Merge in Cavium's CF driver. This too is in the wrong place and will

be moved.
This commit is contained in:
Warner Losh 2009-06-14 03:47:44 +00:00
parent b9bf0e01e9
commit 5be117dfac
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/projects/mips/; revision=194149
2 changed files with 654 additions and 0 deletions

View file

@ -0,0 +1,619 @@
/*
* octeon_ebt3000_cf.c
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/power.h>
#include <sys/smp.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/malloc.h>
#include <geom/geom.h>
#include <machine/clock.h>
#include <machine/locore.h>
#include <machine/md_var.h>
#include <machine/cpuregs.h>
#include "octeon_ebt3000_cf.h"
#include "driveid.h"
/* ATA Commands */
#define CMD_READ_SECTOR 0x20
#define CMD_WRITE_SECTOR 0x30
#define CMD_IDENTIFY 0xEC
/* The ATA Task File */
#define TF_DATA 0x00
#define TF_ERROR 0x01
#define TF_PRECOMP 0x01
#define TF_SECTOR_COUNT 0x02
#define TF_SECTOR_NUMBER 0x03
#define TF_CYL_LSB 0x04
#define TF_CYL_MSB 0x05
#define TF_DRV_HEAD 0x06
#define TF_STATUS 0x07
#define TF_COMMAND 0x07
/* Status Register */
#define STATUS_BSY 0x80 /* Drive is busy */
#define STATUS_RDY 0x40 /* Drive is ready */
#define STATUS_DRQ 0x08 /* Data can be transferred */
/* Miscelaneous */
#define SECTOR_SIZE 512
#define WAIT_DELAY 1000
#define NR_TRIES 1000
#define SWAP_SHORT(x) ((x << 8) | (x >> 8))
#define SWAP_LONG(x) (((x << 24) & 0xFF000000) | ((x << 8) & 0x00FF0000) | \
((x >> 8) & 0x0000FF00) | ((x << 24) & 0x000000FF) )
#define MODEL_STR_SIZE 40
/* Globals */
int bus_width;
void *base_addr;
/* Device softc */
struct cf_priv {
device_t dev;
struct drive_param *drive_param;
struct bio_queue_head cf_bq;
struct g_geom *cf_geom;
struct g_provider *cf_provider;
};
/* Device parameters */
struct drive_param{
union {
char buf[SECTOR_SIZE];
struct hd_driveid driveid;
} u;
char model[MODEL_STR_SIZE];
uint32_t nr_sectors;
uint16_t sector_size;
uint16_t heads;
uint16_t tracks;
uint16_t sec_track;
} drive_param;
/* GEOM class implementation */
static g_access_t cf_access;
static g_start_t cf_start;
static g_ioctl_t cf_ioctl;
struct g_class g_cf_class = {
.name = "CF",
.version = G_VERSION,
.start = cf_start,
.access = cf_access,
.ioctl = cf_ioctl,
};
/* Device methods */
static int cf_probe(device_t);
static void cf_identify(driver_t *, device_t);
static int cf_attach(device_t);
static int cf_attach_geom(void *, int);
/* ATA methods */
static void cf_cmd_identify(void);
static void cf_cmd_write(uint32_t, uint32_t, void *);
static void cf_cmd_read(uint32_t, uint32_t, void *);
static void cf_wait_busy(void);
static void cf_send_cmd(uint32_t, uint8_t);
static void cf_attach_geom_proxy(void *arg, int flag);
/* Miscelenous */
static void cf_swap_ascii(unsigned char[], char[]);
/* ------------------------------------------------------------------- *
* cf_access() *
* ------------------------------------------------------------------- */
static int cf_access (struct g_provider *pp, int r, int w, int e)
{
pp->sectorsize = drive_param.sector_size;
pp->stripesize = drive_param.heads * drive_param.sec_track * drive_param.sector_size;
pp->mediasize = pp->stripesize * drive_param.tracks;
return (0);
}
/* ------------------------------------------------------------------- *
* cf_start() *
* ------------------------------------------------------------------- */
static void cf_start (struct bio *bp)
{
/*
* Handle actual I/O requests. The request is passed down through
* the bio struct.
*/
if(bp->bio_cmd & BIO_GETATTR) {
if (g_handleattr_int(bp, "GEOM::fwsectors", drive_param.sec_track))
return;
if (g_handleattr_int(bp, "GEOM::fwheads", drive_param.heads))
return;
g_io_deliver(bp, ENOIOCTL);
return;
}
if ((bp->bio_cmd & (BIO_READ | BIO_WRITE))) {
if (bp->bio_cmd & BIO_READ) {
cf_cmd_read(bp->bio_length / drive_param.sector_size,
bp->bio_offset / drive_param.sector_size, bp->bio_data);
} else if (bp->bio_cmd & BIO_WRITE) {
cf_cmd_write(bp->bio_length / drive_param.sector_size,
bp->bio_offset/drive_param.sector_size, bp->bio_data);
}
bp->bio_resid = 0;
bp->bio_completed = bp->bio_length;
g_io_deliver(bp, 0);
}
}
static int cf_ioctl (struct g_provider *pp, u_long cmd, void *data, int fflag, struct thread *td)
{
return (0);
}
/* ------------------------------------------------------------------- *
* cf_cmd_read() *
* ------------------------------------------------------------------- *
*
* Read nr_sectors from the device starting from start_sector.
*/
static void cf_cmd_read (uint32_t nr_sectors, uint32_t start_sector, void *buf)
{
unsigned long lba;
uint32_t count;
uint16_t *ptr_16;
uint8_t *ptr_8;
//#define OCTEON_VISUAL_CF_0 1
#ifdef OCTEON_VISUAL_CF_0
octeon_led_write_char(0, 'R');
#endif
ptr_8 = (uint8_t*)buf;
ptr_16 = (uint16_t*)buf;
lba = start_sector;
while (nr_sectors--) {
cf_send_cmd(lba, CMD_READ_SECTOR);
if (bus_width == 8) {
volatile uint8_t *task_file = (volatile uint8_t*)base_addr;
volatile uint8_t dummy;
for (count = 0; count < SECTOR_SIZE; count++) {
*ptr_8++ = task_file[TF_DATA];
if ((count & 0xf) == 0) dummy = task_file[TF_STATUS];
}
} else {
volatile uint16_t *task_file = (volatile uint16_t*)base_addr;
volatile uint16_t dummy;
for (count = 0; count < SECTOR_SIZE; count+=2) {
uint16_t temp;
temp = task_file[TF_DATA];
*ptr_16++ = SWAP_SHORT(temp);
if ((count & 0xf) == 0) dummy = task_file[TF_STATUS/2];
}
}
lba ++;
}
#ifdef OCTEON_VISUAL_CF_0
octeon_led_write_char(0, ' ');
#endif
}
/* ------------------------------------------------------------------- *
* cf_cmd_write() *
* ------------------------------------------------------------------- *
*
* Write nr_sectors to the device starting from start_sector.
*/
static void cf_cmd_write (uint32_t nr_sectors, uint32_t start_sector, void *buf)
{
uint32_t lba;
uint32_t count;
uint16_t *ptr_16;
uint8_t *ptr_8;
//#define OCTEON_VISUAL_CF_1 1
#ifdef OCTEON_VISUAL_CF_1
octeon_led_write_char(1, 'W');
#endif
lba = start_sector;
ptr_8 = (uint8_t*)buf;
ptr_16 = (uint16_t*)buf;
while (nr_sectors--) {
cf_send_cmd(lba, CMD_WRITE_SECTOR);
if (bus_width == 8) {
volatile uint8_t *task_file;
volatile uint8_t dummy;
task_file = (volatile uint8_t *) base_addr;
for (count = 0; count < SECTOR_SIZE; count++) {
task_file[TF_DATA] = *ptr_8++;
if ((count & 0xf) == 0) dummy = task_file[TF_STATUS];
}
} else {
volatile uint16_t *task_file;
volatile uint16_t dummy;
task_file = (volatile uint16_t *) base_addr;
for (count = 0; count < SECTOR_SIZE; count+=2) {
uint16_t temp = *ptr_16++;
task_file[TF_DATA] = SWAP_SHORT(temp);
if ((count & 0xf) == 0) dummy = task_file[TF_STATUS/2];
}
}
lba ++;
}
#ifdef OCTEON_VISUAL_CF_1
octeon_led_write_char(1, ' ');
#endif
}
/* ------------------------------------------------------------------- *
* cf_cmd_identify() *
* ------------------------------------------------------------------- *
*
* Read parameters and other information from the drive and store
* it in the drive_param structure
*
*/
static void cf_cmd_identify (void)
{
int count;
uint8_t status;
if (bus_width == 8) {
volatile uint8_t *task_file;
task_file = (volatile uint8_t *) base_addr;
while ((status = task_file[TF_STATUS]) & STATUS_BSY) {
DELAY(WAIT_DELAY);
}
task_file[TF_SECTOR_COUNT] = 0;
task_file[TF_SECTOR_NUMBER] = 0;
task_file[TF_CYL_LSB] = 0;
task_file[TF_CYL_MSB] = 0;
task_file[TF_DRV_HEAD] = 0;
task_file[TF_COMMAND] = CMD_IDENTIFY;
cf_wait_busy();
for (count = 0; count < SECTOR_SIZE; count++)
drive_param.u.buf[count] = task_file[TF_DATA];
} else {
volatile uint16_t *task_file;
task_file = (volatile uint16_t *) base_addr;
while ((status = (task_file[TF_STATUS/2]>>8)) & STATUS_BSY) {
DELAY(WAIT_DELAY);
}
task_file[TF_SECTOR_COUNT/2] = 0; /* this includes TF_SECTOR_NUMBER */
task_file[TF_CYL_LSB/2] = 0; /* this includes TF_CYL_MSB */
task_file[TF_DRV_HEAD/2] = 0 | (CMD_IDENTIFY<<8); /* this includes TF_COMMAND */
cf_wait_busy();
for (count = 0; count < SECTOR_SIZE; count+=2) {
uint16_t temp;
temp = task_file[TF_DATA];
/* endianess will be swapped below */
drive_param.u.buf[count] = (temp & 0xff);
drive_param.u.buf[count+1] = (temp & 0xff00)>>8;
}
}
cf_swap_ascii(drive_param.u.driveid.model, drive_param.model);
drive_param.sector_size = 512; //= SWAP_SHORT (drive_param.u.driveid.sector_bytes);
drive_param.heads = SWAP_SHORT (drive_param.u.driveid.cur_heads);
drive_param.tracks = SWAP_SHORT (drive_param.u.driveid.cur_cyls);
drive_param.sec_track = SWAP_SHORT (drive_param.u.driveid.cur_sectors);
drive_param.nr_sectors = SWAP_LONG (drive_param.u.driveid.lba_capacity);
}
/* ------------------------------------------------------------------- *
* cf_send_cmd() *
* ------------------------------------------------------------------- *
*
* Send command to read/write one sector specified by lba.
*
*/
static void cf_send_cmd (uint32_t lba, uint8_t cmd)
{
uint8_t status;
if (bus_width == 8) {
volatile uint8_t *task_file;
task_file = (volatile uint8_t *) base_addr;
while ( (status = task_file[TF_STATUS]) & STATUS_BSY) {
DELAY(WAIT_DELAY);
}
task_file[TF_SECTOR_COUNT] = 1;
task_file[TF_SECTOR_NUMBER] = (lba & 0xff);
task_file[TF_CYL_LSB] = ((lba >> 8) & 0xff);
task_file[TF_CYL_MSB] = ((lba >> 16) & 0xff);
task_file[TF_DRV_HEAD] = ((lba >> 24) & 0xff) | 0xe0;
task_file[TF_COMMAND] = cmd;
} else {
volatile uint16_t *task_file;
task_file = (volatile uint16_t *) base_addr;
while ( (status = (task_file[TF_STATUS/2]>>8)) & STATUS_BSY) {
DELAY(WAIT_DELAY);
}
task_file[TF_SECTOR_COUNT/2] = 1 | ((lba & 0xff) << 8);
task_file[TF_CYL_LSB/2] = ((lba >> 8) & 0xff) | (((lba >> 16) & 0xff) << 8);
task_file[TF_DRV_HEAD/2] = (((lba >> 24) & 0xff) | 0xe0) | (cmd << 8);
}
cf_wait_busy();
}
/* ------------------------------------------------------------------- *
* cf_wait_busy() *
* ------------------------------------------------------------------- *
*
* Wait until the drive finishes a given command and data is
* ready to be transferred. This is done by repeatedly checking
* the BSY and DRQ bits of the status register. When the controller
* is ready for data transfer, it clears the BSY bit and sets the
* DRQ bit.
*
*/
static void cf_wait_busy (void)
{
uint8_t status;
//#define OCTEON_VISUAL_CF_2 1
#ifdef OCTEON_VISUAL_CF_2
static int where0 = 0;
octeon_led_run_wheel(&where0, 2);
#endif
if (bus_width == 8) {
volatile uint8_t *task_file;
task_file = (volatile uint8_t *)base_addr;
status = task_file[TF_STATUS];
while ((status & STATUS_BSY) == STATUS_BSY || (status & STATUS_DRQ) != STATUS_DRQ ) {
DELAY(WAIT_DELAY);
status = task_file[TF_STATUS];
}
} else {
volatile uint16_t *task_file;
task_file = (volatile uint16_t *)base_addr;
status = task_file[TF_STATUS/2]>>8;
while ((status & STATUS_BSY) == STATUS_BSY || (status & STATUS_DRQ) != STATUS_DRQ ) {
DELAY(WAIT_DELAY);
status = (uint8_t)(task_file[TF_STATUS/2]>>8);
}
}
#ifdef OCTEON_VISUAL_CF_2
octeon_led_write_char(2, ' ');
#endif
}
/* ------------------------------------------------------------------- *
* cf_swap_ascii() *
* ------------------------------------------------------------------- *
*
* The ascii string returned by the controller specifying
* the model of the drive is byte-swaped. This routine
* corrects the byte ordering.
*
*/
static void cf_swap_ascii (unsigned char str1[], char str2[])
{
int i;
for(i = 0; i < MODEL_STR_SIZE; i++) {
str2[i] = str1[i^1];
}
}
/* ------------------------------------------------------------------- *
* cf_probe() *
* ------------------------------------------------------------------- */
static int cf_probe (device_t dev)
{
if (!octeon_board_real()) return 1;
if (device_get_unit(dev) != 0) {
panic("can't attach more devices\n");
}
device_set_desc(dev, "Octeon Compact Flash Driver");
cf_cmd_identify();
return (0);
}
/* ------------------------------------------------------------------- *
* cf_identify() *
* ------------------------------------------------------------------- *
*
* Find the bootbus region for the CF to determine
* 16 or 8 bit and check to see if device is
* inserted.
*
*/
static void cf_identify (driver_t *drv, device_t parent)
{
uint8_t status;
int bus_region;
int count = 0;
octeon_mio_boot_reg_cfgx_t cfg;
if (!octeon_board_real()) return 1;
base_addr = (void *) OCTEON_PHYS2PTR(OCTEON_CF_COMMON_BASE_ADDR);
for (bus_region = 0; bus_region < 8; bus_region++)
{
cfg.word64 = oct_read64(OCTEON_MIO_BOOT_REG_CFGX(bus_region));
if (cfg.bits.base == OCTEON_CF_COMMON_BASE_ADDR >> 16)
{
bus_width = (cfg.bits.width) ? 16: 8;
printf("Compact flash found in bootbus region %d (%d bit).\n", bus_region, bus_width);
break;
}
}
if (bus_width == 8) {
volatile uint8_t *task_file;
task_file = (volatile uint8_t *) base_addr;
/* Check if CF is inserted */
while ( (status = task_file[TF_STATUS]) & STATUS_BSY){
if ((count++) == NR_TRIES ) {
printf("Compact Flash not present\n");
return;
}
DELAY(WAIT_DELAY);
}
} else {
volatile uint16_t *task_file;
task_file = (volatile uint16_t *) base_addr;
/* Check if CF is inserted */
while ( (status = (task_file[TF_STATUS/2]>>8)) & STATUS_BSY){
if ((count++) == NR_TRIES ) {
printf("Compact Flash not present\n");
return;
}
DELAY(WAIT_DELAY);
}
}
BUS_ADD_CHILD(parent, 0, "cf", 0);
}
/* ------------------------------------------------------------------- *
* cf_attach_geom() *
* ------------------------------------------------------------------- */
static int cf_attach_geom (void *arg, int flag)
{
struct cf_priv *cf_priv;
cf_priv = (struct cf_priv *) arg;
cf_priv->cf_geom = g_new_geomf(&g_cf_class, "cf%d", device_get_unit(cf_priv->dev));
cf_priv->cf_provider = g_new_providerf(cf_priv->cf_geom, cf_priv->cf_geom->name);
cf_priv->cf_geom->softc = cf_priv;
g_error_provider(cf_priv->cf_provider, 0);
return (0);
}
/* ------------------------------------------------------------------- *
* cf_attach_geom() *
* ------------------------------------------------------------------- */
static void cf_attach_geom_proxy (void *arg, int flag)
{
cf_attach_geom(arg, flag);
}
/* ------------------------------------------------------------------- *
* cf_attach() *
* ------------------------------------------------------------------- */
static int cf_attach (device_t dev)
{
struct cf_priv *cf_priv;
if (!octeon_board_real()) return 1;
cf_priv = device_get_softc(dev);
cf_priv->dev = dev;
cf_priv->drive_param = &drive_param;
g_post_event(cf_attach_geom_proxy, cf_priv, M_WAITOK, NULL);
bioq_init(&cf_priv->cf_bq);
return 0;
}
static device_method_t cf_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cf_probe),
DEVMETHOD(device_identify, cf_identify),
DEVMETHOD(device_attach, cf_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
{ 0, 0 }
};
static driver_t cf_driver = {
"cf",
cf_methods,
sizeof(struct cf_priv)
};
static devclass_t cf_devclass;
DRIVER_MODULE(cf, nexus, cf_driver, cf_devclass, 0, 0);

View file

@ -0,0 +1,35 @@
/*
* octeon_ebt3000_cf.h
*
*/
#ifndef __OCTEON_EBT3000_H__
#define __OCTEON_EBT3000_H__
#define OCTEON_CF_COMMON_BASE_ADDR (0x1d000000 | (1 << 11))
#define OCTEON_MIO_BOOT_REG_CFGX(offset) (0x8001180000000000ull + ((offset) * 8))
typedef union
{
uint64_t word64;
struct
{
uint64_t reserved : 27; /**< Reserved */
uint64_t sam : 1; /**< Region 0 SAM */
uint64_t we_ext : 2; /**< Region 0 write enable count extension */
uint64_t oe_ext : 2; /**< Region 0 output enable count extension */
uint64_t en : 1; /**< Region 0 enable */
uint64_t orbit : 1; /**< No function for region 0 */
uint64_t ale : 1; /**< Region 0 ALE mode */
uint64_t width : 1; /**< Region 0 bus width */
uint64_t size : 12; /**< Region 0 size */
uint64_t base : 16; /**< Region 0 base address */
} bits;
} octeon_mio_boot_reg_cfgx_t;
#endif /* __OCTEON_EBT3000_H__ */