Import libucl snapshot 20160604

It replaces xxhash with mumhash
It fixes issues with msgpack on non x86
This commit is contained in:
Baptiste Daroussin 2016-06-04 14:57:25 +00:00
commit 6525738f63
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=301339
11 changed files with 534 additions and 1233 deletions

View file

@ -12,8 +12,7 @@ libucl_la_SOURCES= ucl_emitter.c \
ucl_schema.c \
ucl_util.c \
ucl_msgpack.c \
ucl_sexp.c \
xxhash.c
ucl_sexp.c
libucl_la_CFLAGS= $(libucl_common_cflags) \
@CURL_CFLAGS@
libucl_la_LDFLAGS = -version-info @SO_VERSION@
@ -25,7 +24,7 @@ libucl_la_LIBADD= @LIBFETCH_LIBS@ \
include_HEADERS= $(top_srcdir)/include/ucl.h \
$(top_srcdir)/include/ucl++.h
noinst_HEADERS= ucl_internal.h \
xxhash.h \
mum.h \
ucl_hash.h \
ucl_chartable.h \
tree.h

417
contrib/libucl/src/mum.h Normal file
View file

@ -0,0 +1,417 @@
/* Copyright (c) 2016 Vladimir Makarov <vmakarov@gcc.gnu.org>
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/* This file implements MUM (MUltiply and Mix) hashing. We randomize
input data by 64x64-bit multiplication and mixing hi- and low-parts
of the multiplication result by using an addition and then mix it
into the current state. We use prime numbers randomly generated
with the equal probability of their bit values for the
multiplication. When all primes are used once, the state is
randomized and the same prime numbers are used again for data
randomization.
The MUM hashing passes all SMHasher tests. Pseudo Random Number
Generator based on MUM also passes NIST Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic
Applications (version 2.2.1) with 1000 bitstreams each containing
1M bits. MUM hashing is also faster Spooky64 and City64 on small
strings (at least upto 512-bit) on Haswell and Power7. The MUM bulk
speed (speed on very long data) is bigger than Spooky and City on
Power7. On Haswell the bulk speed is bigger than Spooky one and
close to City speed. */
#ifndef __MUM_HASH__
#define __MUM_HASH__
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#ifdef _MSC_VER
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
typedef unsigned __int64 uint64_t;
#else
#include <stdint.h>
#endif
/* Macro saying to use 128-bit integers implemented by GCC for some
targets. */
#ifndef _MUM_USE_INT128
/* In GCC uint128_t is defined if HOST_BITS_PER_WIDE_INT >= 64.
HOST_WIDE_INT is long if HOST_BITS_PER_LONG > HOST_BITS_PER_INT,
otherwise int. */
#if defined(__GNUC__) && UINT_MAX != ULONG_MAX
#define _MUM_USE_INT128 1
#else
#define _MUM_USE_INT128 0
#endif
#endif
#if defined(__GNUC__) && ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 9) || (__GNUC__ > 4))
#define _MUM_FRESH_GCC
#endif
#if defined(__GNUC__) && !defined(__llvm__)
#define _MUM_ATTRIBUTE_UNUSED __attribute__((unused))
#define _MUM_OPTIMIZE(opts) __attribute__((__optimize__ (opts)))
#define _MUM_TARGET(opts) __attribute__((__target__ (opts)))
#else
#define _MUM_ATTRIBUTE_UNUSED
#define _MUM_OPTIMIZE(opts)
#define _MUM_TARGET(opts)
#endif
/* Here are different primes randomly generated with the equal
probability of their bit values. They are used to randomize input
values. */
static uint64_t _mum_hash_step_prime = 0x2e0bb864e9ea7df5ULL;
static uint64_t _mum_key_step_prime = 0xcdb32970830fcaa1ULL;
static uint64_t _mum_block_start_prime = 0xc42b5e2e6480b23bULL;
static uint64_t _mum_unroll_prime = 0x7b51ec3d22f7096fULL;
static uint64_t _mum_tail_prime = 0xaf47d47c99b1461bULL;
static uint64_t _mum_finish_prime1 = 0xa9a7ae7ceff79f3fULL;
static uint64_t _mum_finish_prime2 = 0xaf47d47c99b1461bULL;
static uint64_t _mum_primes [] = {
0X9ebdcae10d981691, 0X32b9b9b97a27ac7d, 0X29b5584d83d35bbd, 0X4b04e0e61401255f,
0X25e8f7b1f1c9d027, 0X80d4c8c000f3e881, 0Xbd1255431904b9dd, 0X8a3bd4485eee6d81,
0X3bc721b2aad05197, 0X71b1a19b907d6e33, 0X525e6c1084a8534b, 0X9e4c2cd340c1299f,
0Xde3add92e94caa37, 0X7e14eadb1f65311d, 0X3f5aa40f89812853, 0X33b15a3b587d15c9,
};
/* Multiply 64-bit V and P and return sum of high and low parts of the
result. */
static inline uint64_t
_mum (uint64_t v, uint64_t p) {
uint64_t hi, lo;
#if _MUM_USE_INT128
#if defined(__aarch64__)
/* AARCH64 needs 2 insns to calculate 128-bit result of the
multiplication. If we use a generic code we actually call a
function doing 128x128->128 bit multiplication. The function is
very slow. */
lo = v * p, hi;
asm ("umulh %0, %1, %2" : "=r" (hi) : "r" (v), "r" (p));
#else
__uint128_t r = (__uint128_t) v * (__uint128_t) p;
hi = (uint64_t) (r >> 64);
lo = (uint64_t) r;
#endif
#else
/* Implementation of 64x64->128-bit multiplication by four 32x32->64
bit multiplication. */
uint64_t hv = v >> 32, hp = p >> 32;
uint64_t lv = (uint32_t) v, lp = (uint32_t) p;
uint64_t rh = hv * hp;
uint64_t rm_0 = hv * lp;
uint64_t rm_1 = hp * lv;
uint64_t rl = lv * lp;
uint64_t t, carry = 0;
/* We could ignore a carry bit here if we did not care about the
same hash for 32-bit and 64-bit targets. */
t = rl + (rm_0 << 32);
#ifdef MUM_TARGET_INDEPENDENT_HASH
carry = t < rl;
#endif
lo = t + (rm_1 << 32);
#ifdef MUM_TARGET_INDEPENDENT_HASH
carry += lo < t;
#endif
hi = rh + (rm_0 >> 32) + (rm_1 >> 32) + carry;
#endif
/* We could use XOR here too but, for some reasons, on Haswell and
Power7 using an addition improves hashing performance by 10% for
small strings. */
return hi + lo;
}
#if defined(_MSC_VER)
#define _mum_bswap_32(x) _byteswap_uint32_t (x)
#define _mum_bswap_64(x) _byteswap_uint64_t (x)
#elif defined(__APPLE__)
#include <libkern/OSByteOrder.h>
#define _mum_bswap_32(x) OSSwapInt32 (x)
#define _mum_bswap_64(x) OSSwapInt64 (x)
#elif defined(__GNUC__)
#define _mum_bswap32(x) __builtin_bswap32 (x)
#define _mum_bswap64(x) __builtin_bswap64 (x)
#else
#include <byteswap.h>
#define _mum_bswap32(x) bswap32 (x)
#define _mum_bswap64(x) bswap64 (x)
#endif
static inline uint64_t
_mum_le (uint64_t v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || !defined(MUM_TARGET_INDEPENDENT_HASH)
return v;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return _mum_bswap64 (v);
#else
#error "Unknown endianess"
#endif
}
static inline uint32_t
_mum_le32 (uint32_t v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || !defined(MUM_TARGET_INDEPENDENT_HASH)
return v;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return _mum_bswap32 (v);
#else
#error "Unknown endianess"
#endif
}
/* Macro defining how many times the most nested loop in
_mum_hash_aligned will be unrolled by the compiler (although it can
make an own decision:). Use only a constant here to help a
compiler to unroll a major loop.
The macro value affects the result hash for strings > 128 bit. The
unroll factor greatly affects the hashing speed. We prefer the
speed. */
#ifndef _MUM_UNROLL_FACTOR_POWER
#if defined(__PPC64__) && !defined(MUM_TARGET_INDEPENDENT_HASH)
#define _MUM_UNROLL_FACTOR_POWER 3
#elif defined(__aarch64__) && !defined(MUM_TARGET_INDEPENDENT_HASH)
#define _MUM_UNROLL_FACTOR_POWER 4
#else
#define _MUM_UNROLL_FACTOR_POWER 2
#endif
#endif
#if _MUM_UNROLL_FACTOR_POWER < 1
#error "too small unroll factor"
#elif _MUM_UNROLL_FACTOR_POWER > 4
#error "We have not enough primes for such unroll factor"
#endif
#define _MUM_UNROLL_FACTOR (1 << _MUM_UNROLL_FACTOR_POWER)
static inline uint64_t _MUM_OPTIMIZE("unroll-loops")
_mum_hash_aligned (uint64_t start, const void *key, size_t len) {
uint64_t result = start;
const unsigned char *str = (const unsigned char *) key;
uint64_t u64;
int i;
size_t n;
result = _mum (result, _mum_block_start_prime);
while (len > _MUM_UNROLL_FACTOR * sizeof (uint64_t)) {
/* This loop could be vectorized when we have vector insns for
64x64->128-bit multiplication. AVX2 currently only have a
vector insn for 4 32x32->64-bit multiplication. */
for (i = 0; i < _MUM_UNROLL_FACTOR; i++)
result ^= _mum (_mum_le (((uint64_t *) str)[i]), _mum_primes[i]);
len -= _MUM_UNROLL_FACTOR * sizeof (uint64_t);
str += _MUM_UNROLL_FACTOR * sizeof (uint64_t);
/* We will use the same prime numbers on the next iterations --
randomize the state. */
result = _mum (result, _mum_unroll_prime);
}
n = len / sizeof (uint64_t);
for (i = 0; i < (int)n; i++)
result ^= _mum (_mum_le (((uint64_t *) str)[i]), _mum_primes[i]);
len -= n * sizeof (uint64_t); str += n * sizeof (uint64_t);
switch (len) {
case 7:
u64 = _mum_le32 (*(uint32_t *) str);
u64 |= (uint64_t) str[4] << 32;
u64 |= (uint64_t) str[5] << 40;
u64 |= (uint64_t) str[6] << 48;
return result ^ _mum (u64, _mum_tail_prime);
case 6:
u64 = _mum_le32 (*(uint32_t *) str);
u64 |= (uint64_t) str[4] << 32;
u64 |= (uint64_t) str[5] << 40;
return result ^ _mum (u64, _mum_tail_prime);
case 5:
u64 = _mum_le32 (*(uint32_t *) str);
u64 |= (uint64_t) str[4] << 32;
return result ^ _mum (u64, _mum_tail_prime);
case 4:
u64 = _mum_le32 (*(uint32_t *) str);
return result ^ _mum (u64, _mum_tail_prime);
case 3:
u64 = str[0];
u64 |= (uint64_t) str[1] << 8;
u64 |= (uint64_t) str[2] << 16;
return result ^ _mum (u64, _mum_tail_prime);
case 2:
u64 = str[0];
u64 |= (uint64_t) str[1] << 8;
return result ^ _mum (u64, _mum_tail_prime);
case 1:
u64 = str[0];
return result ^ _mum (u64, _mum_tail_prime);
}
return result;
}
/* Final randomization of H. */
static inline uint64_t
_mum_final (uint64_t h) {
h ^= _mum (h, _mum_finish_prime1);
h ^= _mum (h, _mum_finish_prime2);
return h;
}
#if defined(__x86_64__) && defined(_MUM_FRESH_GCC)
/* We want to use AVX2 insn MULX instead of generic x86-64 MULQ where
it is possible. Although on modern Intel processors MULQ takes
3-cycles vs. 4 for MULX, MULX permits more freedom in insn
scheduling as it uses less fixed registers. */
static inline uint64_t _MUM_TARGET("arch=haswell")
_mum_hash_avx2 (const void * key, size_t len, uint64_t seed) {
return _mum_final (_mum_hash_aligned (seed + len, key, len));
}
#endif
#ifndef _MUM_UNALIGNED_ACCESS
#if defined(__x86_64__) || defined(__i386__) || defined(__PPC64__) \
|| defined(__s390__) || defined(__m32c__) || defined(cris) \
|| defined(__CR16__) || defined(__vax__) || defined(__m68k__) \
|| defined(__aarch64__)
#define _MUM_UNALIGNED_ACCESS 1
#else
#define _MUM_UNALIGNED_ACCESS 0
#endif
#endif
/* When we need an aligned access to data being hashed we move part of
the unaligned data to an aligned block of given size and then
process it, repeating processing the data by the block. */
#ifndef _MUM_BLOCK_LEN
#define _MUM_BLOCK_LEN 1024
#endif
#if _MUM_BLOCK_LEN < 8
#error "too small block length"
#endif
static inline uint64_t
#if defined(__x86_64__)
_MUM_TARGET("inline-all-stringops")
#endif
_mum_hash_default (const void *key, size_t len, uint64_t seed) {
uint64_t result;
const unsigned char *str = (const unsigned char *) key;
size_t block_len;
uint64_t buf[_MUM_BLOCK_LEN / sizeof (uint64_t)];
result = seed + len;
if (_MUM_UNALIGNED_ACCESS || ((size_t) str & 0x7) == 0)
result = _mum_hash_aligned (result, key, len);
else {
while (len != 0) {
block_len = len < _MUM_BLOCK_LEN ? len : _MUM_BLOCK_LEN;
memmove (buf, str, block_len);
result = _mum_hash_aligned (result, buf, block_len);
len -= block_len;
str += block_len;
}
}
return _mum_final (result);
}
static inline uint64_t
_mum_next_factor (void) {
uint64_t start = 0;
int i;
for (i = 0; i < 8; i++)
start = (start << 8) | rand() % 256;
return start;
}
/* ++++++++++++++++++++++++++ Interface functions: +++++++++++++++++++ */
/* Set random multiplicators depending on SEED. */
static inline void
mum_hash_randomize (uint64_t seed) {
int i;
srand (seed);
_mum_hash_step_prime = _mum_next_factor ();
_mum_key_step_prime = _mum_next_factor ();
_mum_finish_prime1 = _mum_next_factor ();
_mum_finish_prime2 = _mum_next_factor ();
_mum_block_start_prime = _mum_next_factor ();
_mum_unroll_prime = _mum_next_factor ();
_mum_tail_prime = _mum_next_factor ();
for (i = 0; i < (int)(sizeof (_mum_primes) / sizeof (uint64_t)); i++)
_mum_primes[i] = _mum_next_factor ();
}
/* Start hashing data with SEED. Return the state. */
static inline uint64_t
mum_hash_init (uint64_t seed) {
return seed;
}
/* Process data KEY with the state H and return the updated state. */
static inline uint64_t
mum_hash_step (uint64_t h, uint64_t key)
{
return _mum (h, _mum_hash_step_prime) ^ _mum (key, _mum_key_step_prime);
}
/* Return the result of hashing using the current state H. */
static inline uint64_t
mum_hash_finish (uint64_t h) {
return _mum_final (h);
}
/* Fast hashing of KEY with SEED. The hash is always the same for the
same key on any target. */
static inline size_t
mum_hash64 (uint64_t key, uint64_t seed) {
return mum_hash_finish (mum_hash_step (mum_hash_init (seed), key));
}
/* Hash data KEY of length LEN and SEED. The hash depends on the
target endianess and the unroll factor. */
static inline uint64_t
mum_hash (const void *key, size_t len, uint64_t seed) {
#if defined(__x86_64__) && defined(_MUM_FRESH_GCC)
static int avx2_support = 0;
if (avx2_support > 0)
return _mum_hash_avx2 (key, len, seed);
else if (! avx2_support) {
__builtin_cpu_init ();
avx2_support = __builtin_cpu_supports ("avx2") ? 1 : -1;
if (avx2_support > 0)
return _mum_hash_avx2 (key, len, seed);
}
#endif
return _mum_hash_default (key, len, seed);
}
#endif

View file

@ -25,6 +25,7 @@
#include "ucl_hash.h"
#include "khash.h"
#include "kvec.h"
#include "mum.h"
#include <time.h>
#include <limits.h>
@ -99,20 +100,11 @@ static const unsigned char lc_map[256] = {
#define UCL64_BIT_HASH 1
#endif
#ifdef UCL64_BIT_HASH
static inline uint32_t
ucl_hash_func (const ucl_object_t *o)
{
return XXH64 (o->key, o->keylen, ucl_hash_seed ());
return mum_hash (o->key, o->keylen, ucl_hash_seed ());
}
#else
static inline uint32_t
ucl_hash_func (const ucl_object_t *o)
{
return XXH32 (o->key, o->keylen, ucl_hash_seed ());
}
#endif
static inline int
ucl_hash_equal (const ucl_object_t *k1, const ucl_object_t *k2)
{
@ -126,91 +118,60 @@ ucl_hash_equal (const ucl_object_t *k1, const ucl_object_t *k2)
KHASH_INIT (ucl_hash_node, const ucl_object_t *, struct ucl_hash_elt, 1,
ucl_hash_func, ucl_hash_equal)
#ifdef UCL64_BIT_HASH
static inline uint32_t
ucl_hash_caseless_func (const ucl_object_t *o)
{
unsigned len = o->keylen;
unsigned leftover = o->keylen % 4;
unsigned leftover = o->keylen % 8;
unsigned fp, i;
const uint8_t* s = (const uint8_t*)o->key;
union {
struct {
unsigned char c1, c2, c3, c4;
unsigned char c1, c2, c3, c4, c5, c6, c7, c8;
} c;
uint32_t pp;
uint64_t pp;
} u;
XXH64_state_t st;
uint64_t r;
fp = len - leftover;
XXH64_reset (&st, ucl_hash_seed ());
r = ucl_hash_seed ();
for (i = 0; i != fp; i += 4) {
for (i = 0; i != fp; i += 8) {
u.c.c1 = s[i], u.c.c2 = s[i + 1], u.c.c3 = s[i + 2], u.c.c4 = s[i + 3];
u.c.c5 = s[i + 4], u.c.c6 = s[i + 5], u.c.c7 = s[i + 6], u.c.c8 = s[i + 7];
u.c.c1 = lc_map[u.c.c1];
u.c.c2 = lc_map[u.c.c2];
u.c.c3 = lc_map[u.c.c3];
u.c.c4 = lc_map[u.c.c4];
XXH64_update (&st, &u.pp, sizeof (u));
u.c.c1 = lc_map[u.c.c5];
u.c.c2 = lc_map[u.c.c6];
u.c.c3 = lc_map[u.c.c7];
u.c.c4 = lc_map[u.c.c8];
r = mum_hash_step (r, u.pp);
}
u.pp = 0;
switch (leftover) {
case 7:
u.c.c7 = lc_map[(unsigned char)s[i++]];
case 6:
u.c.c6 = lc_map[(unsigned char)s[i++]];
case 5:
u.c.c5 = lc_map[(unsigned char)s[i++]];
case 4:
u.c.c4 = lc_map[(unsigned char)s[i++]];
case 3:
u.c.c3 = lc_map[(unsigned char)s[i++]];
case 2:
u.c.c2 = lc_map[(unsigned char)s[i++]];
case 1:
u.c.c1 = lc_map[(unsigned char)s[i]];
XXH64_update (&st, &u.pp, leftover);
r = mum_hash_step (r, u.pp);
break;
}
return XXH64_digest (&st);
return mum_hash_finish (r);
}
#else
static inline uint32_t
ucl_hash_caseless_func (const ucl_object_t *o)
{
unsigned len = o->keylen;
unsigned leftover = o->keylen % 4;
unsigned fp, i;
const uint8_t* s = (const uint8_t*)o->key;
union {
struct {
unsigned char c1, c2, c3, c4;
} c;
uint32_t pp;
} u;
XXH32_state_t st;
fp = len - leftover;
XXH32_reset (&st, ucl_hash_seed ());
for (i = 0; i != fp; i += 4) {
u.c.c1 = s[i], u.c.c2 = s[i + 1], u.c.c3 = s[i + 2], u.c.c4 = s[i + 3];
u.c.c1 = lc_map[u.c.c1];
u.c.c2 = lc_map[u.c.c2];
u.c.c3 = lc_map[u.c.c3];
u.c.c4 = lc_map[u.c.c4];
XXH32_update (&st, &u.pp, sizeof (u));
}
u.pp = 0;
switch (leftover) {
case 3:
u.c.c3 = lc_map[(unsigned char)s[i++]];
case 2:
u.c.c2 = lc_map[(unsigned char)s[i++]];
case 1:
u.c.c1 = lc_map[(unsigned char)s[i]];
XXH32_update (&st, &u.pp, leftover);
break;
}
return XXH32_digest (&st);
}
#endif
static inline int
ucl_hash_caseless_equal (const ucl_object_t *k1, const ucl_object_t *k2)

View file

@ -93,7 +93,6 @@
#include "uthash.h"
#include "ucl.h"
#include "ucl_hash.h"
#include "xxhash.h"
#ifdef HAVE_OPENSSL
#include <openssl/evp.h>

View file

@ -1423,6 +1423,10 @@ ucl_msgpack_parse_int (struct ucl_parser *parser,
int16_t iv16;
int32_t iv32;
int64_t iv64;
uint16_t uiv16;
uint32_t uiv32;
uint64_t uiv64;
if (len > remain) {
return -1;
@ -1455,7 +1459,9 @@ ucl_msgpack_parse_int (struct ucl_parser *parser,
len = 2;
break;
case msgpack_uint16:
obj->value.iv = FROM_BE16 (*(uint16_t *)pos);
memcpy (&uiv16, pos, sizeof (uiv16));
uiv16 = FROM_BE16 (uiv16);
obj->value.iv = uiv16;
len = 2;
break;
case msgpack_int32:
@ -1465,7 +1471,9 @@ ucl_msgpack_parse_int (struct ucl_parser *parser,
len = 4;
break;
case msgpack_uint32:
obj->value.iv = FROM_BE32 (*(uint32_t *)pos);
memcpy(&uiv32, pos, sizeof(uiv32));
uiv32 = FROM_BE32(uiv32);
obj->value.iv = uiv32;
len = 4;
break;
case msgpack_int64:
@ -1475,7 +1483,9 @@ ucl_msgpack_parse_int (struct ucl_parser *parser,
len = 8;
break;
case msgpack_uint64:
obj->value.iv = FROM_BE64 (*(uint64_t *)pos);
memcpy(&uiv64, pos, sizeof(uiv64));
uiv64 = FROM_BE64(uiv64);
obj->value.iv = uiv64;
len = 8;
break;
default:
@ -1498,6 +1508,7 @@ ucl_msgpack_parse_float (struct ucl_parser *parser,
uint32_t i;
float f;
} d;
uint64_t uiv64;
if (len > remain) {
return -1;
@ -1507,13 +1518,16 @@ ucl_msgpack_parse_float (struct ucl_parser *parser,
switch (fmt) {
case msgpack_float32:
d.i = FROM_BE32 (*(uint32_t *)pos);
memcpy(&d.i, pos, sizeof(d.i));
d.i = FROM_BE32(d.i);
/* XXX: can be slow */
obj->value.dv = d.f;
len = 4;
break;
case msgpack_float64:
obj->value.iv = FROM_BE64 (*(uint64_t *)pos);
memcpy(&uiv64, pos, sizeof(uiv64));
uiv64 = FROM_BE64(uiv64);
obj->value.iv = uiv64;
len = 8;
break;
default:

View file

@ -2597,12 +2597,7 @@ ucl_parser_add_chunk_full (struct ucl_parser *parser, const unsigned char *data,
return false;
}
if (len == 0) {
parser->top_obj = ucl_object_new_full (UCL_OBJECT, priority);
return true;
}
if (data == NULL) {
if (data == NULL && len != 0) {
ucl_create_err (&parser->err, "invalid chunk added");
return false;
}
@ -2613,6 +2608,7 @@ ucl_parser_add_chunk_full (struct ucl_parser *parser, const unsigned char *data,
ucl_create_err (&parser->err, "cannot allocate chunk structure");
return false;
}
chunk->begin = data;
chunk->remain = len;
chunk->pos = chunk->begin;
@ -2631,12 +2627,27 @@ ucl_parser_add_chunk_full (struct ucl_parser *parser, const unsigned char *data,
return false;
}
switch (parse_type) {
default:
case UCL_PARSE_UCL:
return ucl_state_machine (parser);
case UCL_PARSE_MSGPACK:
return ucl_parse_msgpack (parser);
if (len > 0) {
/* Need to parse something */
switch (parse_type) {
default:
case UCL_PARSE_UCL:
return ucl_state_machine (parser);
case UCL_PARSE_MSGPACK:
return ucl_parse_msgpack (parser);
}
}
else {
/* Just add empty chunk and go forward */
if (parser->top_obj == NULL) {
/*
* In case of empty object, create one to indicate that we've
* read something
*/
parser->top_obj = ucl_object_new_full (UCL_OBJECT, priority);
}
return true;
}
}

View file

@ -975,6 +975,7 @@ ucl_include_file_single (const unsigned char *data, size_t len,
if (params->soft_fail) {
return false;
}
return (!params->must_exist || false);
}
@ -1172,11 +1173,14 @@ ucl_include_file_single (const unsigned char *data, size_t len,
res = ucl_parser_add_chunk_full (parser, buf, buflen, params->priority,
params->strat, params->parse_type);
if (!res && !params->must_exist) {
/* Free error */
utstring_free (parser->err);
parser->err = NULL;
parser->state = UCL_STATE_AFTER_VALUE;
if (!res) {
if (!params->must_exist) {
/* Free error */
utstring_free (parser->err);
parser->err = NULL;
res = true;
}
}
/* Stop nesting the include, take 1 level off the stack */
@ -1849,6 +1853,9 @@ ucl_parser_add_fd_priority (struct ucl_parser *parser, int fd,
fd, strerror (errno));
return false;
}
if (st.st_size == 0) {
return true;
}
if ((buf = ucl_mmap (NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0)) == MAP_FAILED) {
ucl_create_err (&parser->err, "cannot mmap fd %d: %s",
fd, strerror (errno));

View file

@ -1,941 +0,0 @@
/*
xxHash - Fast Hash algorithm
Copyright (C) 2012-2014, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : http://code.google.com/p/xxhash/
- public discussion board : https://groups.google.com/forum/#!forum/lz4c
*/
//**************************************
// Tuning parameters
//**************************************
// Unaligned memory access is automatically enabled for "common" CPU, such as x86.
// For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
// If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
// You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
#if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
# define XXH_USE_UNALIGNED_ACCESS 1
#endif
// XXH_ACCEPT_NULL_INPUT_POINTER :
// If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
// When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
// This option has a very small performance cost (only measurable on small inputs).
// By default, this option is disabled. To enable it, uncomment below define :
// #define XXH_ACCEPT_NULL_INPUT_POINTER 1
// XXH_FORCE_NATIVE_FORMAT :
// By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
// Results are therefore identical for little-endian and big-endian CPU.
// This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
// Should endian-independance be of no importance for your application, you may set the #define below to 1.
// It will improve speed for Big-endian CPU.
// This option has no impact on Little_Endian CPU.
#define XXH_FORCE_NATIVE_FORMAT 0
//**************************************
// Compiler Specific Options
//**************************************
// Disable some Visual warning messages
#ifdef _MSC_VER // Visual Studio
# pragma warning(disable : 4127) // disable: C4127: conditional expression is constant
#endif
#ifdef _MSC_VER // Visual Studio
# define FORCE_INLINE static __forceinline
#else
# ifdef __GNUC__
# define FORCE_INLINE static inline __attribute__((always_inline))
# else
# define FORCE_INLINE static inline
# endif
#endif
//**************************************
// Includes & Memory related functions
//**************************************
#include "xxhash.h"
// Modify the local functions below should you wish to use some other memory routines
// for malloc(), free()
#include <stdlib.h>
static void* XXH_malloc(size_t s) { return malloc(s); }
static void XXH_free (void* p) { free(p); }
// for memcpy()
#include <string.h>
static void* XXH_memcpy(void* dest, const void* src, size_t size)
{
return memcpy(dest,src,size);
}
//**************************************
// Basic Types
//**************************************
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L // C99
# include <stdint.h>
typedef uint8_t BYTE;
typedef uint16_t U16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
#else
typedef unsigned char BYTE;
typedef unsigned short U16;
typedef unsigned int U32;
typedef signed int S32;
typedef uint64_t U64;
#endif
#if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
# define _PACKED __attribute__ ((packed))
#else
# define _PACKED
#endif
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
# ifdef __IBMC__
# pragma pack(1)
# else
# pragma pack(push, 1)
# endif
#endif
typedef struct _U32_S
{
U32 v;
} _PACKED U32_S;
typedef struct _U64_S
{
U64 v;
} _PACKED U64_S;
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
# pragma pack(pop)
#endif
#define A32(x) (((U32_S *)(x))->v)
#define A64(x) (((U64_S *)(x))->v)
//***************************************
// Compiler-specific Functions and Macros
//***************************************
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif
#if defined(_MSC_VER) // Visual Studio
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403 || defined(__clang__)
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static inline U32 XXH_swap32 (U32 x)
{
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );
}
static inline U64 XXH_swap64 (U64 x)
{
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);
}
#endif
//**************************************
// Constants
//**************************************
#define PRIME32_1 2654435761U
#define PRIME32_2 2246822519U
#define PRIME32_3 3266489917U
#define PRIME32_4 668265263U
#define PRIME32_5 374761393U
#define PRIME64_1 11400714785074694791ULL
#define PRIME64_2 14029467366897019727ULL
#define PRIME64_3 1609587929392839161ULL
#define PRIME64_4 9650029242287828579ULL
#define PRIME64_5 2870177450012600261ULL
//**************************************
// Architecture Macros
//**************************************
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
#ifndef XXH_CPU_LITTLE_ENDIAN // It is possible to define XXH_CPU_LITTLE_ENDIAN externally, for example using a compiler switch
static const int one = 1;
# define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
#endif
//**************************************
// Macros
//**************************************
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
//****************************
// Memory reads
//****************************
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
else
return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr);
}
FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
{
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
}
FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
else
return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr);
}
FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
{
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
}
//****************************
// Simple Hash Functions
//****************************
FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL)
{
len=0;
bEnd=p=(const BYTE*)(size_t)16;
}
#endif
if (len>=16)
{
const BYTE* const limit = bEnd - 16;
U32 v1 = seed + PRIME32_1 + PRIME32_2;
U32 v2 = seed + PRIME32_2;
U32 v3 = seed + 0;
U32 v4 = seed - PRIME32_1;
do
{
v1 += XXH_get32bits(p) * PRIME32_2;
v1 = XXH_rotl32(v1, 13);
v1 *= PRIME32_1;
p+=4;
v2 += XXH_get32bits(p) * PRIME32_2;
v2 = XXH_rotl32(v2, 13);
v2 *= PRIME32_1;
p+=4;
v3 += XXH_get32bits(p) * PRIME32_2;
v3 = XXH_rotl32(v3, 13);
v3 *= PRIME32_1;
p+=4;
v4 += XXH_get32bits(p) * PRIME32_2;
v4 = XXH_rotl32(v4, 13);
v4 *= PRIME32_1;
p+=4;
}
while (p<=limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
}
else
{
h32 = seed + PRIME32_5;
}
h32 += (U32) len;
while (p+4<=bEnd)
{
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}
while (p<bEnd)
{
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
unsigned int XXH32 (const void* input, size_t len, unsigned seed)
{
#if 0
// Simple version, good for code maintenance, but unfortunately slow for small inputs
XXH32_state_t state;
XXH32_reset(&state, seed);
XXH32_update(&state, input, len);
return XXH32_digest(&state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
# if !defined(XXH_USE_UNALIGNED_ACCESS)
if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
{
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
}
# endif
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL)
{
len=0;
bEnd=p=(const BYTE*)(size_t)32;
}
#endif
if (len>=32)
{
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;
do
{
v1 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
v2 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
v3 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
v4 += XXH_get64bits(p) * PRIME64_2;
p+=8;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
}
while (p<=limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
v1 *= PRIME64_2;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
h64 ^= v1;
h64 = h64 * PRIME64_1 + PRIME64_4;
v2 *= PRIME64_2;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
h64 ^= v2;
h64 = h64 * PRIME64_1 + PRIME64_4;
v3 *= PRIME64_2;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
h64 ^= v3;
h64 = h64 * PRIME64_1 + PRIME64_4;
v4 *= PRIME64_2;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
h64 ^= v4;
h64 = h64 * PRIME64_1 + PRIME64_4;
}
else
{
h64 = seed + PRIME64_5;
}
h64 += (U64) len;
while (p+8<=bEnd)
{
U64 k1 = XXH_get64bits(p);
k1 *= PRIME64_2;
k1 = XXH_rotl64(k1,31);
k1 *= PRIME64_1;
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd)
{
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd)
{
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
uint64_t XXH64 (const void* input, size_t len, uint64_t seed)
{
#if 0
// Simple version, good for code maintenance, but unfortunately slow for small inputs
XXH64_state_t state;
XXH64_reset(&state, seed);
XXH64_update(&state, input, len);
return XXH64_digest(&state);
#else
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
# if !defined(XXH_USE_UNALIGNED_ACCESS)
if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
{
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
}
# endif
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
#endif
}
/****************************************************
* Advanced Hash Functions
****************************************************/
/*** Allocation ***/
typedef struct
{
U64 total_len;
U32 seed;
U32 v1;
U32 v2;
U32 v3;
U32 v4;
U32 mem32[4]; /* defined as U32 for alignment */
U32 memsize;
} XXH_istate32_t;
typedef struct
{
U64 total_len;
U64 seed;
U64 v1;
U64 v2;
U64 v3;
U64 v4;
U64 mem64[4]; /* defined as U64 for alignment */
U32 memsize;
} XXH_istate64_t;
XXH32_state_t* XXH32_createState(void)
{
XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); // A compilation error here means XXH32_state_t is not large enough
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
void* XXH32_init (unsigned seed)
{
XXH32_state_t *st = XXH32_createState();
XXH32_reset(st, seed);
return st;
}
XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
};
XXH64_state_t* XXH64_createState(void)
{
XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); // A compilation error here means XXH64_state_t is not large enough
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
};
/*** Hash feed ***/
XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed)
{
XXH_istate32_t* state = (XXH_istate32_t*) state_in;
state->seed = seed;
state->v1 = seed + PRIME32_1 + PRIME32_2;
state->v2 = seed + PRIME32_2;
state->v3 = seed + 0;
state->v4 = seed - PRIME32_1;
state->total_len = 0;
state->memsize = 0;
return XXH_OK;
}
XXH_errorcode XXH64_reset(XXH64_state_t* state_in, uint64_t seed)
{
XXH_istate64_t* state = (XXH_istate64_t*) state_in;
state->seed = seed;
state->v1 = seed + PRIME64_1 + PRIME64_2;
state->v2 = seed + PRIME64_2;
state->v3 = seed + 0;
state->v4 = seed - PRIME64_1;
state->total_len = 0;
state->memsize = 0;
return XXH_OK;
}
FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
{
XXH_istate32_t* state = (XXH_istate32_t *) state_in;
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 16) // fill in tmp buffer
{
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}
if (state->memsize) // some data left from previous update
{
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
{
const U32* p32 = state->mem32;
state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v1 = XXH_rotl32(state->v1, 13);
state->v1 *= PRIME32_1;
p32++;
state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v2 = XXH_rotl32(state->v2, 13);
state->v2 *= PRIME32_1;
p32++;
state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v3 = XXH_rotl32(state->v3, 13);
state->v3 *= PRIME32_1;
p32++;
state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
state->v4 = XXH_rotl32(state->v4, 13);
state->v4 *= PRIME32_1;
p32++;
}
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= bEnd-16)
{
const BYTE* const limit = bEnd - 16;
U32 v1 = state->v1;
U32 v2 = state->v2;
U32 v3 = state->v3;
U32 v4 = state->v4;
do
{
v1 += XXH_readLE32(p, endian) * PRIME32_2;
v1 = XXH_rotl32(v1, 13);
v1 *= PRIME32_1;
p+=4;
v2 += XXH_readLE32(p, endian) * PRIME32_2;
v2 = XXH_rotl32(v2, 13);
v2 *= PRIME32_1;
p+=4;
v3 += XXH_readLE32(p, endian) * PRIME32_2;
v3 = XXH_rotl32(v3, 13);
v3 *= PRIME32_1;
p+=4;
v4 += XXH_readLE32(p, endian) * PRIME32_2;
v4 = XXH_rotl32(v4, 13);
v4 *= PRIME32_1;
p+=4;
}
while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd)
{
XXH_memcpy(state->mem32, p, bEnd-p);
state->memsize = (int)(bEnd-p);
}
return XXH_OK;
}
XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian)
{
XXH_istate32_t* state = (XXH_istate32_t*) state_in;
const BYTE * p = (const BYTE*)state->mem32;
BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize;
U32 h32;
if (state->total_len >= 16)
{
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
}
else
{
h32 = state->seed + PRIME32_5;
}
h32 += (U32) state->total_len;
while (p+4<=bEnd)
{
h32 += XXH_readLE32(p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
p+=4;
}
while (p<bEnd)
{
h32 += (*p) * PRIME32_5;
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
#if 0
XXH32_freeState((XXH32_state_t *)state_in);
#endif
return h32;
}
U32 XXH32_digest (const XXH32_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_digest_endian(state_in, XXH_littleEndian);
else
return XXH32_digest_endian(state_in, XXH_bigEndian);
}
FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
{
XXH_istate64_t * state = (XXH_istate64_t *) state_in;
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 32) // fill in tmp buffer
{
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
state->memsize += (U32)len;
return XXH_OK;
}
if (state->memsize) // some data left from previous update
{
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
{
const U64* p64 = state->mem64;
state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v1 = XXH_rotl64(state->v1, 31);
state->v1 *= PRIME64_1;
p64++;
state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v2 = XXH_rotl64(state->v2, 31);
state->v2 *= PRIME64_1;
p64++;
state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v3 = XXH_rotl64(state->v3, 31);
state->v3 *= PRIME64_1;
p64++;
state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
state->v4 = XXH_rotl64(state->v4, 31);
state->v4 *= PRIME64_1;
p64++;
}
p += 32-state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd)
{
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
do
{
v1 += XXH_readLE64(p, endian) * PRIME64_2;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
p+=8;
v2 += XXH_readLE64(p, endian) * PRIME64_2;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
p+=8;
v3 += XXH_readLE64(p, endian) * PRIME64_2;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
p+=8;
v4 += XXH_readLE64(p, endian) * PRIME64_2;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
p+=8;
}
while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd)
{
XXH_memcpy(state->mem64, p, bEnd-p);
state->memsize = (int)(bEnd-p);
}
return XXH_OK;
}
XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian)
{
XXH_istate64_t * state = (XXH_istate64_t *) state_in;
const BYTE * p = (const BYTE*)state->mem64;
BYTE* bEnd = (BYTE*)state->mem64 + state->memsize;
U64 h64;
if (state->total_len >= 32)
{
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
v1 *= PRIME64_2;
v1 = XXH_rotl64(v1, 31);
v1 *= PRIME64_1;
h64 ^= v1;
h64 = h64*PRIME64_1 + PRIME64_4;
v2 *= PRIME64_2;
v2 = XXH_rotl64(v2, 31);
v2 *= PRIME64_1;
h64 ^= v2;
h64 = h64*PRIME64_1 + PRIME64_4;
v3 *= PRIME64_2;
v3 = XXH_rotl64(v3, 31);
v3 *= PRIME64_1;
h64 ^= v3;
h64 = h64*PRIME64_1 + PRIME64_4;
v4 *= PRIME64_2;
v4 = XXH_rotl64(v4, 31);
v4 *= PRIME64_1;
h64 ^= v4;
h64 = h64*PRIME64_1 + PRIME64_4;
}
else
{
h64 = state->seed + PRIME64_5;
}
h64 += (U64) state->total_len;
while (p+8<=bEnd)
{
U64 k1 = XXH_readLE64(p, endian);
k1 *= PRIME64_2;
k1 = XXH_rotl64(k1,31);
k1 *= PRIME64_1;
h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd)
{
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd)
{
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
#if 0
XXH64_freeState((XXH64_state_t *)state_in);
#endif
return h64;
}
uint64_t XXH64_digest (const XXH64_state_t* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_digest_endian(state_in, XXH_littleEndian);
else
return XXH64_digest_endian(state_in, XXH_bigEndian);
}

View file

@ -1,165 +0,0 @@
/*
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2014, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : http://code.google.com/p/xxhash/
*/
/* Notice extracted from xxHash homepage :
xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
It also successfully passes all tests from the SMHasher suite.
Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
Name Speed Q.Score Author
xxHash 5.4 GB/s 10
CrapWow 3.2 GB/s 2 Andrew
MumurHash 3a 2.7 GB/s 10 Austin Appleby
SpookyHash 2.0 GB/s 10 Bob Jenkins
SBox 1.4 GB/s 9 Bret Mulvey
Lookup3 1.2 GB/s 9 Bob Jenkins
SuperFastHash 1.2 GB/s 1 Paul Hsieh
CityHash64 1.05 GB/s 10 Pike & Alakuijala
FNV 0.55 GB/s 5 Fowler, Noll, Vo
CRC32 0.43 GB/s 9
MD5-32 0.33 GB/s 10 Ronald L. Rivest
SHA1-32 0.28 GB/s 10
Q.Score is a measure of quality of the hash function.
It depends on successfully passing SMHasher test set.
10 is a perfect score.
*/
#ifndef LIBUCL_XXHASH_H
#define LIBUCL_XXHASH_H
#if defined (__cplusplus)
extern "C" {
#endif
/*****************************
Includes
*****************************/
#include <stddef.h> /* size_t */
#include <stdint.h>
/*****************************
Type
*****************************/
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
/*****************************
Simple Hash Functions
*****************************/
unsigned int XXH32 (const void* input, size_t length, unsigned seed);
uint64_t XXH64 (const void* input, size_t length, uint64_t seed);
/*
XXH32() :
Calculate the 32-bits hash of sequence "length" bytes stored at memory address "input".
The memory between input & input+length must be valid (allocated and read-accessible).
"seed" can be used to alter the result predictably.
This function successfully passes all SMHasher tests.
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
XXH64() :
Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
*/
/*****************************
Advanced Hash Functions
*****************************/
typedef struct { int64_t ll[ 6]; } XXH32_state_t;
typedef struct { int64_t ll[11]; } XXH64_state_t;
/*
These structures allow static allocation of XXH states.
States must then be initialized using XXHnn_reset() before first use.
If you prefer dynamic allocation, please refer to functions below.
*/
/*
* !!!
* Rspamd specific: we use the legacy method to free state when digest is obtained
* !!!
*/
void * XXH32_init (unsigned seed);
XXH32_state_t* XXH32_createState(void);
XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr);
XXH64_state_t* XXH64_createState(void);
XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr);
/*
These functions create and release memory for XXH state.
States must then be initialized using XXHnn_reset() before first use.
*/
XXH_errorcode XXH32_reset (XXH32_state_t* statePtr, unsigned seed);
XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
unsigned int XXH32_digest (const XXH32_state_t* statePtr);
XXH_errorcode XXH64_reset (XXH64_state_t* statePtr, uint64_t seed);
XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
uint64_t XXH64_digest (const XXH64_state_t* statePtr);
/*
These functions calculate the xxHash of an input provided in multiple smaller packets,
as opposed to an input provided as a single block.
XXH state space must first be allocated, using either static or dynamic method provided above.
Start a new hash by initializing state with a seed, using XXHnn_reset().
Then, feed the hash state by calling XXHnn_update() as many times as necessary.
Obviously, input must be valid, meaning allocated and read accessible.
The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
Finally, you can produce a hash anytime, by using XXHnn_digest().
This function returns the final nn-bits hash.
You can nonetheless continue feeding the hash state with more input,
and therefore get some new hashes, by calling again XXHnn_digest().
When you are done, don't forget to free XXH state space, using typically XXHnn_freeState().
*/
#if defined (__cplusplus)
}
#endif
#endif

View file

@ -22,12 +22,12 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef UTHASH_H
#define UTHASH_H
#define UTHASH_H
#include <string.h> /* memcmp,strlen */
#include <stddef.h> /* ptrdiff_t */
#include <stdlib.h> /* exit() */
#include "xxhash.h"
#include "mum.h"
/* These macros use decltype or the earlier __typeof GNU extension.
As decltype is only available in newer compilers (VS2010 or gcc 4.3+
@ -50,7 +50,7 @@ do {
char **_da_dst = (char**)(&(dst)); \
*_da_dst = (char*)(src); \
} while(0)
#else
#else
#define DECLTYPE_ASSIGN(dst,src) \
do { \
(dst) = DECLTYPE(dst)(src); \
@ -115,12 +115,12 @@ do {
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
} while (0)
} while (0)
#define HASH_BLOOM_FREE(tbl) \
do { \
uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \
} while (0)
} while (0)
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
@ -132,9 +132,9 @@ do {
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
#else
#define HASH_BLOOM_MAKE(tbl)
#define HASH_BLOOM_FREE(tbl)
#define HASH_BLOOM_ADD(tbl,hashv)
#define HASH_BLOOM_MAKE(tbl)
#define HASH_BLOOM_FREE(tbl)
#define HASH_BLOOM_ADD(tbl,hashv)
#define HASH_BLOOM_TEST(tbl,hashv) (1)
#define HASH_BLOOM_BYTELEN 0
#endif
@ -170,7 +170,7 @@ do {
}; \
HASH_ADD(hh,head,fieldname,keylen_in,add); \
} while(0)
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
do { \
unsigned _ha_bkt; \
@ -328,10 +328,10 @@ do {
} \
} while (0)
#else
#define HASH_FSCK(hh,head)
#define HASH_FSCK(hh,head)
#endif
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
* the descriptor to which this macro is defined for tuning the hash function.
* The app can #include <unistd.h> to get the prototype for write(2). */
#ifdef HASH_EMIT_KEYS
@ -341,12 +341,12 @@ do {
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
write(HASH_EMIT_KEYS, keyptr, fieldlen); \
} while (0)
#else
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
#else
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
#endif
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
#ifdef HASH_FUNCTION
#ifdef HASH_FUNCTION
#define HASH_FCN HASH_FUNCTION
#else
#define HASH_FCN HASH_XX
@ -356,14 +356,14 @@ do {
#define HASH_XX(key,keylen,num_bkts,hashv,bkt) \
do { \
hashv = XXH32 (key, keylen, XX_HASH_PRIME); \
hashv = mum_hash (key, keylen, XX_HASH_PRIME); \
bkt = (hashv) & (num_bkts-1); \
} while (0)
/* key comparison function; return 0 if keys equal */
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
/* iterate over items in a known bucket to find desired item */
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
@ -404,36 +404,36 @@ do {
} \
if (hh_del->hh_next) { \
hh_del->hh_next->hh_prev = hh_del->hh_prev; \
}
}
/* Bucket expansion has the effect of doubling the number of buckets
* and redistributing the items into the new buckets. Ideally the
* items will distribute more or less evenly into the new buckets
* (the extent to which this is true is a measure of the quality of
* the hash function as it applies to the key domain).
*
* the hash function as it applies to the key domain).
*
* With the items distributed into more buckets, the chain length
* (item count) in each bucket is reduced. Thus by expanding buckets
* the hash keeps a bound on the chain length. This bounded chain
* the hash keeps a bound on the chain length. This bounded chain
* length is the essence of how a hash provides constant time lookup.
*
*
* The calculation of tbl->ideal_chain_maxlen below deserves some
* explanation. First, keep in mind that we're calculating the ideal
* maximum chain length based on the *new* (doubled) bucket count.
* In fractions this is just n/b (n=number of items,b=new num buckets).
* Since the ideal chain length is an integer, we want to calculate
* Since the ideal chain length is an integer, we want to calculate
* ceil(n/b). We don't depend on floating point arithmetic in this
* hash, so to calculate ceil(n/b) with integers we could write
*
*
* ceil(n/b) = (n/b) + ((n%b)?1:0)
*
*
* and in fact a previous version of this hash did just that.
* But now we have improved things a bit by recognizing that b is
* always a power of two. We keep its base 2 log handy (call it lb),
* so now we can write this with a bit shift and logical AND:
*
*
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
*
*
*/
#define HASH_EXPAND_BUCKETS(tbl) \
do { \
@ -485,7 +485,7 @@ do {
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
/* Note that HASH_SORT assumes the hash handle name to be hh.
/* Note that HASH_SORT assumes the hash handle name to be hh.
* HASH_SRT was added to allow the hash handle name to be passed in. */
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
#define HASH_SRT(hh,head,cmpfcn) \
@ -575,10 +575,10 @@ do {
} \
} while (0)
/* This function selects items from one hash into another hash.
* The end result is that the selected items have dual presence
* in both hashes. There is no copy of the items made; rather
* they are added into the new hash through a secondary hash
/* This function selects items from one hash into another hash.
* The end result is that the selected items have dual presence
* in both hashes. There is no copy of the items made; rather
* they are added into the new hash through a secondary hash
* hash handle that must be present in the structure. */
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
do { \
@ -638,7 +638,7 @@ do {
#ifdef NO_DECLTYPE
#define HASH_ITER(hh,head,el,tmp) \
for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \
el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
#else
#define HASH_ITER(hh,head,el,tmp) \
for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \
@ -646,7 +646,7 @@ for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL);
#endif
/* obtain a count of items in the hash */
#define HASH_COUNT(head) HASH_CNT(hh,head)
#define HASH_COUNT(head) HASH_CNT(hh,head)
#define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0)
typedef struct UT_hash_bucket {
@ -655,7 +655,7 @@ typedef struct UT_hash_bucket {
/* expand_mult is normally set to 0. In this situation, the max chain length
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
* the bucket's chain exceeds this length, bucket expansion is triggered).
* the bucket's chain exceeds this length, bucket expansion is triggered).
* However, setting expand_mult to a non-zero value delays bucket expansion
* (that would be triggered by additions to this particular bucket)
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
@ -663,7 +663,7 @@ typedef struct UT_hash_bucket {
* multiplier is to reduce bucket expansions, since they are expensive, in
* situations where we know that a particular bucket tends to be overused.
* It is better to let its chain length grow to a longer yet-still-bounded
* value, than to do an O(n) bucket expansion too often.
* value, than to do an O(n) bucket expansion too often.
*/
unsigned expand_mult;
@ -689,7 +689,7 @@ typedef struct UT_hash_table {
* hash distribution; reaching them in a chain traversal takes >ideal steps */
unsigned nonideal_items;
/* ineffective expands occur when a bucket doubling was performed, but
/* ineffective expands occur when a bucket doubling was performed, but
* afterward, more than half the items in the hash had nonideal chain
* positions. If this happens on two consecutive expansions we inhibit any
* further expansion, as it's not helping; this happens when the hash

View file

@ -14,8 +14,7 @@ SRCS= ucl_emitter_streamline.c \
ucl_parser.c \
ucl_schema.c \
ucl_sexp.c \
ucl_util.c \
xxhash.c
ucl_util.c
.PATH: ${LIBUCL}/src \
${LIBUCL}/include