Merge gdtoa-20110304.

This commit is contained in:
David Schultz 2011-03-12 07:03:06 +00:00
commit 50dad48bb7
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=219557
31 changed files with 3183 additions and 646 deletions

View file

@ -353,5 +353,12 @@ you also compile with -DNO_LOCALE_CACHE, the details about the
current "decimal point" character string are cached and assumed not
to change during the program's execution.
On machines with a 64-bit long double and perhaps a 113-bit "quad"
type, you can invoke "make Printf" to add Printf (and variants, such
as Fprintf) to gdtoa.a. These are analogs, declared in stdio1.h, of
printf and fprintf, etc. in which %La, %Le, %Lf, and %Lg are for long
double and (if appropriate) %Lqa, %Lqe, %Lqf, and %Lqg are for quad
precision printing.
Please send comments to David M. Gay (dmg at acm dot org, with " at "
changed at "@" and " dot " changed to ".").

672
contrib/gdtoa/changes Normal file
View file

@ -0,0 +1,672 @@
Sun Jun 30 13:48:26 EDT 1991:
dtoa.c: adjust dtoa to allow negative ndigits for modes 3,5,7,9
(fixed-point mode); fix rounding bug in these modes when the input
d (to be converted) satisfies 10^-(ndigits+1) <= |d| < 10^-ndigits ,
i.e., when the result, before rounding, would be empty but might
round to one digit. Adjust the decpt returned in these modes when
the result is empty (i.e., when |d| <= 5 * 10^-ndigits).
Tue Jul 2 21:44:00 EDT 1991
Correct an inefficiency introduced 2 days ago in dtoa's handling of
integers in modes 0, 1.
Mon Sep 9 23:29:38 EDT 1991
dtoa.c: remove superfluous declaration of size_t.
Sun Oct 6 15:34:15 EDT 1991
dtoa.c: fix another bug in modes 3,5,7,9 when the result, before
rounding, would be empty, but rounds to one digit: *decpt was low by
one.
Sat Jan 18 12:30:04 EST 1992
dtoa.c: add some #ifdef KR_headers lines relevant only if IBM is
defined; for input decimal strings representing numbers too large, have
strtod return HUGE_VAL only if __STDC__ is defined; otherwise have it
return +-Infinity for IEEE arithmetic, +- the largest machine number
for IBM and VAX arithmetic. (If __STDC__ is not defined, HUGE_VAL may
not be defined either, or it may be wrong.)
Mon Apr 27 23:13:43 EDT 1992
dtoa.c: tweak strtod (one-line addition) so the end-pointer = start
pointer when the input has, e.g., only white space.
Thu May 7 18:04:46 EDT 1992
dtoa.c: adjust treatment of exponent field (in strtod) to behave
reasonably with huge numbers and 16-bit ints.
Fri Jun 19 08:29:02 EDT 1992
dtoa.c: fix a botch in placement of #ifdef __cplusplus (which only
matters if you're using a C++ compiler).
Wed Oct 21 11:23:07 EDT 1992
dtoa.c: add #ifdef Bad_float_h lines for systems with missing or
inferior float.h .
Thu Apr 22 07:54:48 EDT 1993
dtoa.c: change < to <= in line 2059:
< for(result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j < i;
---
> for(result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j <= i;
With 32-bit ints, the former could give too small a block for the return
value when, e.g., mode = 2 or 4 and ndigits = 24 (16 for 16-bit ints).
Mon Jun 21 12:56:42 EDT 1993
dtoa.c: tweak to work with 32-bit ints and 64-bit longs
when compiled with -DLong=int .
Wed Jan 26 11:09:16 EST 1994
dtoa.c: fix bug in strtod's handling of numbers with very
negative exponents (e.g. 1.8826e-512), which should underflow to 0;
fix storage leak in strtod with underflows and overflows near
the underflow and overflow thresholds.
Mon Feb 28 11:37:30 EST 1994
dtoa.c:
85a86,89
> * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
> * if memory is available and otherwise does something you deem
> * appropriate. If MALLOC is undefined, malloc will be invoked
> * directly -- and assumed always to succeed.
87a92,95
> #ifndef MALLOC
> #define MALLOC malloc
> #endif
>
352c360
< rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(Long));
---
> rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
Thu Mar 3 16:56:39 EST 1994
dtoa.c: if MALLOC is #defined, declare it.
Wed Jan 4 15:45:34 EST 1995
dtoa.c: add CONST qualification to tens, bigtens, tinytens (for use
on embedded systems with little spare RAM).
Fri Mar 1 08:55:39 EST 1996
g_fmt.c: honor the sign of 0 and return the first argument (buf).
Sat Jul 6 07:59:28 EDT 1996
dtoa.c: cosmetic changes: "ULong" rather than "unsigned Long";
update comments to reflect AT&T breakup.
Mon Aug 5 23:31:24 EDT 1996
dtoa.c: add comment about invoking _control87(PC_53, MCW_PC)
(or the equivalent) on 80x87 machines before calling strtod or dtoa.
Tue Dec 17 15:01:56 EST 1996
dtoa.c: new #define possibilities: #define INFNAN_CHECK to have
strtod check (case insensitively) for "Infinity" and "NaN" on machines
with IEEE arithmetic; #define MULTIPLE_THREADS if the system offers
preemptively scheduled multiple threads, in which case you must supply
routines ACQUIRE_DTOA_LOCK(n) and FREE_DTOA_LOCK(n) (n = 0 or 1).
New void freedtoa(char*) for freeing values returned by dtoa; use of
freedtoa() is required if MULTIPLE_THREADS is #defined, and is merely
recommended otherwise.
g_fmt.c: adjusted to invoke freedtoa().
Wed Feb 12 00:40:01 EST 1997
dtoa.c: strtod: on IEEE systems, scale to avoid intermediate
underflows when the result does not underflow; compiling with
-DNO_IEEE_Scale restores the old logic. Fix a bug, revealed by
input string 2.2250738585072012e-308, in treating input just less
than the smallest normalized number. (The bug introduced an extra
ULP of error in this special case.)
Tue May 12 11:13:04 EDT 1998
dtoa.c: strtod: fix a glitch introduced with the scaling of 19970212
that caused one-bit rounding errors in certain denormal numbers, such
as 8.44291197326099e-309, which was read as 8.442911973260987e-309.
Remove #ifdef Unsigned_Shifts logic in favor of unsigned arithmetic.
Unless compiled with -DNO_LONG_LONG, use 64-bit arithmetic where
possible.
Fri May 15 07:49:07 EDT 1998
dtoa.c: strtod: fix another glitch with scaling to avoid underflow
with IEEE arithmetic, again revealed by the input string
2.2250738585072012e-308, which was rounded to the largest denormal
rather than the smallest normal double precision number.
Wed Aug 5 23:27:26 EDT 1998
gdtoa.tar.gz: tweaks in response to comments from Shawn C. Sheridan
(with no effect on the resulting .o files except when strtod.c is
compiled with -DNO_ERRNO); bigtens --> bigtens_D2A (a symbol meant
to be private to gdtoa.a).
Sat Sep 12 17:05:15 EDT 1998
gdtoa.tar.gz: more changes in response to comments from Shawn C.
Sheridan (including repair of a glitch in g_ffmt.c). For consistency
and possible convenience, there are some new functions and some name
changes to existing ones:
Old New
--- g_xLfmt
strtoQ strtopQ
--- strtopd
strtodd strtopdd
--- strtopf
strtox strtopx
--- strtopxL
--- strtorxL
--- strtoIxL
Functions strtopd and strtopf are variations of strtod and strtof,
respectively, which write their results to their final (pointer)
arguments. Functions strtorf and strtord are now analogous to the
other strtor* functions in that they now have a final pointer
argument to which they write their results, and they return the
int value they get from strtodg.
The xL family (g_xLfmt, strto[Irp]xL) is a variation of the old x
family (for 80-bit IEEE double-extended precision) that assumes the
storage layout of the Motorola 68881's double-extended format: 80
interesting bits stored in 3 unsigned 32-bit ints (with a "hole", 16
zero bits, in the word that holds the sign and exponent). The x
family now deals with 80-bit (5 unsigned 16-bit ints) rather than
96-bit arrays (3 unsigned 32-bit ints) that hold its 80-bit
double-extended values. (This relaxes the alignment requirements of
the x family and results in strto[Ipr]x writing 80 rather than 96 bits
to their final arguments.)
Each g_*fmt routine now returns a pointer to the null character
that terminates the strings it writes, rather than a pointer to
the beginning of that string (the first argument). These routines
still return 0 (NULL) if the first argument is too short.
The second argument to g_dfmt is now pointer (to a double) rather
than a double value.
Thu Oct 29 21:54:00 EST 1998
dtoa.c: Fix bug in strtod under -DSudden_Underflow and (the default)
-DAvoid_Underflow: some numbers that should have suffered sudden
underflow were scaled inappropriately (giving nonzero return values).
Example: "1e-320" gave -3.6304123742133376e+280 rather than 0.
Mon Nov 2 15:41:16 EST 1998
dtoa.c: tweak to remove LL suffixes from numeric constants (for
compilers that offer a 64-bit long long type but do not recognize the
LL constants prescribed by C9x, the proposed update to the ANSI/ISO C
standard). Thanks to Earl Chew for pointing out the existence of such
compilers.
gdtoa.tar.gz: renamed gdtoa.tgz and updated to incorporate the above
changes (of 29 Oct. and 2 Nov. 1998) to dtoa.c.
Thu Mar 25 17:56:44 EST 1999
dtoa.c, gdtoa.tgz: fix a bug in strtod's reading of 4.9e-324:
it returned 0 rather than the smallest denormal.
Mon Apr 12 10:39:25 EDT 1999
gdtoa.tgz: test/ftest.c: change %.7g to %.8g throughout.
Fri Aug 20 19:17:52 EDT 1999
gdtoa.tgz: gdtoa.c: fix two bugs reported by David Chase (thanks!):
1. An adjustment for denormalized numbers around 503 was off by one.
2. A check for "The special case" around line 551 omitted the condition
that we not be at the bottom of the exponent range.
Mon Sep 13 10:53:34 EDT 1999
dtoa.c: computationally invisible tweak for the benefit of people
who actually read the code:
2671c2671
< && word0(d) & Exp_mask
---
> && word0(d) & (Exp_mask & Exp_mask << 1)
I.e., in dtoa(), the "special case" does not arise for the smallest
normalized IEEE double. Thanks to Waldemar Horwat for pointing this
out and suggesting the modified test above. Also, some tweaks for
compilation with -DKR_headers.
gdtoa.tgz: gdtoa.c: analogous change:
552c552
< if (bbits == 1 && be0 > fpi->emin) {
---
> if (bbits == 1 && be0 > fpi->emin + 1) {
This has no effect on the g*fmt.c routines, but might affect the
computation of the shortest decimal string that rounds to the
smallest normalized floating-point number of other precisions.
gdota.tgz: test/d.out test/dI.out test/dd.out: updated to reflect
previous changes (of 19990820); test/*.c: most test programs modified
to permit #hex input. See the comments.
Fri Sep 17 01:39:25 EDT 1999
Try again to update dtoa.c: somehow dtoa.c got put back to a version
from 3 years ago after this "changes" file was updated on 13 Sept. 1999.
One more tweak to omit a warning on some systems:
2671c2671
< && word0(d) & (Exp_mask & Exp_mask << 1)
---
> && word0(d) & (Exp_mask & ~Exp_msk1)
Plus changes to avoid trouble with aggressively optimizing compilers
(e.g., gcc 2.95.1 under -O2). On some systems, these changes do not
affect the resulting machine code; on others, the old way of viewing
a double as a pair of ULongs is available with -DYES_ALIAS.
Tue Sep 21 09:21:25 EDT 1999
gdtoa.tgz: changes analogous to those of 17 Sept. 1999 to dtoa.c to
avoid trouble with aggressively optimizing compilers.
Wed Dec 15 13:14:38 EST 1999
dtoa.c: tweak to bypass a bug with HUGE_VAL on HP systems.
Mon Jan 17 18:32:52 EST 2000
dtoa.c and gdtoa.tgz: strtod: set errno = ERANGE on all inputs that
underflow to zero (not just those sufficiently less than the smallest
positive denormalized number).
gdtoa.tgz: README: point out that compiling with -DNO_ERRNO inhibits
errno assignments (by strtod and the core converter, strtodg).
Tue Jan 18 16:35:31 EST 2000
dtoa.c and gdtoa.tgz: strtod: modify the test inserted yesterday so
it may work correctly with buggy 80x87 compilers. (The change matters,
e.g., to Microsoft Visual C++ 4.2 and 6.0.)
Thu Nov 2 21:00:45 EST 2000
dtoa.c and gdtoa.tgz:
1. Fix bug in test for exact half-way cases of denormalized numbers
(without -DNO_IEEE_Scale).
2. Compilation with -DNO_ERRNO prevents strtod from assigning
errno = ERANGE when the result overflows or underflows to 0.
3. With IEEE arithmetic and no -DNO_IEEE_Scale, adjust scaling so
ulp(d) never returns a denormalized number. This and other tweaks
permit strtod and dtoa to work correctly on machines that flush
underflows to zero but otherwise use IEEE arithmetic without
Sudden_Underflow being #defined (and with strtod simply returning 0
instead of denormalized numbers).
4. Compilations with -DUSE_LOCALE causes strtod to use the current
locale's decimal_point value.
5. Under compilations with -DINFNAN_CHECK, strtod and strtodg (case
insensitively) treat "inf" the same as "infinity" and, unless
compiled with -DNo_Hex_NaN, accept "nan(x)", where x is a string of
hexadecimal digits and spaces, as a NaN whose value is constructed
from x (as explained in comments near the top of dtoa.c and in
gdtoaimp.h).
6. The default PRIVATE_MEM is increased slightly (to 2304), and comments
near the top of dtoa.c provide more discussion of PRIVATE_MEM.
7. Meanings of dtoa modes 4,5,8,9 changed. See comments in dtoa.c and
gdtoa.c; modes 4 and 5 may now provide shorter strings that round
(in round-nearest mode) to the given double value. (Paxson's
testbase program is unhappy with this new rounding, as it can
introduce an error of more than one base-10 ulp when 17 or more
decimal digits are requested.)
8. With IEEE arithmetic, compilation with -DHonor_FLT_ROUNDS causes
strtod and dtoa to round according to FLT_ROUNDS:
0 ==> towards 0,
1 ==> nearest,
2 ==> towards +Infinity,
3 ==> towards -Infinity.
9. With IEEE arithmetic, compilation with -DSET_INEXACT causes extra
computation (and sometimes slower conversions in dtoa and strtod,
particularly for dtoa in cases where otherwise some simple floating-
point computations would suffice) to set the IEEE inexact flag
correctly. As comments in dtoa.c explain in more detail, this
requires compilation in an environment (such as #include "dtoa.c"
in suitable source) that provides
int get_inexact(void);
void clear_inexact(void);
10. On input "-x", return 0 rather than -0.
gdtoa.tgz: gethex.c: adjust logic for reading hex constants to accord
with current wording of the C99 standard. Previously, I thought hex
constants read by strtod and friends had to have either a decimal point
or an exponent field; p. 307 of the C99 standard states that both are
optional. Because of the complexity of this reading, it is available
only in the variant of strtod that appears in gdtoa.tgz.
strtodg (gdtoa.tgz): New return value STRTOG_NaNbits (with
STRTOG_NoNumber renumbered). Allow STRTOG_Neg bit in strtodg returns
for STRTOG_NaN and STRTOG_NaNbits.
gdtoa.tgz: Fix uninitialized variable bug in g_Qfmt.c's handling of NaNs.
Mon Nov 13 14:00:05 EST 2000
gdtoa.tgz: strtodg: fix a storage leak and an apparently rare infinite
loop with a boundary case of directed rounding. Example input to
gdtoa/test/Qtest where the loop bug bit:
r 3
35184372088831.999999999999999999999999999999999999
This was revealed by testbase for quad precision Solaris arithmetic;
it did not show up in several other testbase configurations.
Wed Feb 7 12:56:11 EST 2001
dtoa.c: fix bug (possible infinite loop, e.g., with
2.47032822920623272e-324) introduced 20001113 in handling the special
case of a power of 2 to be rounded down one ulp. Add test (required
by changes of 20001113) for the extra special case of 2^-1075 (half
the smallest denormal).
gdtoa.tgz: corresponding adjustments to strtod.c and strtodg.c.
Tue Mar 13 00:46:09 EST 2001
gdtoa.tgz: gdtoa/strtodg.c: fix bug in handling values exactly half
an ulp less than the smallest normal floating-point number;
gdtoa/*test.c: fix glitch in handling "n ..." lines (intended to
change "ndig").
Wed Mar 6 10:13:52 EST 2002
gdtoa.tgz: add gdtoa/test/strtodt.c and gdtoa/test/testnos3 to test
strtod on hard cases posted by Fred Tydeman to comp.arch.arithmetic on
26 Feb. 1996. Add comment to gdtoa/README about strtod requiring true
IEEE arithmetic (with 53-bit rounding precision on 80x87 chips).
In gdtoa/test, automate selection of expected output files [xQ]*.out.
Wed Mar 5 10:35:41 EST 2003
gdtoa.tgz: fix a bug in strtod's handling of 0-valued 0x... "decimal"
strings. A fault was possible. Thanks to David Shultz for reporting
this bug.
Tue Mar 18 09:38:28 EST 2003
gdtoa.tgz: fix a glitch in strtodg.c with -DUSE_LOCALE; add #ifdef
USE_LOCALE lines to g__fmt.c (to affect binary --> decimal conversions
via the g*fmt routines), and add comments about -DUSE_LOCALE to README.
In short, compiling strtod.c, strtodg.c, and g__fmt.c with -DUSE_LOCALE
causes them to determine the decimal-point character from the current
locale. (Otherwise it is '.'.)
Fri Mar 21 16:36:27 EST 2003
gdtoa.tgz: gethex.c: add #ifdef USE_LOCAL logic; strtod.c: fix a
glitch in handling 0x... input (the return from gethex was ignored).
Wed Mar 26 15:35:10 EST 2003
gdtoa.tgz: gethex.c: pedantic (and normally invisible) change:
use unsigned char for decimalpoint variable (under -DUSE_LOCALE).
Sat Jan 17 23:58:52 MST 2004
gdtoa.tgz: gethex.c: supply missing parens in test for whether a
denormal result should be zero, correct logic for rounding up when the
result is denormal, and when returning zero or Infinity, set *bp = 0;
strtod.c: switch on gethex(...) & STRTOG_Retmask rather than just on
gethex(), and only copybits(..., bb) when bb is nonzero. This
mattered for underflows and overflows in 0x notation.
Thu Mar 25 22:34:56 MST 2004
dtoa.c and gdtoa.c/misc.c: change "(!x & 1)" to "(!x)" to avoid
confusion by human readers -- the object code is unaffected (with
reasonable compilers).
Mon Apr 12 00:44:22 MDT 2004
dtoa.c and gdtoa.tar.gz: update contact info. for dmg and correct
page numbers in comment on Steele & White (1990).
gdtoa.tgz: add strtodnrp.c for a variant of strtod that is slower
but does not require 53-bit rounding precision on Intel IA32 systems.
Tue Apr 13 00:28:14 MDT 2004
gdtoa.tgz: strtod.c: fix glitch when both INFNAN_CHECK and No_Hex_NaN
are #defined. Thanks to David Mendenhall for pointing this bug out.
Wed Jan 5 22:39:17 MST 2005
gdtoa.tgz:
gethex.c: fix the bug reported by Stefan Farfeleder of ignoring a
binary-exponent-part if the converted number is zero.
strto[pr]x.c: fix bug reported by Stefan Farfeleder in setting the
exponent of denormals (which should be 0, not 1).
g_xfmt.c: fix a corresponding bug with denormals.
strtodg.c: fix a bug under IBM (base 16) arithemtic reported
by Greg Alexander: a correction to the binary exponent for changes to
the exponent of a native double value for avoiding overflow had to be
multiplied by 4 ("e2 <<= 2;").
Various files: minor tweaks for portability.
Sat Jan 15 15:36:03 MST 2005
gdtoa.tgz: gethex.c: fix a glitch introduced last week (and reported
by Stefan Farfelder) with 0x forms with no nonzero digits before the "."
character, e.g., 0x.1 (which was rendered as 0 rather than .0625).
gdtoa.tgz: many files: add automatic computation of gd_qnan.h for
giving the system-dependent format of a quiet NaN (the one generated
for Infinity - Infinity). Tweak test/makefile so differences in the
spelling of Infinity ("INF" or "Inf" on some systems) do not matter.
Fix bug in strtod.c and strtodg.c under which, e.g., -.nan was read
as NaN rather than unacceptable input (causing return 0). Adjust
comments in README about nan(...). Fix glitch in test/dt.c.
Sun Jan 16 18:22:13 MST 2005
gdtoa.tgz: strtodg.c: fix long-standing bug in handling input
that rounds up to 2^nbits, e.g., strtof("16777215.5"). Thanks to
Edward Moy for reporting this problem.
gdtoa.tgz: Fix some bugs with -DJust_16.
Thu Sep 22 22:40:16 MDT 2005
gdtoa.tgz:
strtod.c: unless prevented by -DNO_FENV_H, include C99's fenv.h
and with hex input, get the current rounding mode from fegetround().
With decimal input, strtod honors the rounding mode automatically.
Thanks to David Schultz (das at FreeBSD dot ORG) for pointing
strtodg.c: fix a bug with handling numbers very near the largest
possible one, which were sometimes incorrectly converted to Infinity.
Thanks to Edward Moy (emoy at apple dot com) for pointing this out.
g_Qfmt.c: change strcpy to strcp. Thanks to J. T. Conklin
(jtc at acorntoolworks dot com) for pointing this out.
test/xtest.c: fix some subscript bugs.
test/x.ou0, test/x.ou1, test/xL.: update in response to the above fix to
test/xtest.c.
test/makefile: add -lm to some link lines (needed for fegetround).
Sun Jan 21 20:26:44 MST 2007
gdtoa.tgz:
strtodg.c: fix a botch in the test of whether to increase rvbits
before terminating the big for(;;) loop with dsign true: change
if (hi0bits(rvb->x[(rvb->wds - 1) >> kshift])
!= j)
rvbits++;
to
if (hi0bits(rvb->x[rvb->wds - 1]) != j)
rvbits++;
Example of input where this bug bit: 1.9e27. Thanks to Edward Moy
<emoy@apple.com> for providing this example. Also, simplify the
preceding computation of j.
test/README: add comment that strtodt needs to operate with 53-bit
rounding precision on Intel x86 systems, and add a pointer to Paxson's
paper.
Sat Mar 15 11:44:31 MDT 2008
dtoa.c and gdtoa.tgz: with -DINFNAN_CHECK and without
-DGDOTA_NON_PEDANTIC_NANCHECK, conform to the ill-advised prescription
in the C99 standard of consuming (...) in "nan(...)" even when ...
is not of the expected form. Allow an optional 0x or 0X to precede
the string of hex digits in the expected form of ... .
gdtoa.tgz: gethex.c: have, e.g., strtod("0xyz",&se) set se to "xyz".
Previously it was incorrectly set to "0xyz".
Thu Aug 28 22:37:35 MDT 2008
dtoa.c and gdtoa.tgz: Fix a bug in strtod when compiled with
-DHonor_FLT_ROUNDS: in rounding modes other than "to nearest",
strtod looped on input larger than and within a factor of 2 of
the largest finite floating-point number. Since FLT_ROUNDS is buggy
on some (Linux) systems in that it does not reflect calls on
fesetround(), when Honor_FLT_ROUNDS is #defined, get the curren
rounding mode from fegetround() rather than FLT_ROUNDS, unless
Trust_FLT_ROUNDS is also #defined.
gdtoa/test/getround.c in gdtoa.tgz: simply report the current
rounding mode when the input line is "r" by itself. (Previously it
did so, but also complained of invalid input.)
gdtoa/gethex.c: fix an off-by-one bug in a rounding test; detect and
deal with huge exponents (positive or negative). This affected the
reading of hexadecimal floating-point values (0x...). Also set errno
to ERANGE on out-of-range values (unless compiled with -DNO_ERRNO).
gdtoa/strtod.c: adjust scaling of tinytens[4] (as in dtoa.c) to
avoid double rounding when dealing with numbers near the bottom of
the exponent range.
Sat Aug 30 23:37:07 MDT 2008
gdtoa/gethex.c: ensure *bp is set to something (NULL if nothing else).
Bring gdtoa/xsum0.out and gdtoa/test/xsum0.out up to date.
Tue Sep 9 22:08:30 MDT 2008
gdtoa/strto*.c and gdtoa/*fmt.c: if compiled with -DUSE_LOCALE, use
the current locale's decimal point character string.
gdtoa/gdtoa.c: trim trailing zeros in a missed case (e.g., ndigits = 6
on 1020302).
dtoa.c and gdtoa/strtod.c: on systems with IEEE arithmetic (and without
NO_ERRNO being defined) set ERANGE for denormal values as well as real
underflows.
gdtoa/strtodg.c: fix an off-by-one bug in rounding to the largest
representable magnitude when nbits is a multiple of 32.
gdtoa/*fmt.c and gdtoa/gdtoa.h: bufsize changed from unsigned to size_t.
gdtoaimp.h, *fmt.c: change in calling sequence to internal g__fmt(),
which now explicitly checks bufsize.
Relevant routines (see README) honor the current rounding mode if
compiled with -DHonor_FLT_ROUNDS on IEEE-arithmetic systems that provide
the C99 fegetround() function.
gdtoa/test/getround.c can optionally be compiled with
-DHonor_FLT_ROUNDS and/or -DUSE_MY_LOCALE for manual testing of gdtoa.a
compiled with -DHonor_FLT_ROUNDS or -DUSE_LOCALE.
Fri Oct 10 20:07:15 MDT 2008
gdtoa/gethex.c: fix a bug reading hexadecimal floating-point values
starting with "0xd" for a nonzero digit d (such as "0x1.0002p3"). The
bug caused the values to be read as zero with endptr set incorrectly.
Tue Oct 28 00:14:08 MDT 2008
gdtoa/strtod.c: fix a comment glitch (with commented {}).
Tue Nov 11 23:05:25 MST 2008
gdtoa: fix a glitch in the strto* routines when compiled with
-DUSE_LOCALE and the locale's decimal-point string is two or more
characters long. Wrong conversions were then possible.
Fri Dec 5 18:20:36 MST 2008
gdtoa.tgz: fix bugs with reading C99-style hexadecimal floating-point
values when compiled with -DPack_16; on IEEE-arithmetic systems, make
INFNAN_CHECK the default unless NO_INFNAN_CHECK is #defined. (This is
consistent with dtoa.c, which has worked this way for a while.)
dtoa.c: add recognition of C99-style hexadecimal floating-point
values (unless compiled with NO_HEX_FP is #defined).
Thu Dec 11 23:10:23 MST 2008
dtoa.c: omit an unused variable.
Fri Jan 2 22:45:33 MST 2009
dtoa.c: tweak to banish some compiler warnings.
Sun Mar 1 20:57:22 MST 2009
dtoa.c, gdtoa/{g__fmt.c, gethex.c, strtod.c, strtodg.c}: change malloc
to MALLOC.
dtoa.c and gdtoa/gdtoaimp.h and gdtoa/misc.c: reduce Kmax, and use
MALLOC and FREE or free for huge blocks, which are possible only in
pathological cases, such as dtoa calls in mode 3 with thousands of
digits requested, or strtod() calls with thousand of digits. For the
latter case, I have an alternate approach that runs much faster
and uses less memory, but finding time to get it ready for distribution
may take a while.
Mon Mar 16 00:32:43 MDT 2009
dtoa.c: Fix a bug under -DUSE_LOCALE in handling "decimal point"
strings more than one character long.
dtoa.c and gdtoa/misc.c: Remove a buggy test activated with
-DDEBUG.
dtoa.c and gdtoa/gdtoa.c: simplify logic for "4 leading 0 bits".
dtoa.c: Add logic (that can be disabled with -DNO_STRTOD_BIGCOMP
and that) to strtod for more efficiently handling a very long input
string. It proceeds by initially truncating the input string, then if
necessary comparing the whole string with a decimal expansion to
decide close cases. This logic is only used for input more than
STRTOD_DIGLIM digits long (default 40), and for now only applies to
IEEE arithmetic (for want of other kinds of platforms on which to run
tests). This only appears worthwhile for absurdly long input strings,
so a corresponding update to gdtoa does not seem warranted.
dtoa.c, gdtoa.tgz: tweaks (mostly adding unnecessary parens) to
silence "gcc -Wall" warnings. Aside from a couple of minor changes
to banish erroneous warnings about uninitialized variables, the tweaks
do not affect the generated object code.
Sat Apr 11 23:25:58 MDT 2009
dtoa.c: fix glitch in compiling with -DNo_Hex_NaN and the bug of
accepting (e.g.) ".nan" or ".inf" as NaN or Infinity.
gdtoa.tgz: tweaks to silence warnings from "gcc -Wstrict-aliasing=2";
update xsum0.out files.
Sun Apr 19 23:40:24 MDT 2009
dtoa.c, gdtoa/misc.c: do not attempt to allocate large memory blocks
from the private memory pool (which was an unlikely event, but a bug).
gdtoa/strtopx.c, gdtoa/strtopxL.c, gdtoa/strtorx.c, gdtoa/strtorxL.c:
supply explicit bit for Infinity. Note that the Q routines (which do
not supply this bit) are appropriate for Sparc quad precision (probably
known as long double with most current compilers).
Wed Dec 9 08:14:52 MST 2009
gdtoa.tgz: add gdtoa/printf.c* and modify makefile so "make Printf"
adds a printf to gdtoa.a (to be accessed with #include "stdio1.h" to
get gdtoa/stdio1.h, which you might install in some standard place).
On Intel/AMD i386, x86_64, and Sparc systems, this adds formats %La,
%Le, %Lf and %Lg to handle long double. On x86_64 systems, it also
adds %Lqa, %Lqe, %Lqf and %Lqg to handle 128-bit bit types (called
__float128 by gcc and _Quad by the Intel compiler). In gdtoa/test,
"make pf_test" tests this printf (provided the system is an i386,
x86_64, or Sparc system). On x86_64 systems, "make pf_testLq" tests
the %Lq... formats (briefly).
Mon Jan 11 22:25:17 MST 2010
dtoa.c: fix a minor performance bug and, under compilation with -DDEBUG,
an erroneous error message "oversize b in quorem" in strtod's processing
of some input that underflows to zero. Also fix a bug in bigcomp()'s
handling of numbers that will scale to denormal values. The increments
that bigcomp applied were ignoring the effects of denormalization.
Sat Jan 23 00:25:54 MST 2010
dtoa.c: Fix some glitches in recently introduced changes meant to
speed up returns in pedantic cases. In quorem, adjust #ifdef DEBUG
stuff so it does not complain when bigcomp() calls quorem on input
near the smallest representable number and rounding up by a bit causes
a quorem return > 9 (which in this case is not a bug). Fix a memory
leak in the unlikely case of overflow only being detected after some
high-precision integer computations. Fix an off-by-one bug in
handling a large number of digits with a few nonzero digits, followed
by many zeros, and then some nonzero digits. (This does not happen
with sensible input.) Fix an off-by-one bug in a recently introduced
quick test for underflow (i.e., zero result) on input at the bottom of
the exponent range. Thanks to Mark Dickinson for pointing these bugs
out.
dtoa.c and gdtoa/strtod.c: Fix an obscure bug in strtod's handling
of some inputs of many digits at the bottom of the exponent range:
results were sometimes off by a bit when gdtoa/strtod.c or dtoa.c was
compiled without -DNO_IEEE_SCALE and, for dtoa.c, when compiled with
-DNO_STRTOD_BIGCOMP.
gdtoa/test/testnos3: add some examples that went wrong before
the present changes.
Sat Jan 23 23:29:02 MST 2010
dtoa.c: more tweaks relevant only to absurd input.
Tue Feb 2 23:05:34 MST 2010
dtoa.c: add test for setting errno = ERANGE when input of many digits
is rounded to Infinity or underflows to zero. Fix a memory leak in
such instances.
gdtoa/strtod.c: make some corresponding changes.
Wed Jul 7 09:25:46 MDT 2010
dtoa.c: adjust to use bigcomp when necessary when compiled with
-DHonor_FLT_ROUNDS (and without -DNO_STRTOD_BIGCOMP), and the rounding
mode is torwards +Infinity. An input (supplied by Rick Regan
<exploringbinary@gmail.com>) where this matters is
1.100000000000000088817841970012523233890533447265626
gdtoa/strtod.c: fix errors (introduced 20090411) when compiled
with -DHonor_FLT_ROUNDS.
Wed Sep 15 09:00:26 MDT 2010
dtoa.c, gdtoa/dtoa.c, gdtoa/gdtoa.c: fix bugs with -DROUND_BIASED
pointed out by Jay Foad.
Mon Sep 27 13:43:30 MDT 2010
gdtoa/gdtoa.c: fix a glitch (not revealed by compilation) in the
changes of 15 Sept. 2010.
Fri Nov 5 13:02:41 MDT 2010
dtoa.c: fix a bug related to bigcomp: decimal strings with all
zeros before the decimal point more than 40 significant digits that
required use of bigcomp might be converted very incorrectly.
Example: .010000000000000000057612911342378542997169 .
Thanks to Rick Regan <exploringbinary@gmail.com> for reporting the
symptoms and providing an example.
20110403:
dtoa.c, gdtoa/gdtoaimp.h, gdtoa/strtod.c: if
ROUND_BIASED_without_Round_Up is #defined, assume ROUND_BIASED and
omit the quick computation that would use ordinary arithmetic to
compute the correctly rounded result with one rounding error. If you
want biased rounding with IEEE-style format "double" and will operate
with rounding toward +Infinity, it suffices to #define ROUND_BIASED
(and thus retain the quick computation when it is appropriate).
gdtoa/gdtoa.h: change default Long from long to int (with the goal
of portability when compiling without -DLong=... specified). On some
64-bit systems, long is a 64-bit type; we need a 32-bit type here.
dtoa.c, gdtoa/gdtoa.c: fix a glith with ndigits with mode = 4 at
the bottom of the exponent range, e.g., 1e-323.

View file

@ -75,10 +75,10 @@ THIS SOFTWARE.
char *
dtoa
#ifdef KR_headers
(d, mode, ndigits, decpt, sign, rve)
double d; int mode, ndigits, *decpt, *sign; char **rve;
(d0, mode, ndigits, decpt, sign, rve)
double d0; int mode, ndigits, *decpt, *sign; char **rve;
#else
(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
(double d0, int mode, int ndigits, int *decpt, int *sign, char **rve)
#endif
{
/* Arguments ndigits, decpt, sign are similar to those
@ -124,7 +124,8 @@ dtoa
ULong x;
#endif
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
double d2, ds, eps;
U d, d2, eps;
double ds;
char *s, *s0;
#ifdef SET_INEXACT
int inexact, oldinexact;
@ -149,35 +150,35 @@ dtoa
dtoa_result = 0;
}
#endif
if (word0(d) & Sign_bit) {
d.d = d0;
if (word0(&d) & Sign_bit) {
/* set sign for everything, including 0's and NaNs */
*sign = 1;
word0(d) &= ~Sign_bit; /* clear sign bit */
word0(&d) &= ~Sign_bit; /* clear sign bit */
}
else
*sign = 0;
#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
if ((word0(d) & Exp_mask) == Exp_mask)
if ((word0(&d) & Exp_mask) == Exp_mask)
#else
if (word0(d) == 0x8000)
if (word0(&d) == 0x8000)
#endif
{
/* Infinity or NaN */
*decpt = 9999;
#ifdef IEEE_Arith
if (!word1(d) && !(word0(d) & 0xfffff))
if (!word1(&d) && !(word0(&d) & 0xfffff))
return nrv_alloc("Infinity", rve, 8);
#endif
return nrv_alloc("NaN", rve, 3);
}
#endif
#ifdef IBM
dval(d) += 0; /* normalize */
dval(&d) += 0; /* normalize */
#endif
if (!dval(d)) {
if (!dval(&d)) {
*decpt = 1;
return nrv_alloc("0", rve, 1);
}
@ -196,26 +197,26 @@ dtoa
}
#endif
b = d2b(dval(d), &be, &bbits);
b = d2b(dval(&d), &be, &bbits);
#ifdef Sudden_Underflow
i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
if (( i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
if (( i = (int)(word0(&d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)) )!=0) {
#endif
dval(d2) = dval(d);
word0(d2) &= Frac_mask1;
word0(d2) |= Exp_11;
dval(&d2) = dval(&d);
word0(&d2) &= Frac_mask1;
word0(&d2) |= Exp_11;
#ifdef IBM
if (( j = 11 - hi0bits(word0(d2) & Frac_mask) )!=0)
dval(d2) /= 1 << j;
if (( j = 11 - hi0bits(word0(&d2) & Frac_mask) )!=0)
dval(&d2) /= 1 << j;
#endif
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
* log10(x) = log(x) / log(10)
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
* log10(&d) = (i-Bias)*log(2)/log(10) + log10(&d2)
*
* This suggests computing an approximation k to log10(d) by
* This suggests computing an approximation k to log10(&d) by
*
* k = (i - Bias)*0.301029995663981
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
@ -244,21 +245,21 @@ dtoa
/* d is denormalized */
i = bbits + be + (Bias + (P-1) - 1);
x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32
: word1(d) << 32 - i;
dval(d2) = x;
word0(d2) -= 31*Exp_msk1; /* adjust exponent */
x = i > 32 ? word0(&d) << (64 - i) | word1(&d) >> (i - 32)
: word1(&d) << (32 - i);
dval(&d2) = x;
word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
i -= (Bias + (P-1) - 1) + 1;
denorm = 1;
}
#endif
ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
k = (int)ds;
if (ds < 0. && ds != k)
k--; /* want k = floor(ds) */
k_check = 1;
if (k >= 0 && k <= Ten_pmax) {
if (dval(d) < tens[k])
if (dval(&d) < tens[k])
k--;
k_check = 0;
}
@ -297,10 +298,11 @@ dtoa
try_quick = 0;
}
leftright = 1;
ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
/* silence erroneous "gcc -Wall" warning. */
switch(mode) {
case 0:
case 1:
ilim = ilim1 = -1;
i = 18;
ndigits = 0;
break;
@ -334,7 +336,7 @@ dtoa
/* Try to get by with floating-point arithmetic. */
i = 0;
dval(d2) = dval(d);
dval(&d2) = dval(&d);
k0 = k;
ilim0 = ilim;
ieps = 2; /* conservative */
@ -344,7 +346,7 @@ dtoa
if (j & Bletch) {
/* prevent overflows */
j &= Bletch - 1;
dval(d) /= bigtens[n_bigtens-1];
dval(&d) /= bigtens[n_bigtens-1];
ieps++;
}
for(; j; j >>= 1, i++)
@ -352,32 +354,32 @@ dtoa
ieps++;
ds *= bigtens[i];
}
dval(d) /= ds;
dval(&d) /= ds;
}
else if (( j1 = -k )!=0) {
dval(d) *= tens[j1 & 0xf];
dval(&d) *= tens[j1 & 0xf];
for(j = j1 >> 4; j; j >>= 1, i++)
if (j & 1) {
ieps++;
dval(d) *= bigtens[i];
dval(&d) *= bigtens[i];
}
}
if (k_check && dval(d) < 1. && ilim > 0) {
if (k_check && dval(&d) < 1. && ilim > 0) {
if (ilim1 <= 0)
goto fast_failed;
ilim = ilim1;
k--;
dval(d) *= 10.;
dval(&d) *= 10.;
ieps++;
}
dval(eps) = ieps*dval(d) + 7.;
word0(eps) -= (P-1)*Exp_msk1;
dval(&eps) = ieps*dval(&d) + 7.;
word0(&eps) -= (P-1)*Exp_msk1;
if (ilim == 0) {
S = mhi = 0;
dval(d) -= 5.;
if (dval(d) > dval(eps))
dval(&d) -= 5.;
if (dval(&d) > dval(&eps))
goto one_digit;
if (dval(d) < -dval(eps))
if (dval(&d) < -dval(&eps))
goto no_digits;
goto fast_failed;
}
@ -386,34 +388,34 @@ dtoa
/* Use Steele & White method of only
* generating digits needed.
*/
dval(eps) = 0.5/tens[ilim-1] - dval(eps);
dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
for(i = 0;;) {
L = dval(d);
dval(d) -= L;
L = dval(&d);
dval(&d) -= L;
*s++ = '0' + (int)L;
if (dval(d) < dval(eps))
if (dval(&d) < dval(&eps))
goto ret1;
if (1. - dval(d) < dval(eps))
if (1. - dval(&d) < dval(&eps))
goto bump_up;
if (++i >= ilim)
break;
dval(eps) *= 10.;
dval(d) *= 10.;
dval(&eps) *= 10.;
dval(&d) *= 10.;
}
}
else {
#endif
/* Generate ilim digits, then fix them up. */
dval(eps) *= tens[ilim-1];
for(i = 1;; i++, dval(d) *= 10.) {
L = (Long)(dval(d));
if (!(dval(d) -= L))
dval(&eps) *= tens[ilim-1];
for(i = 1;; i++, dval(&d) *= 10.) {
L = (Long)(dval(&d));
if (!(dval(&d) -= L))
ilim = i;
*s++ = '0' + (int)L;
if (i == ilim) {
if (dval(d) > 0.5 + dval(eps))
if (dval(&d) > 0.5 + dval(&eps))
goto bump_up;
else if (dval(d) < 0.5 - dval(eps)) {
else if (dval(&d) < 0.5 - dval(&eps)) {
while(*--s == '0');
s++;
goto ret1;
@ -426,7 +428,7 @@ dtoa
#endif
fast_failed:
s = s0;
dval(d) = dval(d2);
dval(&d) = dval(&d2);
k = k0;
ilim = ilim0;
}
@ -438,22 +440,22 @@ dtoa
ds = tens[k];
if (ndigits < 0 && ilim <= 0) {
S = mhi = 0;
if (ilim < 0 || dval(d) <= 5*ds)
if (ilim < 0 || dval(&d) <= 5*ds)
goto no_digits;
goto one_digit;
}
for(i = 1;; i++, dval(d) *= 10.) {
L = (Long)(dval(d) / ds);
dval(d) -= L*ds;
for(i = 1;; i++, dval(&d) *= 10.) {
L = (Long)(dval(&d) / ds);
dval(&d) -= L*ds;
#ifdef Check_FLT_ROUNDS
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
if (dval(d) < 0) {
if (dval(&d) < 0) {
L--;
dval(d) += ds;
dval(&d) += ds;
}
#endif
*s++ = '0' + (int)L;
if (!dval(d)) {
if (!dval(&d)) {
#ifdef SET_INEXACT
inexact = 0;
#endif
@ -467,8 +469,13 @@ dtoa
case 2: goto bump_up;
}
#endif
dval(d) += dval(d);
if (dval(d) > ds || dval(d) == ds && L & 1) {
dval(&d) += dval(&d);
#ifdef ROUND_BIASED
if (dval(&d) >= ds)
#else
if (dval(&d) > ds || (dval(&d) == ds && L & 1))
#endif
{
bump_up:
while(*--s == '9')
if (s == s0) {
@ -533,9 +540,9 @@ dtoa
&& Rounding == 1
#endif
) {
if (!word1(d) && !(word0(d) & Bndry_mask)
if (!word1(&d) && !(word0(&d) & Bndry_mask)
#ifndef Sudden_Underflow
&& word0(d) & (Exp_mask & ~Exp_msk1)
&& word0(&d) & (Exp_mask & ~Exp_msk1)
#endif
) {
/* The special case */
@ -621,7 +628,7 @@ dtoa
j1 = delta->sign ? 1 : cmp(b, delta);
Bfree(delta);
#ifndef ROUND_BIASED
if (j1 == 0 && mode != 1 && !(word1(d) & 1)
if (j1 == 0 && mode != 1 && !(word1(&d) & 1)
#ifdef Honor_FLT_ROUNDS
&& Rounding >= 1
#endif
@ -638,11 +645,11 @@ dtoa
goto ret;
}
#endif
if (j < 0 || j == 0 && mode != 1
if (j < 0 || (j == 0 && mode != 1
#ifndef ROUND_BIASED
&& !(word1(d) & 1)
&& !(word1(&d) & 1)
#endif
) {
)) {
if (!b->x[0] && b->wds <= 1) {
#ifdef SET_INEXACT
inexact = 0;
@ -659,7 +666,11 @@ dtoa
if (j1 > 0) {
b = lshift(b, 1);
j1 = cmp(b, S);
if ((j1 > 0 || j1 == 0 && dig & 1)
#ifdef ROUND_BIASED
if (j1 >= 0 /*)*/
#else
if ((j1 > 0 || (j1 == 0 && dig & 1))
#endif
&& dig++ == '9')
goto round_9_up;
}
@ -719,7 +730,12 @@ dtoa
#endif
b = lshift(b, 1);
j = cmp(b, S);
if (j > 0 || j == 0 && dig & 1) {
#ifdef ROUND_BIASED
if (j >= 0)
#else
if (j > 0 || (j == 0 && dig & 1))
#endif
{
roundoff:
while(*--s == '9')
if (s == s0) {
@ -730,7 +746,9 @@ dtoa
++*s++;
}
else {
#ifdef Honor_FLT_ROUNDS
trimzeros:
#endif
while(*--s == '0');
s++;
}
@ -745,9 +763,9 @@ dtoa
#ifdef SET_INEXACT
if (inexact) {
if (!oldinexact) {
word0(d) = Exp_1 + (70 << Exp_shift);
word1(d) = 0;
dval(d) += 1.;
word0(&d) = Exp_1 + (70 << Exp_shift);
word1(&d) = 0;
dval(&d) += 1.;
}
}
else if (!oldinexact)

View file

@ -56,7 +56,7 @@ g__fmt(char *b, char *s, char *se, int decpt, ULong sign, size_t blen)
if (!(s0 = decimalpoint_cache)) {
s0 = localeconv()->decimal_point;
dlen = strlen(s0);
if ((decimalpoint_cache = (char*)malloc(strlen(s0) + 1))) {
if ((decimalpoint_cache = (char*)MALLOC(strlen(s0) + 1))) {
strcpy(decimalpoint_cache, s0);
s0 = decimalpoint_cache;
}

View file

@ -33,9 +33,9 @@ THIS SOFTWARE.
char *
#ifdef KR_headers
g_ddfmt(buf, dd, ndig, bufsize) char *buf; double *dd; int ndig; size_t bufsize;
g_ddfmt(buf, dd0, ndig, bufsize) char *buf; double *dd0; int ndig; size_t bufsize;
#else
g_ddfmt(char *buf, double *dd, int ndig, size_t bufsize)
g_ddfmt(char *buf, double *dd0, int ndig, size_t bufsize)
#endif
{
FPI fpi;
@ -43,7 +43,7 @@ g_ddfmt(char *buf, double *dd, int ndig, size_t bufsize)
ULong *L, bits0[4], *bits, *zx;
int bx, by, decpt, ex, ey, i, j, mode;
Bigint *x, *y, *z;
double ddx[2];
U *dd, ddx[2];
#ifdef Honor_FLT_ROUNDS /*{{*/
int Rounding;
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
@ -63,7 +63,8 @@ g_ddfmt(char *buf, double *dd, int ndig, size_t bufsize)
if (bufsize < 10 || bufsize < ndig + 8)
return 0;
L = (ULong*)dd;
dd = (U*)dd0;
L = dd->L;
if ((L[_0] & 0x7ff00000L) == 0x7ff00000L) {
/* Infinity or NaN */
if (L[_0] & 0xfffff || L[_1]) {
@ -88,7 +89,7 @@ g_ddfmt(char *buf, double *dd, int ndig, size_t bufsize)
goto nanret;
goto infret;
}
if (dd[0] + dd[1] == 0.) {
if (dval(&dd[0]) + dval(&dd[1]) == 0.) {
b = buf;
#ifndef IGNORE_ZERO_SIGN
if (L[_0] & L[2+_0] & 0x80000000L)
@ -99,16 +100,16 @@ g_ddfmt(char *buf, double *dd, int ndig, size_t bufsize)
return b;
}
if ((L[_0] & 0x7ff00000L) < (L[2+_0] & 0x7ff00000L)) {
ddx[1] = dd[0];
ddx[0] = dd[1];
dval(&ddx[1]) = dval(&dd[0]);
dval(&ddx[0]) = dval(&dd[1]);
dd = ddx;
L = (ULong*)dd;
L = dd->L;
}
z = d2b(dd[0], &ex, &bx);
if (dd[1] == 0.)
z = d2b(dval(&dd[0]), &ex, &bx);
if (dval(&dd[1]) == 0.)
goto no_y;
x = z;
y = d2b(dd[1], &ey, &by);
y = d2b(dval(&dd[1]), &ey, &by);
if ( (i = ex - ey) !=0) {
if (i > 0) {
x = lshift(x, i);

View file

@ -88,6 +88,8 @@ g_dfmt(char *buf, double *d, int ndig, size_t bufsize)
if (ndig <= 0)
mode = 0;
i = STRTOG_Normal;
if (sign)
i = STRTOG_Normal | STRTOG_Neg;
s = gdtoa(fpi, ex, bits, &i, mode, ndig, &decpt, &se);
return g__fmt(buf, s, se, decpt, sign, bufsize);
}

View file

@ -123,6 +123,7 @@ gdtoa
the returned string. If not null, *rve is set to point
to the end of the return value. If d is +-Infinity or NaN,
then *decpt is set to 9999.
be = exponent: value = (integer represented by bits) * (2 to the power of be).
mode:
0 ==> shortest string that yields d when read in
@ -157,8 +158,9 @@ gdtoa
int rdir, s2, s5, spec_case, try_quick;
Long L;
Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
double d, d2, ds, eps;
double d2, ds;
char *s, *s0;
U d, eps;
#ifndef MULTIPLE_THREADS
if (dtoa_result) {
@ -197,21 +199,21 @@ gdtoa
return nrv_alloc("0", rve, 1);
}
dval(d) = b2d(b, &i);
dval(&d) = b2d(b, &i);
i = be + bbits - 1;
word0(d) &= Frac_mask1;
word0(d) |= Exp_11;
word0(&d) &= Frac_mask1;
word0(&d) |= Exp_11;
#ifdef IBM
if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
dval(d) /= 1 << j;
if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)
dval(&d) /= 1 << j;
#endif
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
* log10(x) = log(x) / log(10)
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
* log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2)
*
* This suggests computing an approximation k to log10(d) by
* This suggests computing an approximation k to log10(&d) by
*
* k = (i - Bias)*0.301029995663981
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
@ -231,7 +233,7 @@ gdtoa
i <<= 2;
i += j;
#endif
ds = (dval(d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
ds = (dval(&d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
/* correct assumption about exponent range */
if ((j = i) < 0)
@ -246,13 +248,13 @@ gdtoa
#ifdef IBM
j = be + bbits - 1;
if ( (j1 = j & 3) !=0)
dval(d) *= 1 << j1;
word0(d) += j << Exp_shift - 2 & Exp_mask;
dval(&d) *= 1 << j1;
word0(&d) += j << Exp_shift - 2 & Exp_mask;
#else
word0(d) += (be + bbits - 1) << Exp_shift;
word0(&d) += (be + bbits - 1) << Exp_shift;
#endif
if (k >= 0 && k <= Ten_pmax) {
if (dval(d) < tens[k])
if (dval(&d) < tens[k])
k--;
k_check = 0;
}
@ -282,11 +284,14 @@ gdtoa
mode -= 4;
try_quick = 0;
}
else if (i >= -4 - Emin || i < Emin)
try_quick = 0;
leftright = 1;
ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
/* silence erroneous "gcc -Wall" warning. */
switch(mode) {
case 0:
case 1:
ilim = ilim1 = -1;
i = (int)(nbits * .30103) + 3;
ndigits = 0;
break;
@ -328,10 +333,10 @@ gdtoa
/* Try to get by with floating-point arithmetic. */
i = 0;
d2 = dval(d);
d2 = dval(&d);
#ifdef IBM
if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
dval(d) /= 1 << j;
if ( (j = 11 - hi0bits(word0(&d) & Frac_mask)) !=0)
dval(&d) /= 1 << j;
#endif
k0 = k;
ilim0 = ilim;
@ -342,7 +347,7 @@ gdtoa
if (j & Bletch) {
/* prevent overflows */
j &= Bletch - 1;
dval(d) /= bigtens[n_bigtens-1];
dval(&d) /= bigtens[n_bigtens-1];
ieps++;
}
for(; j; j >>= 1, i++)
@ -354,30 +359,30 @@ gdtoa
else {
ds = 1.;
if ( (j1 = -k) !=0) {
dval(d) *= tens[j1 & 0xf];
dval(&d) *= tens[j1 & 0xf];
for(j = j1 >> 4; j; j >>= 1, i++)
if (j & 1) {
ieps++;
dval(d) *= bigtens[i];
dval(&d) *= bigtens[i];
}
}
}
if (k_check && dval(d) < 1. && ilim > 0) {
if (k_check && dval(&d) < 1. && ilim > 0) {
if (ilim1 <= 0)
goto fast_failed;
ilim = ilim1;
k--;
dval(d) *= 10.;
dval(&d) *= 10.;
ieps++;
}
dval(eps) = ieps*dval(d) + 7.;
word0(eps) -= (P-1)*Exp_msk1;
dval(&eps) = ieps*dval(&d) + 7.;
word0(&eps) -= (P-1)*Exp_msk1;
if (ilim == 0) {
S = mhi = 0;
dval(d) -= 5.;
if (dval(d) > dval(eps))
dval(&d) -= 5.;
if (dval(&d) > dval(&eps))
goto one_digit;
if (dval(d) < -dval(eps))
if (dval(&d) < -dval(&eps))
goto no_digits;
goto fast_failed;
}
@ -386,38 +391,38 @@ gdtoa
/* Use Steele & White method of only
* generating digits needed.
*/
dval(eps) = ds*0.5/tens[ilim-1] - dval(eps);
dval(&eps) = ds*0.5/tens[ilim-1] - dval(&eps);
for(i = 0;;) {
L = (Long)(dval(d)/ds);
dval(d) -= L*ds;
L = (Long)(dval(&d)/ds);
dval(&d) -= L*ds;
*s++ = '0' + (int)L;
if (dval(d) < dval(eps)) {
if (dval(d))
if (dval(&d) < dval(&eps)) {
if (dval(&d))
inex = STRTOG_Inexlo;
goto ret1;
}
if (ds - dval(d) < dval(eps))
if (ds - dval(&d) < dval(&eps))
goto bump_up;
if (++i >= ilim)
break;
dval(eps) *= 10.;
dval(d) *= 10.;
dval(&eps) *= 10.;
dval(&d) *= 10.;
}
}
else {
#endif
/* Generate ilim digits, then fix them up. */
dval(eps) *= tens[ilim-1];
for(i = 1;; i++, dval(d) *= 10.) {
if ( (L = (Long)(dval(d)/ds)) !=0)
dval(d) -= L*ds;
dval(&eps) *= tens[ilim-1];
for(i = 1;; i++, dval(&d) *= 10.) {
if ( (L = (Long)(dval(&d)/ds)) !=0)
dval(&d) -= L*ds;
*s++ = '0' + (int)L;
if (i == ilim) {
ds *= 0.5;
if (dval(d) > ds + dval(eps))
if (dval(&d) > ds + dval(&eps))
goto bump_up;
else if (dval(d) < ds - dval(eps)) {
if (dval(d))
else if (dval(&d) < ds - dval(&eps)) {
if (dval(&d))
inex = STRTOG_Inexlo;
goto clear_trailing0;
}
@ -429,7 +434,7 @@ gdtoa
#endif
fast_failed:
s = s0;
dval(d) = d2;
dval(&d) = d2;
k = k0;
ilim = ilim0;
}
@ -441,22 +446,22 @@ gdtoa
ds = tens[k];
if (ndigits < 0 && ilim <= 0) {
S = mhi = 0;
if (ilim < 0 || dval(d) <= 5*ds)
if (ilim < 0 || dval(&d) <= 5*ds)
goto no_digits;
goto one_digit;
}
for(i = 1;; i++, dval(d) *= 10.) {
L = dval(d) / ds;
dval(d) -= L*ds;
for(i = 1;; i++, dval(&d) *= 10.) {
L = dval(&d) / ds;
dval(&d) -= L*ds;
#ifdef Check_FLT_ROUNDS
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
if (dval(d) < 0) {
if (dval(&d) < 0) {
L--;
dval(d) += ds;
dval(&d) += ds;
}
#endif
*s++ = '0' + (int)L;
if (dval(d) == 0.)
if (dval(&d) == 0.)
break;
if (i == ilim) {
if (rdir) {
@ -465,8 +470,13 @@ gdtoa
inex = STRTOG_Inexlo;
goto ret1;
}
dval(d) += dval(d);
if (dval(d) > ds || dval(d) == ds && L & 1) {
dval(&d) += dval(&d);
#ifdef ROUND_BIASED
if (dval(&d) >= ds)
#else
if (dval(&d) > ds || (dval(&d) == ds && L & 1))
#endif
{
bump_up:
inex = STRTOG_Inexhi;
while(*--s == '9')
@ -493,13 +503,15 @@ gdtoa
m5 = b5;
mhi = mlo = 0;
if (leftright) {
if (mode < 2) {
i = nbits - bbits;
if (be - i++ < fpi->emin)
/* denormal */
i = be - fpi->emin + 1;
i = nbits - bbits;
if (be - i++ < fpi->emin && mode != 3 && mode != 5) {
/* denormal */
i = be - fpi->emin + 1;
if (mode >= 2 && ilim > 0 && ilim < i)
goto small_ilim;
}
else {
else if (mode >= 2) {
small_ilim:
j = ilim - 1;
if (m5 >= j)
m5 -= j;
@ -560,28 +572,11 @@ gdtoa
* and for all and pass them and a shift to quorem, so it
* can do shifts and ors to compute the numerator for q.
*/
#ifdef Pack_32
if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) !=0)
i = 32 - i;
#else
if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) !=0)
i = 16 - i;
#endif
if (i > 4) {
i -= 4;
b2 += i;
m2 += i;
s2 += i;
}
else if (i < 4) {
i += 28;
b2 += i;
m2 += i;
s2 += i;
}
if (b2 > 0)
i = ((s5 ? hi0bits(S->x[S->wds-1]) : ULbits - 1) - s2 - 4) & kmask;
m2 += i;
if ((b2 += i) > 0)
b = lshift(b, b2);
if (s2 > 0)
if ((s2 += i) > 0)
S = lshift(S, s2);
if (k_check) {
if (cmp(b,S) < 0) {
@ -646,11 +641,11 @@ gdtoa
goto ret;
}
#endif
if (j < 0 || j == 0 && !mode
if (j < 0 || (j == 0 && !mode
#ifndef ROUND_BIASED
&& !(bits[0] & 1)
#endif
) {
)) {
if (rdir && (b->wds > 1 || b->x[0])) {
if (rdir == 2) {
inex = STRTOG_Inexlo;
@ -673,7 +668,11 @@ gdtoa
if (j1 > 0) {
b = lshift(b, 1);
j1 = cmp(b, S);
if ((j1 > 0 || j1 == 0 && dig & 1)
#ifdef ROUND_BIASED
if (j1 >= 0 /*)*/
#else
if ((j1 > 0 || (j1 == 0 && dig & 1))
#endif
&& dig++ == '9')
goto round_9_up;
inex = STRTOG_Inexhi;
@ -718,13 +717,18 @@ gdtoa
/* Round off last digit */
if (rdir) {
if (rdir == 2 || b->wds <= 1 && !b->x[0])
if (rdir == 2 || (b->wds <= 1 && !b->x[0]))
goto chopzeros;
goto roundoff;
}
b = lshift(b, 1);
j = cmp(b, S);
if (j > 0 || j == 0 && dig & 1) {
#ifdef ROUND_BIASED
if (j >= 0)
#else
if (j > 0 || (j == 0 && dig & 1))
#endif
{
roundoff:
inex = STRTOG_Inexhi;
while(*--s == '9')

View file

@ -36,7 +36,7 @@ THIS SOFTWARE.
#include <stddef.h> /* for size_t */
#ifndef Long
#define Long long
#define Long int
#endif
#ifndef ULong
typedef unsigned Long ULong;

View file

@ -96,7 +96,12 @@ THIS SOFTWARE.
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
* that use extended-precision instructions to compute rounded
* products and quotients) with IBM.
* #define ROUND_BIASED for IEEE-format with biased rounding.
* #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
* that rounds toward +Infinity.
* #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
* rounding when the underlying floating-point arithmetic uses
* unbiased rounding. This prevent using ordinary floating-point
* arithmetic when the result could be computed with one rounding error.
* #define Inaccurate_Divide for IEEE-format with correctly rounded
* products but inaccurate quotients, e.g., for Intel i860.
* #define NO_LONG_LONG on machines that do not have a "long long"
@ -115,7 +120,12 @@ THIS SOFTWARE.
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
* if memory is available and otherwise does something you deem
* appropriate. If MALLOC is undefined, malloc will be invoked
* directly -- and assumed always to succeed.
* directly -- and assumed always to succeed. Similarly, if you
* want something other than the system's free() to be called to
* recycle memory acquired from MALLOC, #define FREE to be the
* name of the alternate routine. (FREE or free is only called in
* pathological cases, e.g., in a gdtoa call after a gdtoa return in
* mode 3 with thousands of digits requested.)
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
* memory allocations from a private pool of memory when possible.
* When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
@ -164,11 +174,6 @@ THIS SOFTWARE.
* #define NO_STRING_H to use private versions of memcpy.
* On some K&R systems, it may also be necessary to
* #define DECLARE_SIZE_T in this case.
* #define YES_ALIAS to permit aliasing certain double values with
* arrays of ULongs. This leads to slightly better code with
* some compilers and was always used prior to 19990916, but it
* is not strictly legal and can cause trouble with aggressively
* optimizing compilers (e.g., gcc 2.95.1 under -O2).
* #define USE_LOCALE to use the current locale's decimal_point value.
*/
@ -287,25 +292,14 @@ Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
typedef union { double d; ULong L[2]; } U;
#ifdef YES_ALIAS
#define dval(x) x
#ifdef IEEE_8087
#define word0(x) ((ULong *)&x)[1]
#define word1(x) ((ULong *)&x)[0]
#define word0(x) (x)->L[1]
#define word1(x) (x)->L[0]
#else
#define word0(x) ((ULong *)&x)[0]
#define word1(x) ((ULong *)&x)[1]
#define word0(x) (x)->L[0]
#define word1(x) (x)->L[1]
#endif
#else /* !YES_ALIAS */
#ifdef IEEE_8087
#define word0(x) ((U*)&x)->L[1]
#define word1(x) ((U*)&x)->L[0]
#else
#define word0(x) ((U*)&x)->L[0]
#define word1(x) ((U*)&x)->L[1]
#endif
#define dval(x) ((U*)&x)->d
#endif /* YES_ALIAS */
#define dval(x) (x)->d
/* The following definition of Storeinc is appropriate for MIPS processors.
* An alternative that might be better on some machines is
@ -419,6 +413,11 @@ typedef union { double d; ULong L[2]; } U;
#ifndef IEEE_Arith
#define ROUND_BIASED
#else
#ifdef ROUND_BIASED_without_Round_Up
#undef ROUND_BIASED
#define ROUND_BIASED
#endif
#endif
#ifdef RND_PRODQUOT
@ -659,7 +658,7 @@ extern void memcpy_D2A ANSI((void*, const void*, size_t));
extern int strtorxL ANSI((CONST char *, char **, int, void *));
extern Bigint *sum ANSI((Bigint*, Bigint*));
extern int trailz ANSI((Bigint*));
extern double ulp ANSI((double));
extern double ulp ANSI((U*));
#ifdef __cplusplus
}

View file

@ -57,7 +57,7 @@ gethex( CONST char **sp, FPI *fpi, Long *exp, Bigint **bp, int sign)
static unsigned char *decimalpoint_cache;
if (!(s0 = decimalpoint_cache)) {
s0 = (unsigned char*)localeconv()->decimal_point;
if ((decimalpoint_cache = (char*)malloc(strlen(s0) + 1))) {
if ((decimalpoint_cache = (char*)MALLOC(strlen(s0) + 1))) {
strcpy(decimalpoint_cache, s0);
s0 = decimalpoint_cache;
}
@ -199,7 +199,7 @@ gethex( CONST char **sp, FPI *fpi, Long *exp, Bigint **bp, int sign)
return STRTOG_Normal | STRTOG_Inexlo;
}
n = s1 - s0 - 1;
for(k = 0; n > (1 << kshift-2) - 1; n >>= 1)
for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
k++;
b = Balloc(k);
x = b->x;
@ -314,7 +314,7 @@ gethex( CONST char **sp, FPI *fpi, Long *exp, Bigint **bp, int sign)
break;
case FPI_Round_near:
if (lostbits & 2
&& (lostbits & 1) | x[0] & 1)
&& (lostbits | x[0]) & 1)
up = 1;
break;
case FPI_Round_up:
@ -333,8 +333,8 @@ gethex( CONST char **sp, FPI *fpi, Long *exp, Bigint **bp, int sign)
irv = STRTOG_Normal;
}
else if (b->wds > k
|| (n = nbits & kmask) !=0
&& hi0bits(x[k-1]) < 32-n) {
|| ((n = nbits & kmask) !=0
&& hi0bits(x[k-1]) < 32-n)) {
rshift(b,1);
if (++e > fpi->emax)
goto ovfl;

View file

@ -29,10 +29,6 @@ THIS SOFTWARE.
/* Please send bug reports to David M. Gay (dmg at acm dot org,
* with " at " changed at "@" and " dot " changed to "."). */
/* $FreeBSD$ */
#include <ctype.h>
#include "gdtoaimp.h"
static void
@ -75,14 +71,14 @@ hexnan( CONST char **sp, FPI *fpi, ULong *x0)
x1 = xe = x;
havedig = hd0 = i = 0;
s = *sp;
/* FreeBSD local: Accept (but ignore) the '0x' prefix. */
if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
/* allow optional initial 0x or 0X */
while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
++s;
if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')
&& *(CONST unsigned char*)(s+3) > ' ')
s += 2;
while(c = *(CONST unsigned char*)++s) {
while((c = *(CONST unsigned char*)++s)) {
if (!(h = hexdig[c])) {
#if 0
if (c <= ' ') {
if (hd0 < havedig) {
if (x < x1 && i < 8)
@ -96,14 +92,26 @@ hexnan( CONST char **sp, FPI *fpi, ULong *x0)
x1 = x;
i = 0;
}
while(*(CONST unsigned char*)(s+1) <= ' ')
++s;
if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')
&& *(CONST unsigned char*)(s+3) > ' ')
s += 2;
continue;
}
if (/*(*/ c == ')' && havedig) {
*sp = s + 1;
break;
}
#ifndef GDTOA_NON_PEDANTIC_NANCHECK
do {
if (/*(*/ c == ')') {
*sp = s + 1;
break;
}
} while((c = *++s));
#endif
break;
return STRTOG_NaN;
}
havedig++;
if (++i > 8) {
@ -112,9 +120,11 @@ hexnan( CONST char **sp, FPI *fpi, ULong *x0)
i = 1;
*--x = 0;
}
*x = (*x << 4) | h & 0xf;
*x = (*x << 4) | (h & 0xf);
}
if (havedig && x < x1 && i < 8)
if (!havedig)
return STRTOG_NaN;
if (x < x1 && i < 8)
L_shift(x, x1, i);
if (x > x0) {
x1 = x0;
@ -128,7 +138,6 @@ hexnan( CONST char **sp, FPI *fpi, ULong *x0)
if ( (i = nbits & (ULbits-1)) !=0)
*xe &= ((ULong)0xffffffff) >> (ULbits - i);
}
if (havedig) {
for(x1 = xe;; --x1) {
if (*x1 != 0)
break;
@ -137,22 +146,5 @@ hexnan( CONST char **sp, FPI *fpi, ULong *x0)
break;
}
}
}
/*
* FreeBSD local: Accept all the sequences allowed by C99 and update
* the tail pointer correctly. Don't accept any invalid sequences.
*/
if (c == '\0') /* nan() calls this, too; tolerate a missing ')' */
return STRTOG_NaNbits;
if (c != ')') {
while(c = *(CONST unsigned char*)++s) {
if (c == ')')
break;
if (!isalnum(c) && c != '_')
return STRTOG_NaNbits;
}
}
*sp = s + 1;
return STRTOG_NaNbits;
}

View file

@ -30,6 +30,8 @@ CFLAGS = -g
.c.o:
$(CC) -c $(CFLAGS) $*.c
# invoke "make Printf" to add printf.o to gdtoa.a (if desired)
all: arith.h gd_qnan.h gdtoa.a
arith.h: arithchk.c
@ -42,27 +44,36 @@ gd_qnan.h: arith.h qnan.c
./a.out >gd_qnan.h
rm -f a.out qnan.o
gdtoa.a: dmisc.c dtoa.c g_Qfmt.c g__fmt.c g_ddfmt.c g_dfmt.c g_ffmt.c\
g_xLfmt.c g_xfmt.c gdtoa.c gethex.c gmisc.c hd_init.c hexnan.c\
misc.c smisc.c strtoIQ.c strtoId.c strtoIdd.c strtoIf.c strtoIg.c\
strtoIx.c strtoIxL.c strtod.c strtodI.c strtodg.c strtof.c strtopQ.c\
strtopd.c strtopdd.c strtopf.c strtopx.c strtopxL.c strtorQ.c\
strtord.c strtordd.c strtorf.c strtorx.c strtorxL.c sum.c ulp.c
gdtoa.a: dmisc.c dtoa.c g_Qfmt.c g__fmt.c g_ddfmt.c g_dfmt.c\
g_ffmt.c g_xLfmt.c g_xfmt.c gdtoa.c gethex.c gmisc.c hd_init.c\
hexnan.c misc.c smisc.c strtoIQ.c strtoId.c strtoIdd.c\
strtoIf.c strtoIg.c strtoIx.c strtoIxL.c strtod.c strtodI.c\
strtodg.c strtof.c strtopQ.c strtopd.c strtopdd.c strtopf.c\
strtopx.c strtopxL.c strtorQ.c strtord.c strtordd.c strtorf.c\
strtorx.c strtorxL.c sum.c ulp.c
$(CC) -c $(CFLAGS) $?
x=`echo $? | sed 's/\.c/.o/g'` && ar ruv gdtoa.a $$x && rm $$x
ranlib gdtoa.a || true
Printf: all printf.c
$(CC) -c $(CFLAGS) printf.c
ar ruv gdtoa.a printf.o
rm printf.o
touch Printf
# If your system lacks ranlib, you do not need it.
xs0 = README arithchk.c dmisc.c dtoa.c g_Qfmt.c g__fmt.c g_ddfmt.c g_dfmt.c\
g_ffmt.c g_xLfmt.c g_xfmt.c gdtoa.c gdtoa.h gdtoa_fltrnds.h gdtoaimp.h\
gethex.c gmisc.c hd_init.c hexnan.c makefile misc.c qnan.c smisc.c\
strtoIQ.c strtoId.c strtoIdd.c strtoIf.c strtoIg.c strtoIx.c strtoIxL.c\
strtod.c strtodI.c strtodg.c strtodnrp.c strtof.c strtopQ.c strtopd.c\
strtopdd.c strtopf.c strtopx.c strtopxL.c strtorQ.c strtord.c strtordd.c\
strtorf.c strtorx.c strtorxL.c sum.c ulp.c
xs0 = README arithchk.c dmisc.c dtoa.c g_Qfmt.c g__fmt.c g_ddfmt.c\
g_dfmt.c g_ffmt.c g_xLfmt.c g_xfmt.c gdtoa.c gdtoa.h\
gdtoa_fltrnds.h gdtoaimp.h gethex.c gmisc.c hd_init.c hexnan.c\
makefile misc.c printf.c printf.c0 qnan.c smisc.c stdio1.h\
strtoIQ.c strtoId.c strtoIdd.c strtoIf.c strtoIg.c strtoIx.c\
strtoIxL.c strtod.c strtodI.c strtodg.c strtodnrp.c strtof.c\
strtopQ.c strtopd.c strtopdd.c strtopf.c strtopx.c strtopxL.c\
strtorQ.c strtord.c strtordd.c strtorf.c strtorx.c strtorxL.c\
sum.c ulp.c
# "make xsum.out" to check for transmission errors; source for xsum is
# "make -r xsum.out" to check for transmission errors; source for xsum is
# netlib's "xsum.c from f2c", e.g.,
# ftp://netlib.bell-labs.com/netlib/f2c/xsum.c.gz
@ -71,4 +82,4 @@ xsum.out: xsum0.out $(xs0)
cmp xsum0.out xsum1.out && mv xsum1.out xsum.out || diff xsum[01].out
clean:
rm -f arith.h gd_qnan.h *.[ao] xsum.out xsum1.out
rm -f arith.h gd_qnan.h *.[ao] Printf xsum.out xsum1.out

View file

@ -92,7 +92,11 @@ Bfree
{
if (v) {
if (v->k > Kmax)
#ifdef FREE
FREE((void*)v);
#else
free((void*)v);
#endif
else {
ACQUIRE_DTOA_LOCK(0);
v->next = freelist[v->k];
@ -110,8 +114,8 @@ lo0bits
(ULong *y)
#endif
{
register int k;
register ULong x = *y;
int k;
ULong x = *y;
if (x & 7) {
if (x & 1)
@ -210,12 +214,12 @@ multadd
int
hi0bits_D2A
#ifdef KR_headers
(x) register ULong x;
(x) ULong x;
#else
(register ULong x)
(ULong x)
#endif
{
register int k = 0;
int k = 0;
if (!(x & 0xffff0000)) {
k = 16;
@ -618,12 +622,12 @@ b2d
{
ULong *xa, *xa0, w, y, z;
int k;
double d;
U d;
#ifdef VAX
ULong d0, d1;
#else
#define d0 word0(d)
#define d1 word1(d)
#define d0 word0(&d)
#define d1 word1(&d)
#endif
xa0 = a->x;
@ -636,16 +640,16 @@ b2d
*e = 32 - k;
#ifdef Pack_32
if (k < Ebits) {
d0 = Exp_1 | y >> Ebits - k;
d0 = Exp_1 | y >> (Ebits - k);
w = xa > xa0 ? *--xa : 0;
d1 = y << (32-Ebits) + k | w >> Ebits - k;
d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
if (k -= Ebits) {
d0 = Exp_1 | y << k | z >> 32 - k;
d0 = Exp_1 | y << k | z >> (32 - k);
y = xa > xa0 ? *--xa : 0;
d1 = z << k | y >> 32 - k;
d1 = z << k | y >> (32 - k);
}
else {
d0 = Exp_1 | y;
@ -669,10 +673,10 @@ b2d
#endif
ret_d:
#ifdef VAX
word0(d) = d0 >> 16 | d0 << 16;
word1(d) = d1 >> 16 | d1 << 16;
word0(&d) = d0 >> 16 | d0 << 16;
word1(&d) = d1 >> 16 | d1 << 16;
#endif
return dval(d);
return dval(&d);
}
#undef d0
#undef d1
@ -680,12 +684,13 @@ b2d
Bigint *
d2b
#ifdef KR_headers
(d, e, bits) double d; int *e, *bits;
(dd, e, bits) double dd; int *e, *bits;
#else
(double d, int *e, int *bits)
(double dd, int *e, int *bits)
#endif
{
Bigint *b;
U d;
#ifndef Sudden_Underflow
int i;
#endif
@ -693,11 +698,14 @@ d2b
ULong *x, y, z;
#ifdef VAX
ULong d0, d1;
d0 = word0(d) >> 16 | word0(d) << 16;
d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#define d0 word0(&d)
#define d1 word1(&d)
#endif
d.d = dd;
#ifdef VAX
d0 = word0(&d) >> 16 | word0(&d) << 16;
d1 = word1(&d) >> 16 | word1(&d) << 16;
#endif
#ifdef Pack_32
@ -721,7 +729,7 @@ d2b
#ifdef Pack_32
if ( (y = d1) !=0) {
if ( (k = lo0bits(&y)) !=0) {
x[0] = y | z << 32 - k;
x[0] = y | z << (32 - k);
z >>= k;
}
else
@ -732,10 +740,6 @@ d2b
b->wds = (x[1] = z) !=0 ? 2 : 1;
}
else {
#ifdef DEBUG
if (!z)
Bug("Zero passed to d2b");
#endif
k = lo0bits(&z);
x[0] = z;
#ifndef Sudden_Underflow
@ -794,7 +798,7 @@ d2b
#endif
#ifdef IBM
*e = (de - Bias - (P-1) << 2) + k;
*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
*bits = 4*P + 8 - k - hi0bits(word0(&d) & Frac_mask);
#else
*e = de - Bias - (P-1) + k;
*bits = P - k;
@ -847,7 +851,7 @@ strcp_D2A(a, b) char *a; char *b;
strcp_D2A(char *a, CONST char *b)
#endif
{
while(*a = *b++)
while((*a = *b++))
a++;
return a;
}
@ -861,8 +865,8 @@ memcpy_D2A(a, b, len) Char *a; Char *b; size_t len;
memcpy_D2A(void *a1, void *b1, size_t len)
#endif
{
register char *a = (char*)a1, *ae = a + len;
register char *b = (char*)b1, *a0 = a;
char *a = (char*)a1, *ae = a + len;
char *b = (char*)b1, *a0 = a;
while(a < ae)
*a++ = *b++;
return a0;

8
contrib/gdtoa/printf.c Normal file
View file

@ -0,0 +1,8 @@
#ifdef __sun
#define Use_GDTOA_Qtype
#else
#if defined(__i386) || defined(__x86_64)
#define Use_GDTOA_for_i386_long_double
#endif
#endif
#include "printf.c0"

1669
contrib/gdtoa/printf.c0 Normal file

File diff suppressed because it is too large Load diff

View file

@ -77,33 +77,33 @@ ratio
(Bigint *a, Bigint *b)
#endif
{
double da, db;
U da, db;
int k, ka, kb;
dval(da) = b2d(a, &ka);
dval(db) = b2d(b, &kb);
dval(&da) = b2d(a, &ka);
dval(&db) = b2d(b, &kb);
k = ka - kb + ULbits*(a->wds - b->wds);
#ifdef IBM
if (k > 0) {
word0(da) += (k >> 2)*Exp_msk1;
word0(&da) += (k >> 2)*Exp_msk1;
if (k &= 3)
dval(da) *= 1 << k;
dval(&da) *= 1 << k;
}
else {
k = -k;
word0(db) += (k >> 2)*Exp_msk1;
word0(&db) += (k >> 2)*Exp_msk1;
if (k &= 3)
dval(db) *= 1 << k;
dval(&db) *= 1 << k;
}
#else
if (k > 0)
word0(da) += k*Exp_msk1;
word0(&da) += k*Exp_msk1;
else {
k = -k;
word0(db) += k*Exp_msk1;
word0(&db) += k*Exp_msk1;
}
#endif
return dval(da) / dval(db);
return dval(&da) / dval(&db);
}
#ifdef INFNAN_CHECK

103
contrib/gdtoa/stdio1.h Normal file
View file

@ -0,0 +1,103 @@
/****************************************************************
Copyright (C) 1997-1999 Lucent Technologies
All Rights Reserved
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Lucent or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
****************************************************************/
/* stdio1.h -- for using Printf, Fprintf, Sprintf while
* retaining the system-supplied printf, fprintf, sprintf.
*/
#ifndef STDIO1_H_included
#define STDIO1_H_included
#ifndef STDIO_H_included /* allow suppressing stdio.h */
#include <stdio.h> /* in case it's already included, */
#endif /* e.g., by cplex.h */
#ifdef KR_headers
#ifndef _SIZE_T
#define _SIZE_T
typedef unsigned int size_t;
#endif
#define ANSI(x) ()
#include "varargs.h"
#ifndef Char
#define Char char
#endif
#else
#define ANSI(x) x
#include "stdarg.h"
#ifndef Char
#define Char void
#endif
#endif
#ifndef NO_STDIO1
#ifdef __cplusplus
extern "C" {
#endif
extern int Fprintf ANSI((FILE*, const char*, ...));
extern int Printf ANSI((const char*, ...));
extern int Sprintf ANSI((char*, const char*, ...));
extern int Snprintf ANSI((char*, size_t, const char*, ...));
extern void Perror ANSI((const char*));
extern int Vfprintf ANSI((FILE*, const char*, va_list));
extern int Vsprintf ANSI((char*, const char*, va_list));
extern int Vsnprintf ANSI((char*, size_t, const char*, va_list));
#ifdef PF_BUF
extern FILE *stderr_ASL;
extern void (*pfbuf_print_ASL) ANSI((char*));
extern char *pfbuf_ASL;
extern void fflush_ASL ANSI((FILE*));
#ifdef fflush
#define old_fflush_ASL fflush
#undef fflush
#endif
#define fflush fflush_ASL
#endif
#ifdef __cplusplus
}
#endif
#undef printf
#undef fprintf
#undef sprintf
#undef perror
#undef vfprintf
#undef vsprintf
#define printf Printf
#define fprintf Fprintf
#undef snprintf /* for MacOSX */
#undef vsnprintf /* for MacOSX */
#define snprintf Snprintf
#define sprintf Sprintf
#define perror Perror
#define vfprintf Vfprintf
#define vsnprintf Vsnprintf
#define vsprintf Vsprintf
#endif /* NO_STDIO1 */
#endif /* STDIO1_H_included */

View file

@ -74,7 +74,7 @@ strtoIg(CONST char *s00, char **se, FPI *fpi, Long *exp, Bigint **B, int *rvp)
goto swapcheck;
}
if (b1->wds > nw
|| nb1 && b1->x[nw1] & 1L << nb1) {
|| (nb1 && b1->x[nw1] & 1L << nb1)) {
if (++e1 > fpi->emax)
rv1 = STRTOG_Infinite | STRTOG_Inexhi;
rshift(b1, 1);

View file

@ -59,6 +59,28 @@ static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
#define Rounding Flt_Rounds
#endif
#ifdef Avoid_Underflow /*{*/
static double
sulp
#ifdef KR_headers
(x, scale) U *x; int scale;
#else
(U *x, int scale)
#endif
{
U u;
double rv;
int i;
rv = ulp(x);
if (!scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
return rv; /* Is there an example where i <= 0 ? */
word0(&u) = Exp_1 + (i << Exp_shift);
word1(&u) = 0;
return rv * u.d;
}
#endif /*}*/
double
strtod
#ifdef KR_headers
@ -73,10 +95,14 @@ strtod
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, decpt, dsign,
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
CONST char *s, *s0, *s1;
double aadj, aadj1, adj, rv, rv0;
double aadj;
Long L;
U adj, aadj1, rv, rv0;
ULong y, z;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
#ifdef Avoid_Underflow
ULong Lsb, Lsb1;
#endif
#ifdef SET_INEXACT
int inexact, oldinexact;
#endif
@ -90,7 +116,7 @@ strtod
static int dplen;
if (!(s0 = decimalpoint_cache)) {
s0 = localeconv()->decimal_point;
if ((decimalpoint_cache = (char*)malloc(strlen(s0) + 1))) {
if ((decimalpoint_cache = (char*)MALLOC(strlen(s0) + 1))) {
strcpy(decimalpoint_cache, s0);
s0 = decimalpoint_cache;
}
@ -117,7 +143,7 @@ strtod
#endif /*}*/
sign = nz0 = nz = decpt = 0;
dval(rv) = 0.;
dval(&rv) = 0.;
for(s = s00;;s++) switch(*s) {
case '-':
sign = 1;
@ -149,20 +175,12 @@ strtod
case 'x':
case 'X':
{
#if defined(FE_DOWNWARD) && defined(FE_TONEAREST) && defined(FE_TOWARDZERO) && defined(FE_UPWARD) /*{{*/
#ifdef Honor_FLT_ROUNDS
FPI fpi1 = fpi;
#ifdef Honor_FLT_ROUNDS /*{{*/
fpi1.rounding = Rounding;
#else /*}{*/
switch(fegetround()) {
case FE_TOWARDZERO: fpi1.rounding = 0; break;
case FE_UPWARD: fpi1.rounding = 2; break;
case FE_DOWNWARD: fpi1.rounding = 3;
}
#endif /*}}*/
#else /*}{*/
#else
#define fpi1 fpi
#endif /*}}*/
#endif
switch((i = gethex(&s, &fpi1, &exp, &bb, sign)) & STRTOG_Retmask) {
case STRTOG_NoNumber:
s = s00;
@ -287,8 +305,8 @@ strtod
--s;
if (!match(&s,"inity"))
++s;
word0(rv) = 0x7ff00000;
word1(rv) = 0;
word0(&rv) = 0x7ff00000;
word1(&rv) = 0;
goto ret;
}
break;
@ -299,13 +317,13 @@ strtod
if (*s == '(' /*)*/
&& hexnan(&s, &fpinan, bits)
== STRTOG_NaNbits) {
word0(rv) = 0x7ff80000 | bits[1];
word1(rv) = bits[0];
word0(&rv) = 0x7ff80000 | bits[1];
word1(&rv) = bits[0];
}
else {
#endif
word0(rv) = NAN_WORD0;
word1(rv) = NAN_WORD1;
word0(&rv) = NAN_WORD0;
word1(&rv) = NAN_WORD1;
#ifndef No_Hex_NaN
}
#endif
@ -329,13 +347,13 @@ strtod
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
dval(rv) = y;
dval(&rv) = y;
if (k > 9) {
#ifdef SET_INEXACT
if (k > DBL_DIG)
oldinexact = get_inexact();
#endif
dval(rv) = tens[k - 9] * dval(rv) + z;
dval(&rv) = tens[k - 9] * dval(&rv) + z;
}
bd0 = 0;
if (nd <= DBL_DIG
@ -347,6 +365,7 @@ strtod
) {
if (!e)
goto ret;
#ifndef ROUND_BIASED_without_Round_Up
if (e > 0) {
if (e <= Ten_pmax) {
#ifdef VAX
@ -355,11 +374,11 @@ strtod
#ifdef Honor_FLT_ROUNDS
/* round correctly FLT_ROUNDS = 2 or 3 */
if (sign) {
rv = -rv;
rv.d = -rv.d;
sign = 0;
}
#endif
/* rv = */ rounded_product(dval(rv), tens[e]);
/* rv = */ rounded_product(dval(&rv), tens[e]);
goto ret;
#endif
}
@ -371,25 +390,25 @@ strtod
#ifdef Honor_FLT_ROUNDS
/* round correctly FLT_ROUNDS = 2 or 3 */
if (sign) {
rv = -rv;
rv.d = -rv.d;
sign = 0;
}
#endif
e -= i;
dval(rv) *= tens[i];
dval(&rv) *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
word0(rv) -= P*Exp_msk1;
/* rv = */ rounded_product(dval(rv), tens[e]);
if ((word0(rv) & Exp_mask)
word0(&rv) -= P*Exp_msk1;
/* rv = */ rounded_product(dval(&rv), tens[e]);
if ((word0(&rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
goto ovfl;
word0(rv) += P*Exp_msk1;
word0(&rv) += P*Exp_msk1;
#else
/* rv = */ rounded_product(dval(rv), tens[e]);
/* rv = */ rounded_product(dval(&rv), tens[e]);
#endif
goto ret;
}
@ -399,14 +418,15 @@ strtod
#ifdef Honor_FLT_ROUNDS
/* round correctly FLT_ROUNDS = 2 or 3 */
if (sign) {
rv = -rv;
rv.d = -rv.d;
sign = 0;
}
#endif
/* rv = */ rounded_quotient(dval(rv), tens[-e]);
/* rv = */ rounded_quotient(dval(&rv), tens[-e]);
goto ret;
}
#endif
#endif /* ROUND_BIASED_without_Round_Up */
}
e1 += nd - k;
@ -434,67 +454,73 @@ strtod
if (e1 > 0) {
if ( (i = e1 & 15) !=0)
dval(rv) *= tens[i];
dval(&rv) *= tens[i];
if (e1 &= ~15) {
if (e1 > DBL_MAX_10_EXP) {
ovfl:
#ifndef NO_ERRNO
errno = ERANGE;
#endif
/* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
#ifdef Honor_FLT_ROUNDS
switch(Rounding) {
case 0: /* toward 0 */
case 3: /* toward -infinity */
word0(rv) = Big0;
word1(rv) = Big1;
word0(&rv) = Big0;
word1(&rv) = Big1;
break;
default:
word0(rv) = Exp_mask;
word1(rv) = 0;
word0(&rv) = Exp_mask;
word1(&rv) = 0;
}
#else /*Honor_FLT_ROUNDS*/
word0(rv) = Exp_mask;
word1(rv) = 0;
word0(&rv) = Exp_mask;
word1(&rv) = 0;
#endif /*Honor_FLT_ROUNDS*/
#ifdef SET_INEXACT
/* set overflow bit */
dval(rv0) = 1e300;
dval(rv0) *= dval(rv0);
dval(&rv0) = 1e300;
dval(&rv0) *= dval(&rv0);
#endif
#else /*IEEE_Arith*/
word0(rv) = Big0;
word1(rv) = Big1;
word0(&rv) = Big0;
word1(&rv) = Big1;
#endif /*IEEE_Arith*/
if (bd0)
goto retfree;
range_err:
if (bd0) {
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
}
#ifndef NO_ERRNO
errno = ERANGE;
#endif
goto ret;
}
e1 >>= 4;
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
dval(rv) *= bigtens[j];
dval(&rv) *= bigtens[j];
/* The last multiplication could overflow. */
word0(rv) -= P*Exp_msk1;
dval(rv) *= bigtens[j];
if ((z = word0(rv) & Exp_mask)
word0(&rv) -= P*Exp_msk1;
dval(&rv) *= bigtens[j];
if ((z = word0(&rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-P))
goto ovfl;
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0(rv) = Big0;
word1(rv) = Big1;
word0(&rv) = Big0;
word1(&rv) = Big1;
}
else
word0(rv) += P*Exp_msk1;
word0(&rv) += P*Exp_msk1;
}
}
else if (e1 < 0) {
e1 = -e1;
if ( (i = e1 & 15) !=0)
dval(rv) /= tens[i];
dval(&rv) /= tens[i];
if (e1 >>= 4) {
if (e1 >= 1 << n_bigtens)
goto undfl;
@ -503,44 +529,39 @@ strtod
scale = 2*P;
for(j = 0; e1 > 0; j++, e1 >>= 1)
if (e1 & 1)
dval(rv) *= tinytens[j];
if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask)
dval(&rv) *= tinytens[j];
if (scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
>> Exp_shift)) > 0) {
/* scaled rv is denormal; zap j low bits */
if (j >= 32) {
word1(rv) = 0;
word1(&rv) = 0;
if (j >= 53)
word0(rv) = (P+2)*Exp_msk1;
word0(&rv) = (P+2)*Exp_msk1;
else
word0(rv) &= 0xffffffff << j-32;
word0(&rv) &= 0xffffffff << (j-32);
}
else
word1(rv) &= 0xffffffff << j;
word1(&rv) &= 0xffffffff << j;
}
#else
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
dval(rv) *= tinytens[j];
dval(&rv) *= tinytens[j];
/* The last multiplication could underflow. */
dval(rv0) = dval(rv);
dval(rv) *= tinytens[j];
if (!dval(rv)) {
dval(rv) = 2.*dval(rv0);
dval(rv) *= tinytens[j];
dval(&rv0) = dval(&rv);
dval(&rv) *= tinytens[j];
if (!dval(&rv)) {
dval(&rv) = 2.*dval(&rv0);
dval(&rv) *= tinytens[j];
#endif
if (!dval(rv)) {
if (!dval(&rv)) {
undfl:
dval(rv) = 0.;
#ifndef NO_ERRNO
errno = ERANGE;
#endif
if (bd0)
goto retfree;
goto ret;
dval(&rv) = 0.;
goto range_err;
}
#ifndef Avoid_Underflow
word0(rv) = Tiny0;
word1(rv) = Tiny1;
word0(&rv) = Tiny0;
word1(&rv) = Tiny1;
/* The refinement below will clean
* this approximation up.
*/
@ -558,7 +579,7 @@ strtod
for(;;) {
bd = Balloc(bd0->k);
Bcopy(bd, bd0);
bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
bb = d2b(dval(&rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
bs = i2b(1);
if (e >= 0) {
@ -579,12 +600,19 @@ strtod
bs2++;
#endif
#ifdef Avoid_Underflow
Lsb = LSB;
Lsb1 = 0;
j = bbe - scale;
i = j + bbbits - 1; /* logb(rv) */
if (i < Emin) /* denormal */
j += P - Emin;
else
j = P + 1 - bbbits;
j = P + 1 - bbbits;
if (i < Emin) { /* denormal */
i = Emin - i;
j -= i;
if (i < 32)
Lsb <<= i;
else
Lsb1 = Lsb << (i-32);
}
#else /*Avoid_Underflow*/
#ifdef Sudden_Underflow
#ifdef IBM
@ -594,7 +622,7 @@ strtod
#endif
#else /*Sudden_Underflow*/
j = bbe;
i = j + bbbits - 1; /* logb(rv) */
i = j + bbbits - 1; /* logb(&rv) */
if (i < Emin) /* denormal */
j += P - Emin;
else
@ -645,15 +673,15 @@ strtod
}
if (Rounding) {
if (dsign) {
adj = 1.;
dval(&adj) = 1.;
goto apply_adj;
}
}
else if (!dsign) {
adj = -1.;
if (!word1(rv)
&& !(word0(rv) & Frac_mask)) {
y = word0(rv) & Exp_mask;
dval(&adj) = -1.;
if (!word1(&rv)
&& !(word0(&rv) & Frac_mask)) {
y = word0(&rv) & Exp_mask;
#ifdef Avoid_Underflow
if (!scale || y > 2*P*Exp_msk1)
#else
@ -662,66 +690,66 @@ strtod
{
delta = lshift(delta,Log2P);
if (cmp(delta, bs) <= 0)
adj = -0.5;
dval(&adj) = -0.5;
}
}
apply_adj:
#ifdef Avoid_Underflow
if (scale && (y = word0(rv) & Exp_mask)
if (scale && (y = word0(&rv) & Exp_mask)
<= 2*P*Exp_msk1)
word0(adj) += (2*P+1)*Exp_msk1 - y;
word0(&adj) += (2*P+1)*Exp_msk1 - y;
#else
#ifdef Sudden_Underflow
if ((word0(rv) & Exp_mask) <=
if ((word0(&rv) & Exp_mask) <=
P*Exp_msk1) {
word0(rv) += P*Exp_msk1;
dval(rv) += adj*ulp(dval(rv));
word0(rv) -= P*Exp_msk1;
word0(&rv) += P*Exp_msk1;
dval(&rv) += adj*ulp(&rv);
word0(&rv) -= P*Exp_msk1;
}
else
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
dval(rv) += adj*ulp(dval(rv));
dval(&rv) += adj.d*ulp(&rv);
}
break;
}
adj = ratio(delta, bs);
if (adj < 1.)
adj = 1.;
if (adj <= 0x7ffffffe) {
/* adj = Rounding ? ceil(adj) : floor(adj); */
y = adj;
if (y != adj) {
dval(&adj) = ratio(delta, bs);
if (adj.d < 1.)
dval(&adj) = 1.;
if (adj.d <= 0x7ffffffe) {
/* dval(&adj) = Rounding ? ceil(&adj) : floor(&adj); */
y = adj.d;
if (y != adj.d) {
if (!((Rounding>>1) ^ dsign))
y++;
adj = y;
dval(&adj) = y;
}
}
#ifdef Avoid_Underflow
if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
word0(adj) += (2*P+1)*Exp_msk1 - y;
if (scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
word0(&adj) += (2*P+1)*Exp_msk1 - y;
#else
#ifdef Sudden_Underflow
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
word0(rv) += P*Exp_msk1;
adj *= ulp(dval(rv));
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
word0(&rv) += P*Exp_msk1;
dval(&adj) *= ulp(&rv);
if (dsign)
dval(rv) += adj;
dval(&rv) += adj;
else
dval(rv) -= adj;
word0(rv) -= P*Exp_msk1;
dval(&rv) -= adj;
word0(&rv) -= P*Exp_msk1;
goto cont;
}
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
adj *= ulp(dval(rv));
dval(&adj) *= ulp(&rv);
if (dsign) {
if (word0(rv) == Big0 && word1(rv) == Big1)
if (word0(&rv) == Big0 && word1(&rv) == Big1)
goto ovfl;
dval(rv) += adj;
dval(&rv) += adj.d;
}
else
dval(rv) -= adj;
dval(&rv) -= adj.d;
goto cont;
}
#endif /*Honor_FLT_ROUNDS*/
@ -730,12 +758,12 @@ strtod
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (dsign || word1(rv) || word0(rv) & Bndry_mask
if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
#ifdef IEEE_Arith
#ifdef Avoid_Underflow
|| (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1
|| (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
#else
|| (word0(rv) & Exp_mask) <= Exp_msk1
|| (word0(&rv) & Exp_mask) <= Exp_msk1
#endif
#endif
) {
@ -760,32 +788,34 @@ strtod
if (i == 0) {
/* exactly half-way between */
if (dsign) {
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
&& word1(rv) == (
if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
&& word1(&rv) == (
#ifdef Avoid_Underflow
(scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1)
(scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
#endif
0xffffffff)) {
/*boundary case -- increment exponent*/
word0(rv) = (word0(rv) & Exp_mask)
if (word0(&rv) == Big0 && word1(&rv) == Big1)
goto ovfl;
word0(&rv) = (word0(&rv) & Exp_mask)
+ Exp_msk1
#ifdef IBM
| Exp_msk1 >> 4
#endif
;
word1(rv) = 0;
word1(&rv) = 0;
#ifdef Avoid_Underflow
dsign = 0;
#endif
break;
}
}
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
drop_down:
/* boundary case -- decrement exponent */
#ifdef Sudden_Underflow /*{{*/
L = word0(rv) & Exp_mask;
L = word0(&rv) & Exp_mask;
#ifdef IBM
if (L < Exp_msk1)
#else
@ -800,7 +830,7 @@ strtod
#else /*Sudden_Underflow}{*/
#ifdef Avoid_Underflow
if (scale) {
L = word0(rv) & Exp_mask;
L = word0(&rv) & Exp_mask;
if (L <= (2*P+1)*Exp_msk1) {
if (L > (P+2)*Exp_msk1)
/* round even ==> */
@ -811,10 +841,10 @@ strtod
}
}
#endif /*Avoid_Underflow*/
L = (word0(rv) & Exp_mask) - Exp_msk1;
L = (word0(&rv) & Exp_mask) - Exp_msk1;
#endif /*Sudden_Underflow}}*/
word0(rv) = L | Bndry_mask1;
word1(rv) = 0xffffffff;
word0(&rv) = L | Bndry_mask1;
word1(&rv) = 0xffffffff;
#ifdef IBM
goto cont;
#else
@ -822,16 +852,33 @@ strtod
#endif
}
#ifndef ROUND_BIASED
if (!(word1(rv) & LSB))
#ifdef Avoid_Underflow
if (Lsb1) {
if (!(word0(&rv) & Lsb1))
break;
}
else if (!(word1(&rv) & Lsb))
break;
#else
if (!(word1(&rv) & LSB))
break;
#endif
#endif
if (dsign)
dval(rv) += ulp(dval(rv));
#ifdef Avoid_Underflow
dval(&rv) += sulp(&rv, scale);
#else
dval(&rv) += ulp(&rv);
#endif
#ifndef ROUND_BIASED
else {
dval(rv) -= ulp(dval(rv));
#ifdef Avoid_Underflow
dval(&rv) -= sulp(&rv, scale);
#else
dval(&rv) -= ulp(&rv);
#endif
#ifndef Sudden_Underflow
if (!dval(rv))
if (!dval(&rv))
goto undfl;
#endif
}
@ -843,14 +890,14 @@ strtod
}
if ((aadj = ratio(delta, bs)) <= 2.) {
if (dsign)
aadj = aadj1 = 1.;
else if (word1(rv) || word0(rv) & Bndry_mask) {
aadj = dval(&aadj1) = 1.;
else if (word1(&rv) || word0(&rv) & Bndry_mask) {
#ifndef Sudden_Underflow
if (word1(rv) == Tiny1 && !word0(rv))
if (word1(&rv) == Tiny1 && !word0(&rv))
goto undfl;
#endif
aadj = 1.;
aadj1 = -1.;
dval(&aadj1) = -1.;
}
else {
/* special case -- power of FLT_RADIX to be */
@ -860,45 +907,45 @@ strtod
aadj = 1./FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
dval(&aadj1) = -aadj;
}
}
else {
aadj *= 0.5;
aadj1 = dsign ? aadj : -aadj;
dval(&aadj1) = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
switch(Rounding) {
case 2: /* towards +infinity */
aadj1 -= 0.5;
dval(&aadj1) -= 0.5;
break;
case 0: /* towards 0 */
case 3: /* towards -infinity */
aadj1 += 0.5;
dval(&aadj1) += 0.5;
}
#else
if (Flt_Rounds == 0)
aadj1 += 0.5;
dval(&aadj1) += 0.5;
#endif /*Check_FLT_ROUNDS*/
}
y = word0(rv) & Exp_mask;
y = word0(&rv) & Exp_mask;
/* Check for overflow */
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
dval(rv0) = dval(rv);
word0(rv) -= P*Exp_msk1;
adj = aadj1 * ulp(dval(rv));
dval(rv) += adj;
if ((word0(rv) & Exp_mask) >=
dval(&rv0) = dval(&rv);
word0(&rv) -= P*Exp_msk1;
dval(&adj) = dval(&aadj1) * ulp(&rv);
dval(&rv) += dval(&adj);
if ((word0(&rv) & Exp_mask) >=
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
if (word0(rv0) == Big0 && word1(rv0) == Big1)
if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
goto ovfl;
word0(rv) = Big0;
word1(rv) = Big1;
word0(&rv) = Big0;
word1(&rv) = Big1;
goto cont;
}
else
word0(rv) += P*Exp_msk1;
word0(&rv) += P*Exp_msk1;
}
else {
#ifdef Avoid_Underflow
@ -907,58 +954,58 @@ strtod
if ((z = aadj) <= 0)
z = 1;
aadj = z;
aadj1 = dsign ? aadj : -aadj;
dval(&aadj1) = dsign ? aadj : -aadj;
}
word0(aadj1) += (2*P+1)*Exp_msk1 - y;
word0(&aadj1) += (2*P+1)*Exp_msk1 - y;
}
adj = aadj1 * ulp(dval(rv));
dval(rv) += adj;
dval(&adj) = dval(&aadj1) * ulp(&rv);
dval(&rv) += dval(&adj);
#else
#ifdef Sudden_Underflow
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
dval(rv0) = dval(rv);
word0(rv) += P*Exp_msk1;
adj = aadj1 * ulp(dval(rv));
dval(rv) += adj;
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
dval(&rv0) = dval(&rv);
word0(&rv) += P*Exp_msk1;
dval(&adj) = dval(&aadj1) * ulp(&rv);
dval(&rv) += adj;
#ifdef IBM
if ((word0(rv) & Exp_mask) < P*Exp_msk1)
if ((word0(&rv) & Exp_mask) < P*Exp_msk1)
#else
if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
#endif
{
if (word0(rv0) == Tiny0
&& word1(rv0) == Tiny1)
if (word0(&rv0) == Tiny0
&& word1(&rv0) == Tiny1)
goto undfl;
word0(rv) = Tiny0;
word1(rv) = Tiny1;
word0(&rv) = Tiny0;
word1(&rv) = Tiny1;
goto cont;
}
else
word0(rv) -= P*Exp_msk1;
word0(&rv) -= P*Exp_msk1;
}
else {
adj = aadj1 * ulp(dval(rv));
dval(rv) += adj;
dval(&adj) = dval(&aadj1) * ulp(&rv);
dval(&rv) += adj;
}
#else /*Sudden_Underflow*/
/* Compute adj so that the IEEE rounding rules will
* correctly round rv + adj in some half-way cases.
* If rv * ulp(rv) is denormalized (i.e.,
/* Compute dval(&adj) so that the IEEE rounding rules will
* correctly round rv + dval(&adj) in some half-way cases.
* If rv * ulp(&rv) is denormalized (i.e.,
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
* trouble from bits lost to denormalization;
* example: 1.2e-307 .
*/
if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
aadj1 = (double)(int)(aadj + 0.5);
dval(&aadj1) = (double)(int)(aadj + 0.5);
if (!dsign)
aadj1 = -aadj1;
dval(&aadj1) = -dval(&aadj1);
}
adj = aadj1 * ulp(dval(rv));
dval(rv) += adj;
dval(&adj) = dval(&aadj1) * ulp(&rv);
dval(&rv) += adj;
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
}
z = word0(rv) & Exp_mask;
z = word0(&rv) & Exp_mask;
#ifndef SET_INEXACT
#ifdef Avoid_Underflow
if (!scale)
@ -968,7 +1015,7 @@ strtod
L = (Long)aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
if (aadj < .4999999 || aadj > .5000001)
break;
}
@ -982,12 +1029,17 @@ strtod
Bfree(bs);
Bfree(delta);
}
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
#ifdef SET_INEXACT
if (inexact) {
if (!oldinexact) {
word0(rv0) = Exp_1 + (70 << Exp_shift);
word1(rv0) = 0;
dval(rv0) += 1.;
word0(&rv0) = Exp_1 + (70 << Exp_shift);
word1(&rv0) = 0;
dval(&rv0) += 1.;
}
}
else if (!oldinexact)
@ -995,36 +1047,30 @@ strtod
#endif
#ifdef Avoid_Underflow
if (scale) {
word0(rv0) = Exp_1 - 2*P*Exp_msk1;
word1(rv0) = 0;
dval(rv) *= dval(rv0);
word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
word1(&rv0) = 0;
dval(&rv) *= dval(&rv0);
#ifndef NO_ERRNO
/* try to avoid the bug of testing an 8087 register value */
#ifdef IEEE_Arith
if (!(word0(rv) & Exp_mask))
if (!(word0(&rv) & Exp_mask))
#else
if (word0(rv) == 0 && word1(rv) == 0)
if (word0(&rv) == 0 && word1(&rv) == 0)
#endif
errno = ERANGE;
#endif
}
#endif /* Avoid_Underflow */
#ifdef SET_INEXACT
if (inexact && !(word0(rv) & Exp_mask)) {
if (inexact && !(word0(&rv) & Exp_mask)) {
/* set underflow bit */
dval(rv0) = 1e-300;
dval(rv0) *= dval(rv0);
dval(&rv0) = 1e-300;
dval(&rv0) *= dval(&rv0);
}
#endif
retfree:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
ret:
if (se)
*se = (char *)s;
return sign ? -dval(rv) : dval(rv);
return sign ? -dval(&rv) : dval(&rv);
}

View file

@ -33,16 +33,16 @@ THIS SOFTWARE.
static double
#ifdef KR_headers
ulpdown(d) double *d;
ulpdown(d) U *d;
#else
ulpdown(double *d)
ulpdown(U *d)
#endif
{
double u;
ULong *L = (ULong*)d;
ULong *L = d->L;
u = ulp(*d);
if (!(L[_1] | L[_0] & 0xfffff)
u = ulp(d);
if (!(L[_1] | (L[_0] & 0xfffff))
&& (L[_0] & 0x7ff00000) > 0x00100000)
u *= 0.5;
return u;
@ -59,10 +59,6 @@ strtodI(CONST char *s, char **sp, double *dd)
ULong bits[2], sign;
Long exp;
int j, k;
typedef union {
double d[2];
ULong L[4];
} U;
U *u;
k = strtodg(s, sp, &fpi, &exp, bits);
@ -70,17 +66,17 @@ strtodI(CONST char *s, char **sp, double *dd)
sign = k & STRTOG_Neg ? 0x80000000L : 0;
switch(k & STRTOG_Retmask) {
case STRTOG_NoNumber:
u->d[0] = u->d[1] = 0.;
dval(&u[0]) = dval(&u[1]) = 0.;
break;
case STRTOG_Zero:
u->d[0] = u->d[1] = 0.;
dval(&u[0]) = dval(&u[1]) = 0.;
#ifdef Sudden_Underflow
if (k & STRTOG_Inexact) {
if (sign)
u->L[_0] = 0x80100000L;
word0(&u[0]) = 0x80100000L;
else
u->L[2+_0] = 0x100000L;
word0(&u[1]) = 0x100000L;
}
break;
#else
@ -88,80 +84,80 @@ strtodI(CONST char *s, char **sp, double *dd)
#endif
case STRTOG_Denormal:
u->L[_1] = bits[0];
u->L[_0] = bits[1];
word1(&u[0]) = bits[0];
word0(&u[0]) = bits[1];
goto contain;
case STRTOG_Normal:
u->L[_1] = bits[0];
u->L[_0] = (bits[1] & ~0x100000) | ((exp + 0x3ff + 52) << 20);
word1(&u[0]) = bits[0];
word0(&u[0]) = (bits[1] & ~0x100000) | ((exp + 0x3ff + 52) << 20);
contain:
j = k & STRTOG_Inexact;
if (sign) {
u->L[_0] |= sign;
word0(&u[0]) |= sign;
j = STRTOG_Inexact - j;
}
switch(j) {
case STRTOG_Inexlo:
#ifdef Sudden_Underflow
if ((u->L[_0] & 0x7ff00000) < 0x3500000) {
u->L[2+_0] = u->L[_0] + 0x3500000;
u->L[2+_1] = u->L[_1];
u->d[1] += ulp(u->d[1]);
u->L[2+_0] -= 0x3500000;
if (!(u->L[2+_0] & 0x7ff00000)) {
u->L[2+_0] = sign;
u->L[2+_1] = 0;
word0(&u[1]) = word0(&u[0]) + 0x3500000;
word1(&u[1]) = word1(&u[0]);
dval(&u[1]) += ulp(&u[1]);
word0(&u[1]) -= 0x3500000;
if (!(word0(&u[1]) & 0x7ff00000)) {
word0(&u[1]) = sign;
word1(&u[1]) = 0;
}
}
else
#endif
u->d[1] = u->d[0] + ulp(u->d[0]);
dval(&u[1]) = dval(&u[0]) + ulp(&u[0]);
break;
case STRTOG_Inexhi:
u->d[1] = u->d[0];
dval(&u[1]) = dval(&u[0]);
#ifdef Sudden_Underflow
if ((u->L[_0] & 0x7ff00000) < 0x3500000) {
u->L[_0] += 0x3500000;
u->d[0] -= ulpdown(u->d);
u->L[_0] -= 0x3500000;
if (!(u->L[_0] & 0x7ff00000)) {
u->L[_0] = sign;
u->L[_1] = 0;
if ((word0(&u[0]) & 0x7ff00000) < 0x3500000) {
word0(&u[0]) += 0x3500000;
dval(&u[0]) -= ulpdown(u);
word0(&u[0]) -= 0x3500000;
if (!(word0(&u[0]) & 0x7ff00000)) {
word0(&u[0]) = sign;
word1(&u[0]) = 0;
}
}
else
#endif
u->d[0] -= ulpdown(u->d);
dval(&u[0]) -= ulpdown(u);
break;
default:
u->d[1] = u->d[0];
dval(&u[1]) = dval(&u[0]);
}
break;
case STRTOG_Infinite:
u->L[_0] = u->L[2+_0] = sign | 0x7ff00000;
u->L[_1] = u->L[2+_1] = 0;
word0(&u[0]) = word0(&u[1]) = sign | 0x7ff00000;
word1(&u[0]) = word1(&u[1]) = 0;
if (k & STRTOG_Inexact) {
if (sign) {
u->L[2+_0] = 0xffefffffL;
u->L[2+_1] = 0xffffffffL;
word0(&u[1]) = 0xffefffffL;
word1(&u[1]) = 0xffffffffL;
}
else {
u->L[_0] = 0x7fefffffL;
u->L[_1] = 0xffffffffL;
word0(&u[0]) = 0x7fefffffL;
word1(&u[0]) = 0xffffffffL;
}
}
break;
case STRTOG_NaN:
u->L[0] = u->L[2] = d_QNAN0;
u->L[1] = u->L[3] = d_QNAN1;
u->L[0] = (u+1)->L[0] = d_QNAN0;
u->L[1] = (u+1)->L[1] = d_QNAN1;
break;
case STRTOG_NaNbits:
u->L[_0] = u->L[2+_0] = 0x7ff00000 | sign | bits[1];
u->L[_1] = u->L[2+_1] = bits[0];
word0(&u[0]) = word0(&u[1]) = 0x7ff00000 | sign | bits[1];
word1(&u[0]) = word1(&u[1]) = bits[0];
}
return k;
}

View file

@ -172,9 +172,9 @@ set_ones(Bigint *b, int n)
rvOK
#ifdef KR_headers
(d, fpi, exp, bits, exact, rd, irv)
double d; FPI *fpi; Long *exp; ULong *bits; int exact, rd, *irv;
U *d; FPI *fpi; Long *exp; ULong *bits; int exact, rd, *irv;
#else
(double d, FPI *fpi, Long *exp, ULong *bits, int exact, int rd, int *irv)
(U *d, FPI *fpi, Long *exp, ULong *bits, int exact, int rd, int *irv)
#endif
{
Bigint *b;
@ -182,7 +182,7 @@ rvOK
int bdif, e, j, k, k1, nb, rv;
carry = rv = 0;
b = d2b(d, &e, &bdif);
b = d2b(dval(d), &e, &bdif);
bdif -= nb = fpi->nbits;
e += bdif;
if (bdif <= 0) {
@ -291,9 +291,9 @@ rvOK
static int
#ifdef KR_headers
mantbits(d) double d;
mantbits(d) U *d;
#else
mantbits(double d)
mantbits(U *d)
#endif
{
ULong L;
@ -327,8 +327,9 @@ strtodg
int j, k, nbits, nd, nd0, nf, nz, nz0, rd, rvbits, rve, rve1, sign;
int sudden_underflow;
CONST char *s, *s0, *s1;
double adj, adj0, rv, tol;
double adj0, tol;
Long L;
U adj, rv;
ULong *b, *be, y, z;
Bigint *ab, *bb, *bb1, *bd, *bd0, *bs, *delta, *rvb, *rvb0;
#ifdef USE_LOCALE /*{{*/
@ -341,7 +342,7 @@ strtodg
static int dplen;
if (!(s0 = decimalpoint_cache)) {
s0 = localeconv()->decimal_point;
if ((decimalpoint_cache = (char*)malloc(strlen(s0) + 1))) {
if ((decimalpoint_cache = (char*)MALLOC(strlen(s0) + 1))) {
strcpy(decimalpoint_cache, s0);
s0 = decimalpoint_cache;
}
@ -355,7 +356,7 @@ strtodg
irv = STRTOG_Zero;
denorm = sign = nz0 = nz = 0;
dval(rv) = 0.;
dval(&rv) = 0.;
rvb = 0;
nbits = fpi->nbits;
for(s = s00;;s++) switch(*s) {
@ -547,13 +548,13 @@ strtodg
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
dval(rv) = y;
dval(&rv) = y;
if (k > 9)
dval(rv) = tens[k - 9] * dval(rv) + z;
dval(&rv) = tens[k - 9] * dval(&rv) + z;
bd0 = 0;
if (nbits <= P && nd <= DBL_DIG) {
if (!e) {
if (rvOK(dval(rv), fpi, exp, bits, 1, rd, &irv))
if (rvOK(&rv, fpi, exp, bits, 1, rd, &irv))
goto ret;
}
else if (e > 0) {
@ -561,9 +562,9 @@ strtodg
#ifdef VAX
goto vax_ovfl_check;
#else
i = fivesbits[e] + mantbits(dval(rv)) <= P;
/* rv = */ rounded_product(dval(rv), tens[e]);
if (rvOK(dval(rv), fpi, exp, bits, i, rd, &irv))
i = fivesbits[e] + mantbits(&rv) <= P;
/* rv = */ rounded_product(dval(&rv), tens[e]);
if (rvOK(&rv, fpi, exp, bits, i, rd, &irv))
goto ret;
e1 -= e;
goto rv_notOK;
@ -576,32 +577,32 @@ strtodg
*/
e2 = e - i;
e1 -= i;
dval(rv) *= tens[i];
dval(&rv) *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
dval(adj) = dval(rv);
word0(adj) -= P*Exp_msk1;
/* adj = */ rounded_product(dval(adj), tens[e2]);
if ((word0(adj) & Exp_mask)
dval(&adj) = dval(&rv);
word0(&adj) -= P*Exp_msk1;
/* adj = */ rounded_product(dval(&adj), tens[e2]);
if ((word0(&adj) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
goto rv_notOK;
word0(adj) += P*Exp_msk1;
dval(rv) = dval(adj);
word0(&adj) += P*Exp_msk1;
dval(&rv) = dval(&adj);
#else
/* rv = */ rounded_product(dval(rv), tens[e2]);
/* rv = */ rounded_product(dval(&rv), tens[e2]);
#endif
if (rvOK(dval(rv), fpi, exp, bits, 0, rd, &irv))
if (rvOK(&rv, fpi, exp, bits, 0, rd, &irv))
goto ret;
e1 -= e2;
}
}
#ifndef Inaccurate_Divide
else if (e >= -Ten_pmax) {
/* rv = */ rounded_quotient(dval(rv), tens[-e]);
if (rvOK(dval(rv), fpi, exp, bits, 0, rd, &irv))
/* rv = */ rounded_quotient(dval(&rv), tens[-e]);
if (rvOK(&rv, fpi, exp, bits, 0, rd, &irv))
goto ret;
e1 -= e;
}
@ -615,45 +616,45 @@ strtodg
e2 = 0;
if (e1 > 0) {
if ( (i = e1 & 15) !=0)
dval(rv) *= tens[i];
dval(&rv) *= tens[i];
if (e1 &= ~15) {
e1 >>= 4;
while(e1 >= (1 << n_bigtens-1)) {
e2 += ((word0(rv) & Exp_mask)
while(e1 >= (1 << (n_bigtens-1))) {
e2 += ((word0(&rv) & Exp_mask)
>> Exp_shift1) - Bias;
word0(rv) &= ~Exp_mask;
word0(rv) |= Bias << Exp_shift1;
dval(rv) *= bigtens[n_bigtens-1];
e1 -= 1 << n_bigtens-1;
word0(&rv) &= ~Exp_mask;
word0(&rv) |= Bias << Exp_shift1;
dval(&rv) *= bigtens[n_bigtens-1];
e1 -= 1 << (n_bigtens-1);
}
e2 += ((word0(rv) & Exp_mask) >> Exp_shift1) - Bias;
word0(rv) &= ~Exp_mask;
word0(rv) |= Bias << Exp_shift1;
e2 += ((word0(&rv) & Exp_mask) >> Exp_shift1) - Bias;
word0(&rv) &= ~Exp_mask;
word0(&rv) |= Bias << Exp_shift1;
for(j = 0; e1 > 0; j++, e1 >>= 1)
if (e1 & 1)
dval(rv) *= bigtens[j];
dval(&rv) *= bigtens[j];
}
}
else if (e1 < 0) {
e1 = -e1;
if ( (i = e1 & 15) !=0)
dval(rv) /= tens[i];
dval(&rv) /= tens[i];
if (e1 &= ~15) {
e1 >>= 4;
while(e1 >= (1 << n_bigtens-1)) {
e2 += ((word0(rv) & Exp_mask)
while(e1 >= (1 << (n_bigtens-1))) {
e2 += ((word0(&rv) & Exp_mask)
>> Exp_shift1) - Bias;
word0(rv) &= ~Exp_mask;
word0(rv) |= Bias << Exp_shift1;
dval(rv) *= tinytens[n_bigtens-1];
e1 -= 1 << n_bigtens-1;
word0(&rv) &= ~Exp_mask;
word0(&rv) |= Bias << Exp_shift1;
dval(&rv) *= tinytens[n_bigtens-1];
e1 -= 1 << (n_bigtens-1);
}
e2 += ((word0(rv) & Exp_mask) >> Exp_shift1) - Bias;
word0(rv) &= ~Exp_mask;
word0(rv) |= Bias << Exp_shift1;
e2 += ((word0(&rv) & Exp_mask) >> Exp_shift1) - Bias;
word0(&rv) &= ~Exp_mask;
word0(&rv) |= Bias << Exp_shift1;
for(j = 0; e1 > 0; j++, e1 >>= 1)
if (e1 & 1)
dval(rv) *= tinytens[j];
dval(&rv) *= tinytens[j];
}
}
#ifdef IBM
@ -664,7 +665,7 @@ strtodg
*/
e2 <<= 2;
#endif
rvb = d2b(dval(rv), &rve, &rvbits); /* rv = rvb * 2^rve */
rvb = d2b(dval(&rv), &rve, &rvbits); /* rv = rvb * 2^rve */
rve += e2;
if ((j = rvbits - nbits) > 0) {
rshift(rvb, j);
@ -842,7 +843,7 @@ strtodg
}
else
irv = STRTOG_Normal | STRTOG_Inexhi;
if (bbbits < nbits && !denorm || !(rvb->x[0] & 1))
if ((bbbits < nbits && !denorm) || !(rvb->x[0] & 1))
break;
if (dsign) {
rvb = increment(rvb);
@ -859,7 +860,7 @@ strtodg
}
break;
}
if ((dval(adj) = ratio(delta, bs)) <= 2.) {
if ((dval(&adj) = ratio(delta, bs)) <= 2.) {
adj1:
inex = STRTOG_Inexlo;
if (dsign) {
@ -873,15 +874,15 @@ strtodg
irv = STRTOG_Underflow | STRTOG_Inexlo;
break;
}
adj0 = dval(adj) = 1.;
adj0 = dval(&adj) = 1.;
}
else {
adj0 = dval(adj) *= 0.5;
adj0 = dval(&adj) *= 0.5;
if (dsign) {
asub = 0;
inex = STRTOG_Inexlo;
}
if (dval(adj) < 2147483647.) {
if (dval(&adj) < 2147483647.) {
L = adj0;
adj0 -= L;
switch(rd) {
@ -900,12 +901,12 @@ strtodg
inex = STRTOG_Inexact - inex;
}
}
dval(adj) = L;
dval(&adj) = L;
}
}
y = rve + rvbits;
/* adj *= ulp(dval(rv)); */
/* adj *= ulp(dval(&rv)); */
/* if (asub) rv -= adj; else rv += adj; */
if (!denorm && rvbits < nbits) {
@ -913,7 +914,7 @@ strtodg
rve -= j;
rvbits = nbits;
}
ab = d2b(dval(adj), &abe, &abits);
ab = d2b(dval(&adj), &abe, &abits);
if (abe < 0)
rshift(ab, -abe);
else if (abe > 0)
@ -967,15 +968,15 @@ strtodg
z = rve + rvbits;
if (y == z && L) {
/* Can we stop now? */
tol = dval(adj) * 5e-16; /* > max rel error */
dval(adj) = adj0 - .5;
if (dval(adj) < -tol) {
tol = dval(&adj) * 5e-16; /* > max rel error */
dval(&adj) = adj0 - .5;
if (dval(&adj) < -tol) {
if (adj0 > tol) {
irv |= inex;
break;
}
}
else if (dval(adj) > tol && adj0 < 1. - tol) {
else if (dval(&adj) > tol && adj0 < 1. - tol) {
irv |= inex;
break;
}

View file

@ -59,7 +59,7 @@ strtof(CONST char *s, char **sp)
break;
case STRTOG_Normal:
u.L[0] = bits[0] & 0x7fffff | exp + 0x7f + 23 << 23;
u.L[0] = (bits[0] & 0x7fffff) | ((exp + 0x7f + 23) << 23);
break;
case STRTOG_NaNbits:

View file

@ -67,8 +67,8 @@ strtopdd(CONST char *s, char **sp, double *dd)
case STRTOG_Normal:
u->L[_1] = (bits[1] >> 21 | bits[2] << 11) & 0xffffffffL;
u->L[_0] = bits[2] >> 21 | bits[3] << 11 & 0xfffff
| exp + 0x3ff + 105 << 20;
u->L[_0] = (bits[2] >> 21) | ((bits[3] << 11) & 0xfffff)
| ((exp + 0x3ff + 105) << 20);
exp += 0x3ff + 52;
if (bits[1] &= 0x1fffff) {
i = hi0bits(bits[1]) - 11;
@ -79,7 +79,7 @@ strtopdd(CONST char *s, char **sp, double *dd)
else
exp -= i;
if (i > 0) {
bits[1] = bits[1] << i | bits[0] >> 32-i;
bits[1] = bits[1] << i | bits[0] >> (32-i);
bits[0] = bits[0] << i & 0xffffffffL;
}
}
@ -92,11 +92,11 @@ strtopdd(CONST char *s, char **sp, double *dd)
else
exp -= i;
if (i < 32) {
bits[1] = bits[0] >> 32 - i;
bits[1] = bits[0] >> (32 - i);
bits[0] = bits[0] << i & 0xffffffffL;
}
else {
bits[1] = bits[0] << i - 32;
bits[1] = bits[0] << (i - 32);
bits[0] = 0;
}
}
@ -105,7 +105,7 @@ strtopdd(CONST char *s, char **sp, double *dd)
break;
}
u->L[2+_1] = bits[0];
u->L[2+_0] = bits[1] & 0xfffff | exp << 20;
u->L[2+_0] = (bits[1] & 0xfffff) | (exp << 20);
break;
case STRTOG_Denormal:
@ -124,10 +124,10 @@ strtopdd(CONST char *s, char **sp, double *dd)
nearly_normal:
i = hi0bits(bits[3]) - 11; /* i >= 12 */
j = 32 - i;
u->L[_0] = (bits[3] << i | bits[2] >> j) & 0xfffff
| 65 - i << 20;
u->L[_0] = ((bits[3] << i | bits[2] >> j) & 0xfffff)
| ((65 - i) << 20);
u->L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
u->L[2+_0] = bits[1] & (1L << j) - 1;
u->L[2+_0] = bits[1] & ((1L << j) - 1);
u->L[2+_1] = bits[0];
break;
@ -136,34 +136,34 @@ strtopdd(CONST char *s, char **sp, double *dd)
if (i < 0) {
j = -i;
i += 32;
u->L[_0] = bits[2] >> j & 0xfffff | (33 + j) << 20;
u->L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
u->L[2+_0] = bits[1] & (1L << j) - 1;
u->L[_0] = (bits[2] >> j & 0xfffff) | (33 + j) << 20;
u->L[_1] = ((bits[2] << i) | (bits[1] >> j)) & 0xffffffffL;
u->L[2+_0] = bits[1] & ((1L << j) - 1);
u->L[2+_1] = bits[0];
break;
}
if (i == 0) {
u->L[_0] = bits[2] & 0xfffff | 33 << 20;
u->L[_0] = (bits[2] & 0xfffff) | (33 << 20);
u->L[_1] = bits[1];
u->L[2+_0] = 0;
u->L[2+_1] = bits[0];
break;
}
j = 32 - i;
u->L[_0] = (bits[2] << i | bits[1] >> j) & 0xfffff
| j + 1 << 20;
u->L[_0] = (((bits[2] << i) | (bits[1] >> j)) & 0xfffff)
| ((j + 1) << 20);
u->L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
u->L[2+_0] = 0;
u->L[2+_1] = bits[0] & (1L << j) - 1;
u->L[2+_1] = bits[0] & ((1L << j) - 1);
break;
hardly_normal:
j = 11 - hi0bits(bits[1]);
i = 32 - j;
u->L[_0] = bits[1] >> j & 0xfffff | j + 1 << 20;
u->L[_0] = (bits[1] >> j & 0xfffff) | ((j + 1) << 20);
u->L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
u->L[2+_0] = 0;
u->L[2+_1] = bits[0] & (1L << j) - 1;
u->L[2+_1] = bits[0] & ((1L << j) - 1);
break;
case STRTOG_Infinite:

View file

@ -58,7 +58,7 @@ strtopf(CONST char *s, char **sp, float *f)
case STRTOG_Normal:
case STRTOG_NaNbits:
L[0] = bits[0] & 0x7fffff | exp + 0x7f + 23 << 23;
L[0] = (bits[0] & 0x7fffff) | ((exp + 0x7f + 23) << 23);
break;
case STRTOG_Denormal:

View file

@ -92,7 +92,8 @@ strtopx(CONST char *s, char **sp, void *V)
case STRTOG_Infinite:
L[_0] = 0x7fff;
L[_1] = L[_2] = L[_3] = L[_4] = 0;
L[_1] = 0x8000;
L[_2] = L[_3] = L[_4] = 0;
break;
case STRTOG_NaN:

View file

@ -82,7 +82,8 @@ strtopxL(CONST char *s, char **sp, void *V)
case STRTOG_Infinite:
L[_0] = 0x7fff << 16;
L[_1] = L[_2] = 0;
L[_1] = 0x80000000;
L[_2] = 0;
break;
case STRTOG_NaN:

View file

@ -48,8 +48,8 @@ ULtodd(ULong *L, ULong *bits, Long exp, int k)
case STRTOG_Normal:
L[_1] = (bits[1] >> 21 | bits[2] << 11) & (ULong)0xffffffffL;
L[_0] = bits[2] >> 21 | bits[3] << 11 & 0xfffff
| exp + 0x3ff + 105 << 20;
L[_0] = (bits[2] >> 21) | (bits[3] << 11 & 0xfffff)
| ((exp + 0x3ff + 105) << 20);
exp += 0x3ff + 52;
if (bits[1] &= 0x1fffff) {
i = hi0bits(bits[1]) - 11;
@ -60,7 +60,7 @@ ULtodd(ULong *L, ULong *bits, Long exp, int k)
else
exp -= i;
if (i > 0) {
bits[1] = bits[1] << i | bits[0] >> 32-i;
bits[1] = bits[1] << i | bits[0] >> (32-i);
bits[0] = bits[0] << i & (ULong)0xffffffffL;
}
}
@ -73,11 +73,11 @@ ULtodd(ULong *L, ULong *bits, Long exp, int k)
else
exp -= i;
if (i < 32) {
bits[1] = bits[0] >> 32 - i;
bits[1] = bits[0] >> (32 - i);
bits[0] = bits[0] << i & (ULong)0xffffffffL;
}
else {
bits[1] = bits[0] << i - 32;
bits[1] = bits[0] << (i - 32);
bits[0] = 0;
}
}
@ -86,7 +86,7 @@ ULtodd(ULong *L, ULong *bits, Long exp, int k)
break;
}
L[2+_1] = bits[0];
L[2+_0] = bits[1] & 0xfffff | exp << 20;
L[2+_0] = (bits[1] & 0xfffff) | (exp << 20);
break;
case STRTOG_Denormal:
@ -105,10 +105,10 @@ ULtodd(ULong *L, ULong *bits, Long exp, int k)
nearly_normal:
i = hi0bits(bits[3]) - 11; /* i >= 12 */
j = 32 - i;
L[_0] = (bits[3] << i | bits[2] >> j) & 0xfffff
| 65 - i << 20;
L[_0] = ((bits[3] << i | bits[2] >> j) & 0xfffff)
| ((65 - i) << 20);
L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
L[2+_0] = bits[1] & ((ULong)1L << j) - 1;
L[2+_0] = bits[1] & (((ULong)1L << j) - 1);
L[2+_1] = bits[0];
break;
@ -117,34 +117,34 @@ ULtodd(ULong *L, ULong *bits, Long exp, int k)
if (i < 0) {
j = -i;
i += 32;
L[_0] = bits[2] >> j & 0xfffff | (33 + j) << 20;
L[_0] = (bits[2] >> j & 0xfffff) | ((33 + j) << 20);
L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
L[2+_0] = bits[1] & ((ULong)1L << j) - 1;
L[2+_0] = bits[1] & (((ULong)1L << j) - 1);
L[2+_1] = bits[0];
break;
}
if (i == 0) {
L[_0] = bits[2] & 0xfffff | 33 << 20;
L[_0] = (bits[2] & 0xfffff) | (33 << 20);
L[_1] = bits[1];
L[2+_0] = 0;
L[2+_1] = bits[0];
break;
}
j = 32 - i;
L[_0] = (bits[2] << i | bits[1] >> j) & 0xfffff
| j + 1 << 20;
L[_0] = (((bits[2] << i) | (bits[1] >> j)) & 0xfffff)
| ((j + 1) << 20);
L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
L[2+_0] = 0;
L[2+_1] = bits[0] & (1L << j) - 1;
L[2+_1] = bits[0] & ((1L << j) - 1);
break;
hardly_normal:
j = 11 - hi0bits(bits[1]);
i = 32 - j;
L[_0] = bits[1] >> j & 0xfffff | j + 1 << 20;
L[_0] = (bits[1] >> j & 0xfffff) | ((j + 1) << 20);
L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
L[2+_0] = 0;
L[2+_1] = bits[0] & ((ULong)1L << j) - 1;
L[2+_1] = bits[0] & (((ULong)1L << j) - 1);
break;
case STRTOG_Infinite:

View file

@ -46,7 +46,7 @@ ULtof(ULong *L, ULong *bits, Long exp, int k)
case STRTOG_Normal:
case STRTOG_NaNbits:
L[0] = bits[0] & 0x7fffff | exp + 0x7f + 23 << 23;
L[0] = (bits[0] & 0x7fffff) | ((exp + 0x7f + 23) << 23);
break;
case STRTOG_Denormal:

View file

@ -89,7 +89,8 @@ ULtox(UShort *L, ULong *bits, Long exp, int k)
case STRTOG_Infinite:
L[_0] = 0x7fff;
L[_1] = L[_2] = L[_3] = L[_4] = 0;
L[_1] = 0x8000;
L[_2] = L[_3] = L[_4] = 0;
break;
case STRTOG_NaN:

View file

@ -70,7 +70,8 @@ ULtoxL(ULong *L, ULong *bits, Long exp, int k)
case STRTOG_Infinite:
L[_0] = 0x7fff << 16;
L[_1] = L[_2] = 0;
L[_1] = 0x80000000;
L[_2] = 0;
break;
case STRTOG_NaN:

View file

@ -34,13 +34,13 @@ THIS SOFTWARE.
double
ulp
#ifdef KR_headers
(x) double x;
(x) U *x;
#else
(double x)
(U *x)
#endif
{
Long L;
double a;
U a;
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Sudden_Underflow
@ -49,22 +49,22 @@ ulp
#ifdef IBM
L |= Exp_msk1 >> 4;
#endif
word0(a) = L;
word1(a) = 0;
word0(&a) = L;
word1(&a) = 0;
#ifndef Sudden_Underflow
}
else {
L = -L >> Exp_shift;
if (L < Exp_shift) {
word0(a) = 0x80000 >> L;
word1(a) = 0;
word0(&a) = 0x80000 >> L;
word1(&a) = 0;
}
else {
word0(a) = 0;
word0(&a) = 0;
L -= Exp_shift;
word1(a) = L >= 31 ? 1 : 1 << 31 - L;
word1(&a) = L >= 31 ? 1 : 1 << (31 - L);
}
}
#endif
return a;
return dval(&a);
}