snd_hdsp(4): RME HDSP 9632 and HDSP 9652 sound card driver.

Add a sound(4) bridge device driver for the RME HDSP 9632 and HDSP 9652
sound cards. These cards require a nowadays rare PCI 32bit (not PCIe)
slot, but still see use due to their value and wealth of features.
The HDSP 9632 is mostly comparable to the newer HDSPe AIO, while the
HDSP 9652 is similar to the HDSPe RayDAT. These HDSPe PCIe cards are
supported by the snd_hdspe(4) driver which was taken as a starting point
for development of snd_hdsp(4).

Implementation is kept separately due to substantial differences in
hardware configuration and to allow easy removal in case PCI 32bit
support would be phased out in the future.

The snd_hdsp(4) kernel module is not enabled by default, and can be
loaded at runtime with kldload(8) or during boot via loader.conf(5).
Basic operation was tested with both cards, not including all optional
cable connectors and expansion boards. Features should be roughly on par
with the snd_hdspe(4) supported cards.

Reviewed by:	christos, br
Differential Revision:	https://reviews.freebsd.org/D45112
This commit is contained in:
Florian Walpen 2024-05-09 19:36:40 +01:00 committed by Ruslan Bukin
parent 82f43db382
commit 5687c71d5f
11 changed files with 2355 additions and 1 deletions

View file

@ -519,6 +519,7 @@ MAN= aac.4 \
snd_es137x.4 \
snd_fm801.4 \
snd_hda.4 \
snd_hdsp.4 \
snd_hdspe.4 \
snd_ich.4 \
snd_maestro3.4 \

View file

@ -101,6 +101,8 @@ The following bridge device drivers are available:
.It
.Xr snd_hda 4 (enabled by default on amd64, i386)
.It
.Xr snd_hdsp 4
.It
.Xr snd_hdspe 4
.It
.Xr snd_ich 4 (enabled by default on amd64, i386)
@ -609,6 +611,7 @@ A device node is not created properly.
.Xr snd_es137x 4 ,
.Xr snd_fm801 4 ,
.Xr snd_hda 4 ,
.Xr snd_hdsp 4 ,
.Xr snd_hdspe 4 ,
.Xr snd_ich 4 ,
.Xr snd_maestro3 4 ,

154
share/man/man4/snd_hdsp.4 Normal file
View file

@ -0,0 +1,154 @@
.\" Copyright (c) 2012 Ruslan Bukin <br@bsdpad.com>
.\" Copyright (c) 2024 Florian Walpen <dev@submerge.ch>
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.Dd May 1, 2024
.Dt SND_HDSP 4
.Os
.Sh NAME
.Nm snd_hdsp
.Nd "RME HDSP bridge device driver"
.Sh SYNOPSIS
To compile this driver into the kernel, place the following lines in your
kernel configuration file:
.Bd -ragged -offset indent
.Cd "device sound"
.Cd "device snd_hdsp"
.Ed
.Pp
Alternatively, to load the driver as a module at boot time, place the
following line in
.Xr loader.conf 5 :
.Bd -literal -offset indent
snd_hdsp_load="YES"
.Ed
.Sh DESCRIPTION
The
.Nm
bridge driver allows the generic audio driver
.Xr sound 4
to attach to RME HDSP audio devices.
.Sh HARDWARE
The
.Nm
driver supports the following audio devices:
.Pp
.Bl -bullet -compact
.It
RME HDSP 9632
.It
RME HDSP 9652
.El
.Pp
By default, each
.Xr pcm 4
device corresponds to a physical port on the sound card.
For ADAT ports, 8 channel, 4 channel and 2 channel formats are supported.
The effective number of ADAT channels is 8 channels at single speed
(32kHz-48kHz) and 4 channels at double speed (64kHz-96kHz).
Only the HDSP 9632 can operate at quad speed (128kHz-192kHz), ADAT is
disabled in this mode.
Depending on sample rate and channel format selected, not all pcm channels can
be mapped to ADAT channels and vice versa.
.Sh LOADER TUNABLES
These settings can be entered at the
.Xr loader 8
prompt or in
.Xr loader.conf 5 .
.Bl -tag -width indent
.It Va hw.hdsp.unified_pcm
If set to 1, all physical ports are combined into one unified pcm device.
When opened in multi-channel audio software, this makes all ports available
at the same time, and fully synchronized.
For resulting channel numbers consult the following table:
.El
.Bl -column "Sound Card" "Single Speed" "Double Speed" "Quad Speed"
.Sy "Sound Card" Ta Sy "Single Speed" Ta Sy "Double Speed" Ta Sy "Quad Speed"
.It "" Ta "Play | Rec" Ta "Play | Rec" Ta "Play | Rec"
.It HDSP 9632 Ta " 12 | 12" Ta " 8 | 8" Ta " 4 | 4"
.It HDSP 9652 Ta " 26 | 26" Ta " 14 | 14" Ta " - | -"
.El
.Sh SYSCTL TUNABLES
These settings and informational values can be accessed at runtime with the
.Xr sysctl 8
command.
If multiple RME HDSP sound cards are installed, each device has a separate
configuration.
To adjust the following sysctl identifiers for a specific sound card, insert
the respective device number in place of
.Ql 0 .
.Bl -tag -width indent
.It Va dev.hdsp.0.sample_rate
Set a fixed sample rate from 32000, 44100, 48000, up to 192000.
This is usually required for digital connections (AES, S/PDIF, ADAT).
The default value of 0 adjusts the sample rate according to pcm device settings.
.It Va dev.hdsp.0.period
The number of samples processed per interrupt, from 32, 64, 128, up to 4096.
Setting a lower value here results in less latency, but increases system load
due to frequent interrupt processing.
Extreme values may cause audio gaps and glitches.
.It Va dev.hdsp.0.clock_list
Lists possible clock sources to sync with, depending on the hardware model.
This includes internal and external master clocks as well as incoming digital
audio signals like AES, S/PDIF and ADAT.
.It Va dev.hdsp.0.clock_preference
Select a preferred clock source from the clock list.
HDSP cards will sync to this clock source when available, but fall back to
auto-sync with any other digital clock signal they receive.
Set this to
.Ql internal
if the HDSP card should act as master clock.
.It Va dev.hdsp.0.clock_source
Shows the actual clock source in use (read only).
This differs from what is set as clock preference when in auto-sync mode.
.It Va dev.hdsp.0.sync_status
Display the current sync status of all external clock sources.
Status indications are
.Ql none
for no signal at all,
.Ql lock
for when a valid signal is present, and
.Ql sync
for accurately synchronized signals (required for recording digital
audio).
.El
.Pp
Where appropriate these sysctl values are modeled after official RME software on
other platforms, and adopt their terminology.
Consult the RME user manuals for additional information.
.Sh SEE ALSO
.Xr sound 4
.Sh HISTORY
The
.Nm
device driver first appeared in
.Fx 15.0 .
.Sh AUTHORS
.An -nosplit
Based on
.Xr snd_hdspe 4
originally written by
.An Ruslan Bukin <br@bsdpad.com> .
All adaptation to HDSP cards by
.An Florian Walpen <dev@submerge.ch> .

View file

@ -2093,6 +2093,7 @@ device sound
# snd_fm801: Forte Media FM801 PCI.
# snd_hda: Intel High Definition Audio (Controller) and
# compatible.
# snd_hdsp: RME HDSP 9632 and HDSP 9652
# snd_hdspe: RME HDSPe AIO and RayDAT.
# snd_ich: Intel ICH AC'97 and some more audio controllers
# embedded in a chipset, for example nVidia
@ -2120,6 +2121,7 @@ device snd_envy24ht
device snd_es137x
device snd_fm801
device snd_hda
device snd_hdsp
device snd_hdspe
device snd_ich
device snd_maestro3

View file

@ -3115,6 +3115,8 @@ dev/sound/pci/hda/hdaa_patches.c optional snd_hda pci
dev/sound/pci/hda/hdac.c optional snd_hda pci
dev/sound/pci/hda/hdac_if.m optional snd_hda pci
dev/sound/pci/hda/hdacc.c optional snd_hda pci
dev/sound/pci/hdsp.c optional snd_hdsp pci
dev/sound/pci/hdsp-pcm.c optional snd_hdsp pci
dev/sound/pci/hdspe.c optional snd_hdspe pci
dev/sound/pci/hdspe-pcm.c optional snd_hdspe pci
dev/sound/pcm/ac97.c optional sound

View file

@ -67,6 +67,7 @@ MODULE_DEPEND(snd_driver, snd_envy24ht, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_es137x, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_fm801, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_hda, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_hdsp, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_hdspe, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_ich, 1, 1, 1);
MODULE_DEPEND(snd_driver, snd_maestro3, 1, 1, 1);

1134
sys/dev/sound/pci/hdsp-pcm.c Normal file

File diff suppressed because it is too large Load diff

793
sys/dev/sound/pci/hdsp.c Normal file
View file

@ -0,0 +1,793 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2016 Ruslan Bukin <br@bsdpad.com>
* Copyright (c) 2023-2024 Florian Walpen <dev@submerge.ch>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSP driver for FreeBSD.
* Supported cards: HDSP 9632, HDSP 9652.
*/
#include <sys/types.h>
#include <sys/sysctl.h>
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pci/hdsp.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <mixer_if.h>
static bool hdsp_unified_pcm = false;
static SYSCTL_NODE(_hw, OID_AUTO, hdsp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"PCI HDSP");
SYSCTL_BOOL(_hw_hdsp, OID_AUTO, unified_pcm, CTLFLAG_RWTUN,
&hdsp_unified_pcm, 0, "Combine physical ports in one unified pcm device");
static struct hdsp_clock_source hdsp_clock_source_table_9632[] = {
{ "internal", HDSP_CLOCK_INTERNAL },
{ "adat", HDSP_CLOCK_ADAT1 },
{ "spdif", HDSP_CLOCK_SPDIF },
{ "word", HDSP_CLOCK_WORD },
{ NULL, HDSP_CLOCK_INTERNAL }
};
static struct hdsp_clock_source hdsp_clock_source_table_9652[] = {
{ "internal", HDSP_CLOCK_INTERNAL },
{ "adat1", HDSP_CLOCK_ADAT1 },
{ "adat2", HDSP_CLOCK_ADAT2 },
{ "adat3", HDSP_CLOCK_ADAT3 },
{ "spdif", HDSP_CLOCK_SPDIF },
{ "word", HDSP_CLOCK_WORD },
{ "adat_sync", HDSP_CLOCK_ADAT_SYNC },
{ NULL, HDSP_CLOCK_INTERNAL }
};
static struct hdsp_channel chan_map_9632[] = {
{ HDSP_CHAN_9632_ADAT, "adat" },
{ HDSP_CHAN_9632_SPDIF, "s/pdif" },
{ HDSP_CHAN_9632_LINE, "line" },
{ 0, NULL },
};
static struct hdsp_channel chan_map_9632_uni[] = {
{ HDSP_CHAN_9632_ALL, "all" },
{ 0, NULL },
};
static struct hdsp_channel chan_map_9652[] = {
{ HDSP_CHAN_9652_ADAT1, "adat1" },
{ HDSP_CHAN_9652_ADAT2, "adat2" },
{ HDSP_CHAN_9652_ADAT3, "adat3" },
{ HDSP_CHAN_9652_SPDIF, "s/pdif" },
{ 0, NULL },
};
static struct hdsp_channel chan_map_9652_uni[] = {
{ HDSP_CHAN_9652_ALL, "all" },
{ 0, NULL },
};
static void
hdsp_intr(void *p)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
device_t *devlist;
int devcount;
int status;
int err;
int i;
sc = (struct sc_info *)p;
snd_mtxlock(sc->lock);
status = hdsp_read_1(sc, HDSP_STATUS_REG);
if (status & HDSP_AUDIO_IRQ_PENDING) {
if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
return;
for (i = 0; i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
if (scp->ih != NULL)
scp->ih(scp);
}
hdsp_write_1(sc, HDSP_INTERRUPT_ACK, 0);
free(devlist, M_TEMP);
}
snd_mtxunlock(sc->lock);
}
static void
hdsp_dmapsetmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
#if 0
device_printf(sc->dev, "hdsp_dmapsetmap()\n");
#endif
}
static int
hdsp_alloc_resources(struct sc_info *sc)
{
/* Allocate resource. */
sc->csid = PCIR_BAR(0);
sc->cs = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->csid, RF_ACTIVE);
if (!sc->cs) {
device_printf(sc->dev, "Unable to map SYS_RES_MEMORY.\n");
return (ENXIO);
}
sc->cst = rman_get_bustag(sc->cs);
sc->csh = rman_get_bushandle(sc->cs);
/* Allocate interrupt resource. */
sc->irqid = 0;
sc->irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->irqid,
RF_ACTIVE | RF_SHAREABLE);
if (!sc->irq ||
bus_setup_intr(sc->dev, sc->irq, INTR_MPSAFE | INTR_TYPE_AV,
NULL, hdsp_intr, sc, &sc->ih)) {
device_printf(sc->dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
/* Allocate DMA resources. */
if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(sc->dev),
/*alignment*/4,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL,
/*filterarg*/NULL,
/*maxsize*/2 * HDSP_DMASEGSIZE,
/*nsegments*/2,
/*maxsegsz*/HDSP_DMASEGSIZE,
/*flags*/0,
/*lockfunc*/NULL,
/*lockarg*/NULL,
/*dmatag*/&sc->dmat) != 0) {
device_printf(sc->dev, "Unable to create dma tag.\n");
return (ENXIO);
}
sc->bufsize = HDSP_DMASEGSIZE;
/* pbuf (play buffer). */
if (bus_dmamem_alloc(sc->dmat, (void **)&sc->pbuf, BUS_DMA_WAITOK,
&sc->pmap)) {
device_printf(sc->dev, "Can't alloc pbuf.\n");
return (ENXIO);
}
if (bus_dmamap_load(sc->dmat, sc->pmap, sc->pbuf, sc->bufsize,
hdsp_dmapsetmap, sc, BUS_DMA_NOWAIT)) {
device_printf(sc->dev, "Can't load pbuf.\n");
return (ENXIO);
}
/* rbuf (rec buffer). */
if (bus_dmamem_alloc(sc->dmat, (void **)&sc->rbuf, BUS_DMA_WAITOK,
&sc->rmap)) {
device_printf(sc->dev, "Can't alloc rbuf.\n");
return (ENXIO);
}
if (bus_dmamap_load(sc->dmat, sc->rmap, sc->rbuf, sc->bufsize,
hdsp_dmapsetmap, sc, BUS_DMA_NOWAIT)) {
device_printf(sc->dev, "Can't load rbuf.\n");
return (ENXIO);
}
bzero(sc->pbuf, sc->bufsize);
bzero(sc->rbuf, sc->bufsize);
return (0);
}
static void
hdsp_map_dmabuf(struct sc_info *sc)
{
uint32_t paddr, raddr;
paddr = vtophys(sc->pbuf);
raddr = vtophys(sc->rbuf);
hdsp_write_4(sc, HDSP_PAGE_ADDR_BUF_OUT, paddr);
hdsp_write_4(sc, HDSP_PAGE_ADDR_BUF_IN, raddr);
}
static int
hdsp_sysctl_sample_rate(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc = oidp->oid_arg1;
int error;
unsigned int speed, multiplier;
speed = sc->force_speed;
/* Process sysctl (unsigned) integer request. */
error = sysctl_handle_int(oidp, &speed, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Speed from 32000 to 192000, 0 falls back to pcm speed setting. */
sc->force_speed = 0;
if (speed > 0) {
multiplier = 1;
if ((speed > (96000 + 128000) / 2) && sc->type == HDSP_9632)
multiplier = 4;
else if (speed > (48000 + 64000) / 2)
multiplier = 2;
if (speed < ((32000 + 44100) / 2) * multiplier)
sc->force_speed = 32000 * multiplier;
else if (speed < ((44100 + 48000) / 2) * multiplier)
sc->force_speed = 44100 * multiplier;
else
sc->force_speed = 48000 * multiplier;
}
return (0);
}
static int
hdsp_sysctl_period(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc = oidp->oid_arg1;
int error;
unsigned int period;
period = sc->force_period;
/* Process sysctl (unsigned) integer request. */
error = sysctl_handle_int(oidp, &period, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Period is from 2^5 to 2^14, 0 falls back to pcm latency settings. */
sc->force_period = 0;
if (period > 0) {
sc->force_period = 32;
while (sc->force_period < period && sc->force_period < 4096)
sc->force_period <<= 1;
}
return (0);
}
static uint32_t
hdsp_control_clock_preference(enum hdsp_clock_type type)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (HDSP_CONTROL_MASTER);
case HDSP_CLOCK_ADAT1:
return (HDSP_CONTROL_CLOCK(0));
case HDSP_CLOCK_ADAT2:
return (HDSP_CONTROL_CLOCK(1));
case HDSP_CLOCK_ADAT3:
return (HDSP_CONTROL_CLOCK(2));
case HDSP_CLOCK_SPDIF:
return (HDSP_CONTROL_CLOCK(3));
case HDSP_CLOCK_WORD:
return (HDSP_CONTROL_CLOCK(4));
case HDSP_CLOCK_ADAT_SYNC:
return (HDSP_CONTROL_CLOCK(5));
default:
return (HDSP_CONTROL_MASTER);
}
}
static int
hdsp_sysctl_clock_preference(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[16] = "invalid";
int error;
uint32_t control;
sc = oidp->oid_arg1;
/* Select sync ports table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* Extract preferred clock source from control register. */
control = sc->ctrl_register & HDSP_CONTROL_CLOCK_MASK;
for (clock = clock_table; clock->name != NULL; ++clock) {
if (hdsp_control_clock_preference(clock->type) == control)
break;
}
if (clock->name != NULL)
strlcpy(buf, clock->name, sizeof(buf));
/* Process sysctl string request. */
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Find clock source matching the sysctl string. */
for (clock = clock_table; clock->name != NULL; ++clock) {
if (strncasecmp(buf, clock->name, sizeof(buf)) == 0)
break;
}
/* Set preferred clock source in control register. */
if (clock->name != NULL) {
control = hdsp_control_clock_preference(clock->type);
control &= HDSP_CONTROL_CLOCK_MASK;
snd_mtxlock(sc->lock);
sc->ctrl_register &= ~HDSP_CONTROL_CLOCK_MASK;
sc->ctrl_register |= control;
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
snd_mtxunlock(sc->lock);
}
return (0);
}
static uint32_t
hdsp_status2_clock_source(enum hdsp_clock_type type)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (0);
case HDSP_CLOCK_ADAT1:
return (HDSP_STATUS2_CLOCK(0));
case HDSP_CLOCK_ADAT2:
return (HDSP_STATUS2_CLOCK(1));
case HDSP_CLOCK_ADAT3:
return (HDSP_STATUS2_CLOCK(2));
case HDSP_CLOCK_SPDIF:
return (HDSP_STATUS2_CLOCK(3));
case HDSP_CLOCK_WORD:
return (HDSP_STATUS2_CLOCK(4));
case HDSP_CLOCK_ADAT_SYNC:
return (HDSP_STATUS2_CLOCK(5));
default:
return (0);
}
}
static int
hdsp_sysctl_clock_source(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[16] = "invalid";
uint32_t status2;
sc = oidp->oid_arg1;
/* Select sync ports table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* Read current (autosync) clock source from status2 register. */
snd_mtxlock(sc->lock);
status2 = hdsp_read_4(sc, HDSP_STATUS2_REG);
status2 &= HDSP_STATUS2_CLOCK_MASK;
snd_mtxunlock(sc->lock);
/* Translate status2 register value to clock source. */
for (clock = clock_table; clock->name != NULL; ++clock) {
/* In clock master mode, override with internal clock source. */
if (sc->ctrl_register & HDSP_CONTROL_MASTER) {
if (clock->type == HDSP_CLOCK_INTERNAL)
break;
} else if (hdsp_status2_clock_source(clock->type) == status2)
break;
}
/* Process sysctl string request. */
if (clock->name != NULL)
strlcpy(buf, clock->name, sizeof(buf));
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdsp_sysctl_clock_list(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[256];
int n;
sc = oidp->oid_arg1;
n = 0;
/* Select clock source table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* List available clock sources. */
buf[0] = 0;
for (clock = clock_table; clock->name != NULL; ++clock) {
if (n > 0)
n += strlcpy(buf + n, ",", sizeof(buf) - n);
n += strlcpy(buf + n, clock->name, sizeof(buf) - n);
}
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static bool
hdsp_clock_source_locked(enum hdsp_clock_type type, uint32_t status,
uint32_t status2)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (true);
case HDSP_CLOCK_ADAT1:
return ((status >> 3) & 0x01);
case HDSP_CLOCK_ADAT2:
return ((status >> 2) & 0x01);
case HDSP_CLOCK_ADAT3:
return ((status >> 1) & 0x01);
case HDSP_CLOCK_SPDIF:
return (!((status >> 25) & 0x01));
case HDSP_CLOCK_WORD:
return ((status2 >> 3) & 0x01);
case HDSP_CLOCK_ADAT_SYNC:
return ((status >> 5) & 0x01);
default:
return (false);
}
}
static bool
hdsp_clock_source_synced(enum hdsp_clock_type type, uint32_t status,
uint32_t status2)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (true);
case HDSP_CLOCK_ADAT1:
return ((status >> 18) & 0x01);
case HDSP_CLOCK_ADAT2:
return ((status >> 17) & 0x01);
case HDSP_CLOCK_ADAT3:
return ((status >> 16) & 0x01);
case HDSP_CLOCK_SPDIF:
return (((status >> 4) & 0x01) && !((status >> 25) & 0x01));
case HDSP_CLOCK_WORD:
return ((status2 >> 4) & 0x01);
case HDSP_CLOCK_ADAT_SYNC:
return ((status >> 27) & 0x01);
default:
return (false);
}
}
static int
hdsp_sysctl_sync_status(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[256];
char *state;
int n;
uint32_t status, status2;
sc = oidp->oid_arg1;
n = 0;
/* Select sync ports table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* Read current lock and sync bits from status registers. */
snd_mtxlock(sc->lock);
status = hdsp_read_4(sc, HDSP_STATUS_REG);
status2 = hdsp_read_4(sc, HDSP_STATUS2_REG);
snd_mtxunlock(sc->lock);
/* List clock sources with lock and sync state. */
for (clock = clock_table; clock->name != NULL; ++clock) {
if (clock->type == HDSP_CLOCK_INTERNAL)
continue;
if (n > 0)
n += strlcpy(buf + n, ",", sizeof(buf) - n);
state = "none";
if (hdsp_clock_source_locked(clock->type, status, status2)) {
if (hdsp_clock_source_synced(clock->type, status,
status2))
state = "sync";
else
state = "lock";
}
n += snprintf(buf + n, sizeof(buf) - n, "%s(%s)",
clock->name, state);
}
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdsp_probe(device_t dev)
{
uint32_t rev;
if (pci_get_vendor(dev) == PCI_VENDOR_XILINX &&
pci_get_device(dev) == PCI_DEVICE_XILINX_HDSP) {
rev = pci_get_revid(dev);
switch (rev) {
case PCI_REVISION_9632:
device_set_desc(dev, "RME HDSP 9632");
return (0);
case PCI_REVISION_9652:
device_set_desc(dev, "RME HDSP 9652");
return (0);
}
}
return (ENXIO);
}
static int
hdsp_init(struct sc_info *sc)
{
unsigned mixer_controls;
/* Set latency. */
sc->period = 256;
/*
* The pcm channel latency settings propagate unreliable blocksizes,
* different for recording and playback, and skewed due to rounding
* and total buffer size limits.
* Force period to a consistent default until these issues are fixed.
*/
sc->force_period = 256;
sc->ctrl_register = hdsp_encode_latency(2);
/* Set rate. */
sc->speed = HDSP_SPEED_DEFAULT;
sc->force_speed = 0;
sc->ctrl_register &= ~HDSP_FREQ_MASK;
sc->ctrl_register |= HDSP_FREQ_MASK_DEFAULT;
/* Set internal clock source (master). */
sc->ctrl_register &= ~HDSP_CONTROL_CLOCK_MASK;
sc->ctrl_register |= HDSP_CONTROL_MASTER;
/* SPDIF from coax in, line out. */
sc->ctrl_register &= ~HDSP_CONTROL_SPDIF_COAX;
sc->ctrl_register |= HDSP_CONTROL_SPDIF_COAX;
sc->ctrl_register &= ~HDSP_CONTROL_LINE_OUT;
sc->ctrl_register |= HDSP_CONTROL_LINE_OUT;
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
if (sc->type == HDSP_9652)
hdsp_write_4(sc, HDSP_CONTROL2_REG, HDSP_CONTROL2_9652_MIXER);
else
hdsp_write_4(sc, HDSP_CONTROL2_REG, 0);
switch (sc->type) {
case HDSP_9632:
/* Mixer matrix is 2 source rows (input, playback) per output. */
mixer_controls = 2 * HDSP_MIX_SLOTS_9632 * HDSP_MIX_SLOTS_9632;
break;
case HDSP_9652:
/* Mixer matrix is 2 source rows (input, playback) per output. */
mixer_controls = 2 * HDSP_MIX_SLOTS_9652 * HDSP_MIX_SLOTS_9652;
break;
default:
return (ENXIO);
}
/* Initialize mixer matrix by silencing all controls. */
for (unsigned offset = 0; offset < mixer_controls * 2; offset += 4) {
/* Only accepts 4 byte values, pairs of 16 bit volume controls. */
hdsp_write_4(sc, HDSP_MIXER_BASE + offset,
(HDSP_MIN_GAIN << 16) | HDSP_MIN_GAIN);
}
/* Reset pointer, rewrite frequency (same register) for 9632. */
hdsp_write_4(sc, HDSP_RESET_POINTER, 0);
if (sc->type == HDSP_9632) {
/* Set DDS value. */
hdsp_write_4(sc, HDSP_FREQ_REG, hdsp_freq_reg_value(sc->speed));
}
return (0);
}
static int
hdsp_attach(device_t dev)
{
struct hdsp_channel *chan_map;
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t rev;
int i, err;
#if 0
device_printf(dev, "hdsp_attach()\n");
#endif
sc = device_get_softc(dev);
sc->lock = snd_mtxcreate(device_get_nameunit(dev),
"snd_hdsp softc");
sc->dev = dev;
pci_enable_busmaster(dev);
rev = pci_get_revid(dev);
switch (rev) {
case PCI_REVISION_9632:
sc->type = HDSP_9632;
chan_map = hdsp_unified_pcm ? chan_map_9632_uni : chan_map_9632;
break;
case PCI_REVISION_9652:
sc->type = HDSP_9652;
chan_map = hdsp_unified_pcm ? chan_map_9652_uni : chan_map_9652;
break;
default:
return (ENXIO);
}
/* Allocate resources. */
err = hdsp_alloc_resources(sc);
if (err) {
device_printf(dev, "Unable to allocate system resources.\n");
return (ENXIO);
}
if (hdsp_init(sc) != 0)
return (ENXIO);
for (i = 0; i < HDSP_MAX_CHANS && chan_map[i].descr != NULL; i++) {
scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
scp->hc = &chan_map[i];
scp->sc = sc;
scp->dev = device_add_child(dev, "pcm", -1);
device_set_ivars(scp->dev, scp);
}
hdsp_map_dmabuf(sc);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"sync_status", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_sync_status, "A",
"List clock source signal lock and sync status");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_source", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_clock_source, "A",
"Currently effective clock source");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_preference", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_clock_preference, "A",
"Set 'internal' (master) or preferred autosync clock source");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_list", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_clock_list, "A",
"List of supported clock sources");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"period", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_period, "A",
"Force period of samples per interrupt (32, 64, ... 4096)");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"sample_rate", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_sample_rate, "A",
"Force sample rate (32000, 44100, 48000, ... 192000)");
return (bus_generic_attach(dev));
}
static void
hdsp_dmafree(struct sc_info *sc)
{
bus_dmamap_unload(sc->dmat, sc->rmap);
bus_dmamap_unload(sc->dmat, sc->pmap);
bus_dmamem_free(sc->dmat, sc->rbuf, sc->rmap);
bus_dmamem_free(sc->dmat, sc->pbuf, sc->pmap);
sc->rbuf = sc->pbuf = NULL;
}
static int
hdsp_detach(device_t dev)
{
struct sc_info *sc;
int err;
sc = device_get_softc(dev);
if (sc == NULL) {
device_printf(dev,"Can't detach: softc is null.\n");
return (0);
}
err = device_delete_children(dev);
if (err)
return (err);
hdsp_dmafree(sc);
if (sc->ih)
bus_teardown_intr(dev, sc->irq, sc->ih);
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
if (sc->irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->cs)
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->cs);
if (sc->lock)
snd_mtxfree(sc->lock);
return (0);
}
static device_method_t hdsp_methods[] = {
DEVMETHOD(device_probe, hdsp_probe),
DEVMETHOD(device_attach, hdsp_attach),
DEVMETHOD(device_detach, hdsp_detach),
{ 0, 0 }
};
static driver_t hdsp_driver = {
"hdsp",
hdsp_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdsp, pci, hdsp_driver, 0, 0);

257
sys/dev/sound/pci/hdsp.h Normal file
View file

@ -0,0 +1,257 @@
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2016 Ruslan Bukin <br@bsdpad.com>
* Copyright (c) 2023-2024 Florian Walpen <dev@submerge.ch>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define PCI_VENDOR_XILINX 0x10ee
#define PCI_DEVICE_XILINX_HDSP 0x3fc5 /* HDSP 9652 */
#define PCI_REVISION_9632 0x9b
#define PCI_REVISION_9652 0x6c
#define HDSP_9632 0
#define HDSP_9652 1
/* Hardware mixer */
#define HDSP_OUT_ENABLE_BASE 128
#define HDSP_IN_ENABLE_BASE 384
#define HDSP_MIXER_BASE 4096
#define HDSP_MAX_GAIN 32768
#define HDSP_MIN_GAIN 0
#define HDSP_MIX_SLOTS_9632 16
#define HDSP_MIX_SLOTS_9652 26
#define HDSP_CONTROL2_9652_MIXER (1 << 11)
/* Buffer */
#define HDSP_PAGE_ADDR_BUF_OUT 32
#define HDSP_PAGE_ADDR_BUF_IN 36
#define HDSP_BUF_POSITION_MASK 0x000FFC0
/* Frequency */
#define HDSP_FREQ_0 (1 << 6)
#define HDSP_FREQ_1 (1 << 7)
#define HDSP_FREQ_DOUBLE (1 << 8)
#define HDSP_FREQ_QUAD (1 << 31)
#define HDSP_FREQ_32000 HDSP_FREQ_0
#define HDSP_FREQ_44100 HDSP_FREQ_1
#define HDSP_FREQ_48000 (HDSP_FREQ_0 | HDSP_FREQ_1)
#define HDSP_FREQ_MASK (HDSP_FREQ_0 | HDSP_FREQ_1 | \
HDSP_FREQ_DOUBLE | HDSP_FREQ_QUAD)
#define HDSP_FREQ_MASK_DEFAULT HDSP_FREQ_48000
#define HDSP_FREQ_REG 0
#define HDSP_FREQ_9632 104857600000000ULL
#define hdsp_freq_multiplier(s) (((s) > 96000) ? 4 : \
(((s) > 48000) ? 2 : 1))
#define hdsp_freq_single(s) ((s) / hdsp_freq_multiplier(s))
#define hdsp_freq_reg_value(s) (HDSP_FREQ_9632 / hdsp_freq_single(s))
#define HDSP_SPEED_DEFAULT 48000
/* Latency */
#define HDSP_LAT_0 (1 << 1)
#define HDSP_LAT_1 (1 << 2)
#define HDSP_LAT_2 (1 << 3)
#define HDSP_LAT_MASK (HDSP_LAT_0 | HDSP_LAT_1 | HDSP_LAT_2)
#define HDSP_LAT_BYTES_MAX (4096 * 4)
#define HDSP_LAT_BYTES_MIN (32 * 4)
#define hdsp_encode_latency(x) (((x)<<1) & HDSP_LAT_MASK)
/* Gain */
#define HDSP_ADGain0 (1 << 25)
#define HDSP_ADGain1 (1 << 26)
#define HDSP_DAGain0 (1 << 27)
#define HDSP_DAGain1 (1 << 28)
#define HDSP_PhoneGain0 (1 << 29)
#define HDSP_PhoneGain1 (1 << 30)
#define HDSP_ADGainMask (HDSP_ADGain0 | HDSP_ADGain1)
#define HDSP_ADGainMinus10dBV (HDSP_ADGainMask)
#define HDSP_ADGainPlus4dBu (HDSP_ADGain0)
#define HDSP_ADGainLowGain 0
#define HDSP_DAGainMask (HDSP_DAGain0 | HDSP_DAGain1)
#define HDSP_DAGainHighGain (HDSP_DAGainMask)
#define HDSP_DAGainPlus4dBu (HDSP_DAGain0)
#define HDSP_DAGainMinus10dBV 0
#define HDSP_PhoneGainMask (HDSP_PhoneGain0|HDSP_PhoneGain1)
#define HDSP_PhoneGain0dB HDSP_PhoneGainMask
#define HDSP_PhoneGainMinus6dB (HDSP_PhoneGain0)
#define HDSP_PhoneGainMinus12dB 0
/* Settings */
#define HDSP_RESET_POINTER 0
#define HDSP_CONTROL_REG 64
#define HDSP_CONTROL2_REG 256
#define HDSP_STATUS_REG 0
#define HDSP_STATUS2_REG 192
#define HDSP_ENABLE (1 << 0)
#define HDSP_CONTROL_SPDIF_COAX (1 << 14)
#define HDSP_CONTROL_LINE_OUT (1 << 24)
/* Interrupts */
#define HDSP_AUDIO_IRQ_PENDING (1 << 0)
#define HDSP_AUDIO_INT_ENABLE (1 << 5)
#define HDSP_INTERRUPT_ACK 96
/* Channels */
#define HDSP_MAX_SLOTS 64 /* Mono channels */
#define HDSP_MAX_CHANS (HDSP_MAX_SLOTS / 2) /* Stereo pairs */
#define HDSP_CHANBUF_SAMPLES (16 * 1024)
#define HDSP_CHANBUF_SIZE (4 * HDSP_CHANBUF_SAMPLES)
#define HDSP_DMASEGSIZE (HDSP_CHANBUF_SIZE * HDSP_MAX_SLOTS)
#define HDSP_CHAN_9632_ADAT (1 << 0)
#define HDSP_CHAN_9632_SPDIF (1 << 1)
#define HDSP_CHAN_9632_LINE (1 << 2)
#define HDSP_CHAN_9632_ALL (HDSP_CHAN_9632_ADAT | \
HDSP_CHAN_9632_SPDIF | \
HDSP_CHAN_9632_LINE)
#define HDSP_CHAN_9632_EXT_BOARD (1 << 3)
#define HDSP_CHAN_9652_ADAT1 (1 << 5)
#define HDSP_CHAN_9652_ADAT2 (1 << 6)
#define HDSP_CHAN_9652_ADAT3 (1 << 7)
#define HDSP_CHAN_9652_ADAT_ALL (HDSP_CHAN_9652_ADAT1 | \
HDSP_CHAN_9652_ADAT2 | \
HDSP_CHAN_9652_ADAT3)
#define HDSP_CHAN_9652_SPDIF (1 << 8)
#define HDSP_CHAN_9652_ALL (HDSP_CHAN_9652_ADAT_ALL | \
HDSP_CHAN_9652_SPDIF)
struct hdsp_channel {
uint32_t ports;
char *descr;
};
enum hdsp_clock_type {
HDSP_CLOCK_INTERNAL,
HDSP_CLOCK_ADAT1,
HDSP_CLOCK_ADAT2,
HDSP_CLOCK_ADAT3,
HDSP_CLOCK_SPDIF,
HDSP_CLOCK_WORD,
HDSP_CLOCK_ADAT_SYNC
};
/* Preferred clock source. */
#define HDSP_CONTROL_MASTER (1 << 4)
#define HDSP_CONTROL_CLOCK_MASK (HDSP_CONTROL_MASTER | (1 << 13) | \
(1 << 16) | (1 << 17))
#define HDSP_CONTROL_CLOCK(n) (((n & 0x04) << 11) | ((n & 0x03) << 16))
/* Autosync selected clock source. */
#define HDSP_STATUS2_CLOCK(n) ((n & 0x07) << 8)
#define HDSP_STATUS2_CLOCK_MASK HDSP_STATUS2_CLOCK(0x07);
struct hdsp_clock_source {
char *name;
enum hdsp_clock_type type;
};
static MALLOC_DEFINE(M_HDSP, "hdsp", "hdsp audio");
/* Channel registers */
struct sc_chinfo {
struct snd_dbuf *buffer;
struct pcm_channel *channel;
struct sc_pcminfo *parent;
/* Channel information */
struct pcmchan_caps *caps;
uint32_t cap_fmts[4];
uint32_t dir;
uint32_t format;
uint32_t ports;
uint32_t lvol;
uint32_t rvol;
/* Buffer */
uint32_t *data;
uint32_t size;
uint32_t position;
/* Flags */
uint32_t run;
};
/* PCM device private data */
struct sc_pcminfo {
device_t dev;
uint32_t (*ih) (struct sc_pcminfo *scp);
uint32_t chnum;
struct sc_chinfo chan[HDSP_MAX_CHANS];
struct sc_info *sc;
struct hdsp_channel *hc;
};
/* HDSP device private data */
struct sc_info {
device_t dev;
struct mtx *lock;
uint32_t ctrl_register;
uint32_t type;
/* Control/Status register */
struct resource *cs;
int csid;
bus_space_tag_t cst;
bus_space_handle_t csh;
struct resource *irq;
int irqid;
void *ih;
bus_dma_tag_t dmat;
/* Play/Record DMA buffers */
uint32_t *pbuf;
uint32_t *rbuf;
uint32_t bufsize;
bus_dmamap_t pmap;
bus_dmamap_t rmap;
uint32_t period;
uint32_t speed;
uint32_t force_period;
uint32_t force_speed;
};
#define hdsp_read_1(sc, regno) \
bus_space_read_1((sc)->cst, (sc)->csh, (regno))
#define hdsp_read_2(sc, regno) \
bus_space_read_2((sc)->cst, (sc)->csh, (regno))
#define hdsp_read_4(sc, regno) \
bus_space_read_4((sc)->cst, (sc)->csh, (regno))
#define hdsp_write_1(sc, regno, data) \
bus_space_write_1((sc)->cst, (sc)->csh, (regno), (data))
#define hdsp_write_2(sc, regno, data) \
bus_space_write_2((sc)->cst, (sc)->csh, (regno), (data))
#define hdsp_write_4(sc, regno, data) \
bus_space_write_4((sc)->cst, (sc)->csh, (regno), (data))

View file

@ -6,7 +6,7 @@ SYSDIR?=${SRCTOP}/sys
# MK_SOURCELESS_UCODE option (see below).
SUBDIR= als4000 atiixp cs4281 ${_csa} emu10k1 emu10kx
SUBDIR+= envy24 envy24ht es137x fm801 hda hdspe ich
SUBDIR+= envy24 envy24ht es137x fm801 hda hdsp hdspe ich
SUBDIR+= ${_maestro3} neomagic solo spicds t4dwave via8233
SUBDIR+= via82c686 vibes driver uaudio

View file

@ -0,0 +1,7 @@
.PATH: ${SRCTOP}/sys/dev/sound/pci
KMOD= snd_hdsp
SRCS= device_if.h bus_if.h pci_if.h
SRCS+= hdsp.c hdsp-pcm.c hdsp.h
.include <bsd.kmod.mk>