha_power[i2],
inv->log_denom);
inv->zs[1][1] = multiply_out(z20 ^ z02, inv->log_denom);
inv->zs[1][2] = multiply_out(alpha_power[255-i0] ^ alpha_power[255-i2],
inv->log_denom);
inv->zs[2][0] = multiply_out(alpha_power[i0] ^ alpha_power[i1],
inv->log_denom);
inv->zs[2][1] = multiply_out(z10 ^ z01, inv->log_denom);
inv->zs[2][2] = multiply_out(alpha_power[255-i0] ^ alpha_power[255-i1],
inv->log_denom);
}
return(1);
}
/*
* Determine the error values for a given inverse matrix and syndromes.
* Determine the error magnitudes for a given matrix and syndromes.
*/
static void determine3(struct inv_mat *inv, UCHAR *es, UCHAR *ss)
static void
determine(int nerrs, struct inv_mat *inv, UCHAR *ss, UCHAR *es)
{
UCHAR tmp;
int i, j;
for (i = 0; i < 3; i++) {
tmp = 0;
for (j = 0; j < 3; j++) tmp ^= multiply (ss[j], inv->zs[i][j]);
es[i] = divide_out(tmp, inv->log_denom);
for (i = 0; i < nerrs; i++) {
es[i] = 0;
for (j = 0; j < nerrs; j++)
es[i] ^= multiply(ss[j], inv->zs[i][j]);
}
}
/*
* Compute the 3 syndrome values. The data pointer should point to
* the offset within the first block of the column to calculate. The
* count of blocks is in blocks. The three bytes will be placed in
* ss[0], ss[1], and ss[2].
* Compute the 3 syndrome values.
*/
static void compute_syndromes(UCHAR *data, int nblks, int col, UCHAR *ss)
static int
compute_syndromes(UCHAR *data, int nblks, int col, UCHAR *ss)
{
int i;
UCHAR v;
UCHAR r0, r1, r2, t1, t2;
UCHAR *rptr;
int row;
ss[0] = 0; ss[1] = 0; ss[2] = 0;
for (i = (nblks-1)*QCV_BLKSIZE; i >= 0; i -= QCV_BLKSIZE) {
v = data[i+col];
if (ss[0] & 0x01) { ss[0] >>= 1; ss[0] ^= 0xc3; } else ss[0] >>= 1;
ss[0] ^= v;
ss[1] ^= v;
if (ss[2] & 0x80) { ss[2] <<= 1; ss[2] ^= 0x87; } else ss[2] <<= 1;
ss[2] ^= v;
rptr = &data[col];
r0 = r1 = r2 = 0;
for (row = 0; row < nblks; row++, rptr += QCV_BLKSIZE) {
t1 = *rptr ^ r0;
t2 = multiply(0xc0, t1);
r0 = t2 ^ r1;
r1 = t2 ^ r2;
r2 = t1;
}
if (r0 || r1 || r2) {
ss[0] = divide_out(r0 ^ divide_out(r1 ^ divide_out(r2, 1), 1), nblks);
ss[1] = r0 ^ r1 ^ r2;
ss[2] = multiply_out(r0 ^ multiply_out(r1 ^ multiply_out(r2, 1), 1), nblks);
return(0);
}
return(1);
}
/*
* Calculate the parity bytes for a segment. Returns 0 on success.
* Calculate the parity bytes for a segment, returns 0 on success (always).
*/
int set_parity (UCHAR *data, ULONG badmap)
int
set_parity (UCHAR *data, ULONG badmap)
{
int col;
struct inv_mat inv;
UCHAR ss[3], es[3];
int nblks, pblk[3];
int col, row, max;
UCHAR r0, r1, r2, t1, t2;
UCHAR *rptr;
nblks = sect_count(badmap);
pblk[0] = nblks-3; pblk[1] = nblks-2; pblk[2] = nblks-1;
if (!calculate_inverse(pblk, &inv)) return(1);
pblk[0] *= QCV_BLKSIZE; pblk[1] *= QCV_BLKSIZE; pblk[2] *= QCV_BLKSIZE;
for (col = 0; col < QCV_BLKSIZE; col++) {
compute_syndromes (data, nblks-3, col, ss);
determine3(&inv, es, ss);
data[pblk[0]+col] = es[0];
data[pblk[1]+col] = es[1];
data[pblk[2]+col] = es[2];
max = sect_count(badmap) - 3;
for (col = 0; col < QCV_BLKSIZE; col++, data++) {
rptr = data;
r0 = r1 = r2 = 0;
for (row = 0; row < max; row++, rptr += QCV_BLKSIZE) {
t1 = *rptr ^ r0;
t2 = multiply(0xc0, t1);
r0 = t2 ^ r1;
r1 = t2 ^ r2;
r2 = t1;
}
*rptr = r0; rptr += QCV_BLKSIZE;
*rptr = r1; rptr += QCV_BLKSIZE;
*rptr = r2;
}
return(0);
}
@ -270,47 +342,81 @@ int set_parity (UCHAR *data, ULONG badmap)
* Check and correct errors in a block. Returns 0 on success,
* 1 if failed.
*/
int check_parity(UCHAR *data, ULONG badmap, ULONG crcmap)
int
check_parity(UCHAR *data, ULONG badmap, ULONG crcmap)
{
int i, j, col, crcerrs, r, tries, nblks;
struct inv_mat inv;
int crcerrs, eblk[3];
int col, row;
int i, j, nblks;
UCHAR ss[3], es[3];
int i1, i2, eblk[3];
int i1, i2, saverrs;
struct inv_mat inv;
nblks = sect_count(badmap);
/* Count the number of CRC errors and note their locations. */
crcerrs = 0;
for (i = 0; crcerrs < 3 && i < nblks; i++)
if (crcmap & (1 << i)) eblk[crcerrs++] = i;
for (i = 1, j = crcerrs; j < 3 && i < nblks; i++)
if ((crcmap & (1 << i)) == 0) eblk[j++] = i;
if (!calculate_inverse (eblk, &inv)) return(1);
eblk[0] *= QCV_BLKSIZE; eblk[1] *= QCV_BLKSIZE; eblk[2] *= QCV_BLKSIZE;
r = 0;
for (col = 0; col < QCV_BLKSIZE; col++) {
compute_syndromes (data, nblks, col, ss);
if (!ss[0] && !ss[1] && !ss[2]) continue;
if (crcerrs) {
determine3 (&inv, es, ss);
for (j = 0; j < crcerrs; j++)
data[eblk[j] + col] ^= es[j];
compute_syndromes (data, nblks, col, ss);
if (!ss[0] && !ss[1] && !ss[2]) {
r = 1;
continue;
if (crcmap) {
for (i = 0; i < nblks; i++) {
if (crcmap & (1 << i)) {
eblk[crcerrs++] = i;
if (crcerrs >= 3) break;
}
}
determine3 (&inv, es, ss);
i1 = alpha_log[divide(ss[2], ss[1])];
i2 = alpha_log[divide(ss[1], ss[0])];
if (i1 != i2 || ((QCV_BLKSIZE * i1) + col) > QCV_SEGSIZE)
r = 1;
else
data[QCV_BLKSIZE * i1 + col] ^= ss[1];
}
return(r);
/* Calculate the inverse matrix */
if (!calculate_inverse(crcerrs, eblk, &inv)) return(1);
/* Scan each column for problems and attempt to correct. */
for (col = 0; col < QCV_BLKSIZE; col++) {
if (compute_syndromes(data, nblks, col, ss)) continue;
es[0] = es[1] = es[2] = 0;
/* Analyze the error situation. */
switch (crcerrs) {
case 0: /* 0 errors >0 failures */
if (!ss[0]) return(1);
eblk[crcerrs] = alpha_log[divide(ss[1], ss[0])];
if (eblk[crcerrs] >= nblks) return(1);
es[0] = ss[1];
crcerrs++;
break;
case 1: /* 1 error (+ possible failures) */
i1 = ss[2] ^ multiply_out(ss[1], eblk[0]);
i2 = ss[1] ^ multiply_out(ss[0], eblk[0]);
if (!i1 && !i2) { /* only 1 error */
inv.zs[0][0] = alpha_power[eblk[0]];
inv.log_denom = 0;
} else if (!i1 || !i2) { /* too many errors */
return(1);
} else { /* add failure */
eblk[crcerrs] = alpha_log[divide(i1, i2)];
if (eblk[crcerrs] >= nblks) return(1);
crcerrs++;
if (!calculate_inverse(crcerrs, eblk, &inv)) return(1);
}
determine(crcerrs, &inv, ss, es);
break;
case 2: /* 2 errors */
case 3: /* 3 errors */
determine(crcerrs, &inv, ss, es);
break;
default:
return(1);
}
/* Make corrections. */
for (i = 0; i < crcerrs; i++) {
data[eblk[i] * QCV_BLKSIZE+col] ^= es[i];
ss[0] ^= divide_out(es[i], eblk[i]);
ss[1] ^= es[i];
ss[2] ^= multiply_out(es[i], eblk[i]);
}
if (ss[0] || ss[1] || ss[2]) return(1);
}
return(0);
}

View file

@ -1,32 +1,41 @@
/*
* ftecc.c 10/30/93 v0.3
* Handle error correction for floppy tape drives.
* Copyright (c) 1994 Steve Gerakines
*
* File contents are copyrighted by David L. Brown and falls under the
* terms of the GPL version 2 or greater. See his original release for
* the specific terms.
* This is freely redistributable software. You may do anything you
* wish with it, so long as the above notice stays intact.
*
* Steve Gerakines
* steve2@genesis.nred.ma.us
* Modified slightly to fit with my tape driver. I'm not at all happy
* with this module and will have it replaced with a more functional one
* in the next release(/RSN). I am close, but progress will continue to
* be slow until I can find a book on the subject where the translator
* understands both the to and from languages. :-( For now it will
* suffice.
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* ftecc.c - QIC-40/80 Reed-Solomon error correction
* 03/22/94 v0.4
* Major re-write. It can handle everything required by QIC now.
*
* 09/14/93 v0.2 pl01
* Modified slightly to fit with my driver. Based entirely upon David
* L. Brown's package.
*/
#include <sys/ftape.h>
/*
* In order to speed up the correction and adjustment, we can compute
* a matrix of coefficients for the multiplication.
*/
/* Inverse matrix */
struct inv_mat {
UCHAR log_denom; /* The log z of the denominator. */
UCHAR zs[3][3]; /* The coefficients for the adjustment matrix. */
UCHAR log_denom; /* Log of the denominator */
UCHAR zs[3][3]; /* The matrix */
};
/* This array is a table of powers of x, from 0 to 254. */
/*
* Powers of x, modulo 255.
*/
static UCHAR alpha_power[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x87, 0x89, 0x95, 0xad, 0xdd, 0x3d, 0x7a, 0xf4,
@ -59,12 +68,12 @@ static UCHAR alpha_power[] = {
0xc8, 0x17, 0x2e, 0x5c, 0xb8, 0xf7, 0x69, 0xd2,
0x23, 0x46, 0x8c, 0x9f, 0xb9, 0xf5, 0x6d, 0xda,
0x33, 0x66, 0xcc, 0x1f, 0x3e, 0x7c, 0xf8, 0x77,
0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3
0xee, 0x5b, 0xb6, 0xeb, 0x51, 0xa2, 0xc3, 0x01
};
/*
* This is the reverse lookup table. There is no log of 0, so the
* first element is not valid.
* Log table, modulo 255 + 1.
*/
static UCHAR alpha_log[] = {
0xff, 0x00, 0x01, 0x63, 0x02, 0xc6, 0x64, 0x6a,
@ -101,8 +110,12 @@ static UCHAR alpha_log[] = {
0xf6, 0x87, 0xa5, 0x17, 0x3a, 0xa3, 0x3c, 0xb7
};
/* Return number of sectors available in a segment. */
int sect_count(ULONG badmap)
/*
* Return number of sectors available in a segment.
*/
int
sect_count(ULONG badmap)
{
int i, amt;
@ -111,8 +124,12 @@ int sect_count(ULONG badmap)
return(amt);
}
/* Return number of bytes available in a segment. */
int sect_bytes(ULONG badmap)
/*
* Return number of bytes available in a segment.
*/
int
sect_bytes(ULONG badmap)
{
int i, amt;
@ -121,146 +138,201 @@ int sect_bytes(ULONG badmap)
return(amt);
}
/* Multiply two numbers in the field. */
static UCHAR multiply(UCHAR a, UCHAR b)
{
int tmp;
if (a == 0 || b == 0) return(0);
tmp = (alpha_log[a] + alpha_log[b]);
if (tmp > 254) tmp -= 255;
return (alpha_power[tmp]);
/*
* Multiply two numbers in the field.
*/
static UCHAR
multiply(UCHAR a, UCHAR b)
{
if (!a || !b) return(0);
return(alpha_power[(alpha_log[a] + alpha_log[b]) % 255]);
}
static UCHAR divide(UCHAR a, UCHAR b)
/*
* Multiply by an exponent.
*/
static UCHAR
multiply_out(UCHAR a, int b)
{
if (!a) return(0);
return(alpha_power[(alpha_log[a] + b) % 255]);
}
/*
* Divide two numbers.
*/
static UCHAR
divide(UCHAR a, UCHAR b)
{
int tmp;
if (a == 0 || b == 0) return(0);
tmp = (alpha_log[a] - alpha_log[b]);
if (!a || !b) return(0);
tmp = alpha_log[a] - alpha_log[b];
if (tmp < 0) tmp += 255;
return (alpha_power[tmp]);
}
/*
* This is just like divide, except we have already looked up the log
* of the second number.
* Divide using exponent.
*/
static UCHAR divide_out(UCHAR a, UCHAR b)
static UCHAR
divide_out(UCHAR a, UCHAR b)
{
int tmp;
if (a == 0) return 0;
if (!a) return 0;
tmp = alpha_log[a] - b;
if (tmp < 0) tmp += 255;
return (alpha_power[tmp]);
}
/* This returns the value z^{a-b}. */
static UCHAR z_of_ab(UCHAR a, UCHAR b)
{
int tmp = (int)a - (int)b;
if (tmp < 0)
tmp += 255;
else if (tmp >= 255)
tmp -= 255;
return(alpha_power[tmp]);
/*
* This returns the value z^{a-b}.
*/
static UCHAR
z_of_ab(UCHAR a, UCHAR b)
{
int tmp = a - b;
if (tmp < 0) tmp += 255;
return(alpha_power[tmp % 255]);
}
/* Calculate the inverse matrix. Returns 1 if the matrix is valid, or
* zero if there is no inverse. The i's are the indices of the bytes
* to be corrected.
/*
* Calculate the inverse matrix for two or three errors. Returns 0
* if there is no inverse or 1 if successful.
*/
static int calculate_inverse (int *pblk, struct inv_mat *inv)
static int
calculate_inverse(int nerrs, int *pblk, struct inv_mat *inv)
{
/* First some variables to remember some of the results. */
UCHAR z20, z10, z21, z12, z01, z02;
UCHAR i0, i1, i2;
if (nerrs < 2) return(1);
if (nerrs > 3) return(0);
i0 = pblk[0]; i1 = pblk[1]; i2 = pblk[2];
if (nerrs == 2) {
/* 2 errs */
z01 = alpha_power[255 - i0];
z02 = alpha_power[255 - i1];
inv->log_denom = (z01 ^ z02);
if (!inv->log_denom) return(0);
inv->log_denom = 255 - alpha_log[inv->log_denom];
z20 = z_of_ab (i2, i0); z10 = z_of_ab (i1, i0);
z21 = z_of_ab (i2, i1); z12 = z_of_ab (i1, i2);
z01 = z_of_ab (i0, i1); z02 = z_of_ab (i0, i2);
inv->log_denom = (z20 ^ z10 ^ z21 ^ z12 ^ z01 ^ z02);
if (inv->log_denom == 0) return 0;
inv->log_denom = alpha_log[inv->log_denom];
inv->zs[0][0] = multiply_out( 1, inv->log_denom);
inv->zs[0][1] = multiply_out(z02, inv->log_denom);
inv->zs[1][0] = multiply_out( 1, inv->log_denom);
inv->zs[1][1] = multiply_out(z01, inv->log_denom);
} else {
/* 3 errs */
z20 = z_of_ab (i2, i0);
z10 = z_of_ab (i1, i0);
z21 = z_of_ab (i2, i1);
z12 = z_of_ab (i1, i2);
z01 = z_of_ab (i0, i1);
z02 = z_of_ab (i0, i2);
inv->log_denom = (z20 ^ z10 ^ z21 ^ z12 ^ z01 ^ z02);
if (!inv->log_denom) return(0);
inv->log_denom = 255 - alpha_log[inv->log_denom];
/* Calculate all of the coefficients on the top. */
inv->zs[0][0] = alpha_power[i1] ^ alpha_power[i2];
inv->zs[0][1] = z21 ^ z12;
inv->zs[0][2] = alpha_power[255-i1] ^ alpha_power[255-i2];
inv->zs[1][0] = alpha_power[i0] ^ alpha_power[i2];
inv->zs[1][1] = z20 ^ z02;
inv->zs[1][2] = alpha_power[255-i0] ^ alpha_power[255-i2];
inv->zs[2][0] = alpha_power[i0] ^ alpha_power[i1];
inv->zs[2][1] = z10 ^ z01;
inv->zs[2][2] = alpha_power[255-i0] ^ alpha_power[255-i1];
inv->zs[0][0] = multiply_out(alpha_power[i1] ^ alpha_power[i2],
inv->log_denom);
inv->zs[0][1] = multiply_out(z21 ^ z12, inv->log_denom);
inv->zs[0][2] = multiply_out(alpha_power[255-i1] ^ alpha_power[255-i2],
inv->log_denom);
inv->zs[1][0] = multiply_out(alpha_power[i0] ^ alpha_power[i2],
inv->log_denom);
inv->zs[1][1] = multiply_out(z20 ^ z02, inv->log_denom);
inv->zs[1][2] = multiply_out(alpha_power[255-i0] ^ alpha_power[255-i2],
inv->log_denom);
inv->zs[2][0] = multiply_out(alpha_power[i0] ^ alpha_power[i1],
inv->log_denom);
inv->zs[2][1] = multiply_out(z10 ^ z01, inv->log_denom);
inv->zs[2][2] = multiply_out(alpha_power[255-i0] ^ alpha_power[255-i1],
inv->log_denom);
}
return(1);
}
/*
* Determine the error values for a given inverse matrix and syndromes.
* Determine the error magnitudes for a given matrix and syndromes.
*/
static void determine3(struct inv_mat *inv, UCHAR *es, UCHAR *ss)
static void
determine(int nerrs, struct inv_mat *inv, UCHAR *ss, UCHAR *es)
{
UCHAR tmp;
int i, j;
for (i = 0; i < 3; i++) {
tmp = 0;
for (j = 0; j < 3; j++) tmp ^= multiply (ss[j], inv->zs[i][j]);
es[i] = divide_out(tmp, inv->log_denom);
for (i = 0; i < nerrs; i++) {
es[i] = 0;
for (j = 0; j < nerrs; j++)
es[i] ^= multiply(ss[j], inv->zs[i][j]);
}
}
/*
* Compute the 3 syndrome values. The data pointer should point to
* the offset within the first block of the column to calculate. The
* count of blocks is in blocks. The three bytes will be placed in
* ss[0], ss[1], and ss[2].
* Compute the 3 syndrome values.
*/
static void compute_syndromes(UCHAR *data, int nblks, int col, UCHAR *ss)
static int
compute_syndromes(UCHAR *data, int nblks, int col, UCHAR *ss)
{
int i;
UCHAR v;
UCHAR r0, r1, r2, t1, t2;
UCHAR *rptr;
int row;
ss[0] = 0; ss[1] = 0; ss[2] = 0;
for (i = (nblks-1)*QCV_BLKSIZE; i >= 0; i -= QCV_BLKSIZE) {
v = data[i+col];
if (ss[0] & 0x01) { ss[0] >>= 1; ss[0] ^= 0xc3; } else ss[0] >>= 1;
ss[0] ^= v;
ss[1] ^= v;
if (ss[2] & 0x80) { ss[2] <<= 1; ss[2] ^= 0x87; } else ss[2] <<= 1;
ss[2] ^= v;
rptr = &data[col];
r0 = r1 = r2 = 0;
for (row = 0; row < nblks; row++, rptr += QCV_BLKSIZE) {
t1 = *rptr ^ r0;
t2 = multiply(0xc0, t1);
r0 = t2 ^ r1;
r1 = t2 ^ r2;
r2 = t1;
}
if (r0 || r1 || r2) {
ss[0] = divide_out(r0 ^ divide_out(r1 ^ divide_out(r2, 1), 1), nblks);
ss[1] = r0 ^ r1 ^ r2;
ss[2] = multiply_out(r0 ^ multiply_out(r1 ^ multiply_out(r2, 1), 1), nblks);
return(0);
}
return(1);
}
/*
* Calculate the parity bytes for a segment. Returns 0 on success.
* Calculate the parity bytes for a segment, returns 0 on success (always).
*/
int set_parity (UCHAR *data, ULONG badmap)
int
set_parity (UCHAR *data, ULONG badmap)
{
int col;
struct inv_mat inv;
UCHAR ss[3], es[3];
int nblks, pblk[3];
int col, row, max;
UCHAR r0, r1, r2, t1, t2;
UCHAR *rptr;
nblks = sect_count(badmap);
pblk[0] = nblks-3; pblk[1] = nblks-2; pblk[2] = nblks-1;
if (!calculate_inverse(pblk, &inv)) return(1);
pblk[0] *= QCV_BLKSIZE; pblk[1] *= QCV_BLKSIZE; pblk[2] *= QCV_BLKSIZE;
for (col = 0; col < QCV_BLKSIZE; col++) {
compute_syndromes (data, nblks-3, col, ss);
determine3(&inv, es, ss);
data[pblk[0]+col] = es[0];
data[pblk[1]+col] = es[1];
data[pblk[2]+col] = es[2];
max = sect_count(badmap) - 3;
for (col = 0; col < QCV_BLKSIZE; col++, data++) {
rptr = data;
r0 = r1 = r2 = 0;
for (row = 0; row < max; row++, rptr += QCV_BLKSIZE) {
t1 = *rptr ^ r0;
t2 = multiply(0xc0, t1);
r0 = t2 ^ r1;
r1 = t2 ^ r2;
r2 = t1;
}
*rptr = r0; rptr += QCV_BLKSIZE;
*rptr = r1; rptr += QCV_BLKSIZE;
*rptr = r2;
}
return(0);
}
@ -270,47 +342,81 @@ int set_parity (UCHAR *data, ULONG badmap)
* Check and correct errors in a block. Returns 0 on success,
* 1 if failed.
*/
int check_parity(UCHAR *data, ULONG badmap, ULONG crcmap)
int
check_parity(UCHAR *data, ULONG badmap, ULONG crcmap)
{
int i, j, col, crcerrs, r, tries, nblks;
struct inv_mat inv;
int crcerrs, eblk[3];
int col, row;
int i, j, nblks;
UCHAR ss[3], es[3];
int i1, i2, eblk[3];
int i1, i2, saverrs;
struct inv_mat inv;
nblks = sect_count(badmap);
/* Count the number of CRC errors and note their locations. */
crcerrs = 0;
for (i = 0; crcerrs < 3 && i < nblks; i++)
if (crcmap & (1 << i)) eblk[crcerrs++] = i;
for (i = 1, j = crcerrs; j < 3 && i < nblks; i++)
if ((crcmap & (1 << i)) == 0) eblk[j++] = i;
if (!calculate_inverse (eblk, &inv)) return(1);
eblk[0] *= QCV_BLKSIZE; eblk[1] *= QCV_BLKSIZE; eblk[2] *= QCV_BLKSIZE;
r = 0;
for (col = 0; col < QCV_BLKSIZE; col++) {
compute_syndromes (data, nblks, col, ss);
if (!ss[0] && !ss[1] && !ss[2]) continue;
if (crcerrs) {
determine3 (&inv, es, ss);
for (j = 0; j < crcerrs; j++)
data[eblk[j] + col] ^= es[j];
compute_syndromes (data, nblks, col, ss);
if (!ss[0] && !ss[1] && !ss[2]) {
r = 1;
continue;
if (crcmap) {
for (i = 0; i < nblks; i++) {
if (crcmap & (1 << i)) {
eblk[crcerrs++] = i;
if (crcerrs >= 3) break;
}
}
determine3 (&inv, es, ss);
i1 = alpha_log[divide(ss[2], ss[1])];
i2 = alpha_log[divide(ss[1], ss[0])];
if (i1 != i2 || ((QCV_BLKSIZE * i1) + col) > QCV_SEGSIZE)
r = 1;
else
data[QCV_BLKSIZE * i1 + col] ^= ss[1];
}
return(r);
/* Calculate the inverse matrix */
if (!calculate_inverse(crcerrs, eblk, &inv)) return(1);
/* Scan each column for problems and attempt to correct. */
for (col = 0; col < QCV_BLKSIZE; col++) {
if (compute_syndromes(data, nblks, col, ss)) continue;
es[0] = es[1] = es[2] = 0;
/* Analyze the error situation. */
switch (crcerrs) {
case 0: /* 0 errors >0 failures */
if (!ss[0]) return(1);
eblk[crcerrs] = alpha_log[divide(ss[1], ss[0])];
if (eblk[crcerrs] >= nblks) return(1);
es[0] = ss[1];
crcerrs++;
break;
case 1: /* 1 error (+ possible failures) */
i1 = ss[2] ^ multiply_out(ss[1], eblk[0]);
i2 = ss[1] ^ multiply_out(ss[0], eblk[0]);
if (!i1 && !i2) { /* only 1 error */
inv.zs[0][0] = alpha_power[eblk[0]];
inv.log_denom = 0;
} else if (!i1 || !i2) { /* too many errors */
return(1);
} else { /* add failure */
eblk[crcerrs] = alpha_log[divide(i1, i2)];
if (eblk[crcerrs] >= nblks) return(1);
crcerrs++;
if (!calculate_inverse(crcerrs, eblk, &inv)) return(1);
}
determine(crcerrs, &inv, ss, es);
break;
case 2: /* 2 errors */
case 3: /* 3 errors */
determine(crcerrs, &inv, ss, es);
break;
default:
return(1);
}
/* Make corrections. */
for (i = 0; i < crcerrs; i++) {
data[eblk[i] * QCV_BLKSIZE+col] ^= es[i];
ss[0] ^= divide_out(es[i], eblk[i]);
ss[1] ^= es[i];
ss[2] ^= multiply_out(es[i], eblk[i]);
}
if (ss[0] || ss[1] || ss[2]) return(1);
}
return(0);
}