radix_trie: have vm_radix use pctrie code

Implement everything currently in vm_radix.c with calls to functions
in subr_pctrie.c, asccessed via the interface provided by the
DEFINE_PCTRIE_SMR macro.

Add back some #includes removed in the first attempt, and avoid the
use of a discontinued type in a bit of conditionally compiled code.

Reviewed by:	alc, markj
Tested by:	pho
Differential Revision:	https://reviews.freebsd.org/D41344
This commit is contained in:
Doug Moore 2023-09-12 02:42:38 -05:00
parent e47a47b215
commit 429c871ddd
3 changed files with 111 additions and 704 deletions

View File

@ -31,16 +31,13 @@
#ifndef __VM_RADIX_H_
#define __VM_RADIX_H_
/*
* Radix tree node.
*/
struct vm_radix_node;
#include <sys/_pctrie.h>
/*
* Radix tree root.
* Radix tree
*/
struct vm_radix {
struct vm_radix_node *rt_root;
struct pctrie rt_trie;
};
#endif /* !__VM_RADIX_H_ */

View File

@ -57,6 +57,7 @@
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/libkern.h>
#include <sys/pctrie.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/smr.h>
@ -64,292 +65,21 @@
#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_radix.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
/*
* These widths should allow the pointers to a node's children to fit within
* a single cache line. The extra levels from a narrow width should not be
* a problem thanks to path compression.
*/
#ifdef __LP64__
#define VM_RADIX_WIDTH 4
#else
#define VM_RADIX_WIDTH 3
#endif
#define VM_RADIX_COUNT (1 << VM_RADIX_WIDTH)
#define VM_RADIX_MASK (VM_RADIX_COUNT - 1)
#define VM_RADIX_LIMIT \
(howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
#if VM_RADIX_WIDTH == 3
typedef uint8_t rn_popmap_t;
#elif VM_RADIX_WIDTH == 4
typedef uint16_t rn_popmap_t;
#elif VM_RADIX_WIDTH == 5
typedef uint32_t rn_popmap_t;
#else
#error Unsupported width
#endif
_Static_assert(sizeof(rn_popmap_t) <= sizeof(int),
"rn_popmap_t too wide");
/* Set of all flag bits stored in node pointers. */
#define VM_RADIX_FLAGS (VM_RADIX_ISLEAF)
#define VM_RADIX_PAD VM_RADIX_FLAGS
enum vm_radix_access { SMR, LOCKED, UNSERIALIZED };
struct vm_radix_node;
typedef SMR_POINTER(struct vm_radix_node *) smrnode_t;
struct vm_radix_node {
vm_pindex_t rn_owner; /* Owner of record. */
rn_popmap_t rn_popmap; /* Valid children. */
uint8_t rn_clev; /* Level * WIDTH. */
smrnode_t rn_child[VM_RADIX_COUNT]; /* Child nodes. */
};
static uma_zone_t vm_radix_node_zone;
static smr_t vm_radix_smr;
smr_t vm_radix_smr;
static void vm_radix_node_store(smrnode_t *p, struct vm_radix_node *v,
enum vm_radix_access access);
/*
* Map index to an array position for the children of rnode,
*/
static __inline int
vm_radix_slot(struct vm_radix_node *rnode, vm_pindex_t index)
void *
vm_radix_node_alloc(struct pctrie *ptree)
{
return ((index >> rnode->rn_clev) & VM_RADIX_MASK);
return (uma_zalloc_smr(vm_radix_node_zone, M_NOWAIT));
}
/*
* Returns true if index does not belong to the specified rnode. Otherwise,
* sets slot value, and returns false.
*/
static __inline bool
vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t index, int *slot)
void
vm_radix_node_free(struct pctrie *ptree, void *node)
{
index = (index - rnode->rn_owner) >> rnode->rn_clev;
if (index >= VM_RADIX_COUNT)
return (true);
*slot = index;
return (false);
}
/*
* Allocate a radix node.
*/
static struct vm_radix_node *
vm_radix_node_get(vm_pindex_t index, vm_pindex_t newind)
{
struct vm_radix_node *rnode;
rnode = uma_zalloc_smr(vm_radix_node_zone, M_NOWAIT);
if (rnode == NULL)
return (NULL);
/*
* We want to clear the last child pointer after the final section
* has exited so lookup can not return false negatives. It is done
* here because it will be cache-cold in the dtor callback.
*/
if (rnode->rn_popmap != 0) {
vm_radix_node_store(&rnode->rn_child[ffs(rnode->rn_popmap) - 1],
VM_RADIX_NULL, UNSERIALIZED);
rnode->rn_popmap = 0;
}
/*
* From the highest-order bit where the indexes differ,
* compute the highest level in the trie where they differ. Then,
* compute the least index of this subtrie.
*/
KASSERT(index != newind, ("%s: passing the same key value %jx",
__func__, (uintmax_t)index));
_Static_assert(sizeof(long long) >= sizeof(vm_pindex_t),
"vm_pindex_t too wide");
_Static_assert(sizeof(vm_pindex_t) * NBBY <=
(1 << (sizeof(rnode->rn_clev) * NBBY)), "rn_clev too narrow");
rnode->rn_clev = rounddown(flsll(index ^ newind) - 1, VM_RADIX_WIDTH);
rnode->rn_owner = VM_RADIX_COUNT;
rnode->rn_owner = index & -(rnode->rn_owner << rnode->rn_clev);
return (rnode);
}
/*
* Free radix node.
*/
static __inline void
vm_radix_node_put(struct vm_radix_node *rnode)
{
#ifdef INVARIANTS
int slot;
KASSERT(powerof2(rnode->rn_popmap),
("vm_radix_node_put: rnode %p has too many children %04x", rnode,
rnode->rn_popmap));
for (slot = 0; slot < VM_RADIX_COUNT; slot++) {
if ((rnode->rn_popmap & (1 << slot)) != 0)
continue;
KASSERT(smr_unserialized_load(&rnode->rn_child[slot], true) ==
VM_RADIX_NULL,
("vm_radix_node_put: rnode %p has a child", rnode));
}
#endif
uma_zfree_smr(vm_radix_node_zone, rnode);
}
/*
* Fetch a node pointer from a slot in another node.
*/
static __inline struct vm_radix_node *
vm_radix_node_load(smrnode_t *p, enum vm_radix_access access)
{
switch (access) {
case UNSERIALIZED:
return (smr_unserialized_load(p, true));
case LOCKED:
return (smr_serialized_load(p, true));
case SMR:
return (smr_entered_load(p, vm_radix_smr));
}
__assert_unreachable();
}
static __inline void
vm_radix_node_store(smrnode_t *p, struct vm_radix_node *v,
enum vm_radix_access access)
{
switch (access) {
case UNSERIALIZED:
smr_unserialized_store(p, v, true);
break;
case LOCKED:
smr_serialized_store(p, v, true);
break;
case SMR:
panic("vm_radix_node_store: Not supported in smr section.");
}
}
/*
* Get the root node for a radix tree.
*/
static __inline struct vm_radix_node *
vm_radix_root_load(struct vm_radix *rtree, enum vm_radix_access access)
{
return (vm_radix_node_load((smrnode_t *)&rtree->rt_root, access));
}
/*
* Set the root node for a radix tree.
*/
static __inline void
vm_radix_root_store(struct vm_radix *rtree, struct vm_radix_node *rnode,
enum vm_radix_access access)
{
vm_radix_node_store((smrnode_t *)&rtree->rt_root, rnode, access);
}
/*
* Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
*/
static __inline bool
vm_radix_isleaf(struct vm_radix_node *rnode)
{
return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
}
/*
* Returns page cast to radix node with leaf bit set.
*/
static __inline struct vm_radix_node *
vm_radix_toleaf(vm_page_t page)
{
return ((struct vm_radix_node *)((uintptr_t)page | VM_RADIX_ISLEAF));
}
/*
* Returns the associated page extracted from rnode.
*/
static __inline vm_page_t
vm_radix_topage(struct vm_radix_node *rnode)
{
return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
}
/*
* Make 'child' a child of 'rnode'.
*/
static __inline void
vm_radix_addnode(struct vm_radix_node *rnode, vm_pindex_t index,
struct vm_radix_node *child, enum vm_radix_access access)
{
int slot;
slot = vm_radix_slot(rnode, index);
vm_radix_node_store(&rnode->rn_child[slot], child, access);
rnode->rn_popmap ^= 1 << slot;
KASSERT((rnode->rn_popmap & (1 << slot)) != 0,
("%s: bad popmap slot %d in rnode %p", __func__, slot, rnode));
}
/*
* Internal helper for vm_radix_reclaim_allnodes().
* This function is recursive.
*/
static void
vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
{
struct vm_radix_node *child;
int slot;
while (rnode->rn_popmap != 0) {
slot = ffs(rnode->rn_popmap) - 1;
child = vm_radix_node_load(&rnode->rn_child[slot],
UNSERIALIZED);
KASSERT(child != VM_RADIX_NULL,
("%s: bad popmap slot %d in rnode %p",
__func__, slot, rnode));
if (!vm_radix_isleaf(child))
vm_radix_reclaim_allnodes_int(child);
rnode->rn_popmap ^= 1 << slot;
vm_radix_node_store(&rnode->rn_child[slot], VM_RADIX_NULL,
UNSERIALIZED);
}
vm_radix_node_put(rnode);
}
/*
* radix node zone initializer.
*/
static int
vm_radix_zone_init(void *mem, int size, int flags)
{
struct vm_radix_node *rnode;
rnode = mem;
rnode->rn_popmap = 0;
for (int i = 0; i < nitems(rnode->rn_child); i++)
vm_radix_node_store(&rnode->rn_child[i], VM_RADIX_NULL,
UNSERIALIZED);
return (0);
uma_zfree_smr(vm_radix_node_zone, node);
}
#ifndef UMA_MD_SMALL_ALLOC
@ -371,7 +101,7 @@ vm_radix_reserve_kva(void)
*/
if (!uma_zone_reserve_kva(vm_radix_node_zone,
((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
sizeof(struct vm_radix_node))))
pctrie_node_size()))
panic("%s: unable to reserve KVA", __func__);
}
#endif
@ -383,412 +113,14 @@ void
vm_radix_zinit(void)
{
vm_radix_node_zone = uma_zcreate("RADIX NODE",
sizeof(struct vm_radix_node), NULL, NULL, vm_radix_zone_init, NULL,
VM_RADIX_PAD, UMA_ZONE_VM | UMA_ZONE_SMR);
vm_radix_node_zone = uma_zcreate("RADIX NODE", pctrie_node_size(),
NULL, NULL, pctrie_zone_init, NULL,
PCTRIE_PAD, UMA_ZONE_VM | UMA_ZONE_SMR);
vm_radix_smr = uma_zone_get_smr(vm_radix_node_zone);
}
/*
* Inserts the key-value pair into the trie.
* Panics if the key already exists.
*/
int
vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
{
vm_pindex_t index, newind;
struct vm_radix_node *leaf, *parent, *rnode;
smrnode_t *parentp;
int slot;
index = page->pindex;
leaf = vm_radix_toleaf(page);
/*
* The owner of record for root is not really important because it
* will never be used.
*/
rnode = vm_radix_root_load(rtree, LOCKED);
parent = NULL;
for (;;) {
if (vm_radix_isleaf(rnode)) {
if (rnode == VM_RADIX_NULL) {
if (parent == NULL)
rtree->rt_root = leaf;
else
vm_radix_addnode(parent, index, leaf,
LOCKED);
return (0);
}
newind = vm_radix_topage(rnode)->pindex;
if (newind == index)
panic("%s: key %jx is already present",
__func__, (uintmax_t)index);
break;
}
if (vm_radix_keybarr(rnode, index, &slot)) {
newind = rnode->rn_owner;
break;
}
parent = rnode;
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
}
/*
* A new node is needed because the right insertion level is reached.
* Setup the new intermediate node and add the 2 children: the
* new object and the older edge or object.
*/
parentp = (parent != NULL) ? &parent->rn_child[slot]:
(smrnode_t *)&rtree->rt_root;
parent = vm_radix_node_get(index, newind);
if (parent == NULL)
return (ENOMEM);
/* These writes are not yet visible due to ordering. */
vm_radix_addnode(parent, index, leaf, UNSERIALIZED);
vm_radix_addnode(parent, newind, rnode, UNSERIALIZED);
/* Serializing write to make the above visible. */
vm_radix_node_store(parentp, parent, LOCKED);
return (0);
}
/*
* Returns the value stored at the index. If the index is not present,
* NULL is returned.
*/
static __always_inline vm_page_t
_vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index,
enum vm_radix_access access)
{
struct vm_radix_node *rnode;
vm_page_t m;
int slot;
rnode = vm_radix_root_load(rtree, access);
for (;;) {
if (vm_radix_isleaf(rnode)) {
if ((m = vm_radix_topage(rnode)) != NULL &&
m->pindex == index)
return (m);
break;
}
if (vm_radix_keybarr(rnode, index, &slot))
break;
rnode = vm_radix_node_load(&rnode->rn_child[slot], access);
}
return (NULL);
}
/*
* Returns the value stored at the index assuming there is an external lock.
*
* If the index is not present, NULL is returned.
*/
vm_page_t
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
{
return _vm_radix_lookup(rtree, index, LOCKED);
}
/*
* Returns the value stored at the index without requiring an external lock.
*
* If the index is not present, NULL is returned.
*/
vm_page_t
vm_radix_lookup_unlocked(struct vm_radix *rtree, vm_pindex_t index)
{
vm_page_t m;
smr_enter(vm_radix_smr);
m = _vm_radix_lookup(rtree, index, SMR);
smr_exit(vm_radix_smr);
return (m);
}
/*
* Returns the page with the least pindex that is greater than or equal to the
* specified pindex, or NULL if there are no such pages.
*
* Requires that access be externally synchronized by a lock.
*/
vm_page_t
vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *rnode, *succ;
vm_page_t m;
int slot;
/*
* Descend the trie as if performing an ordinary lookup for the page
* with the specified pindex. However, unlike an ordinary lookup, as we
* descend the trie, we use "succ" to remember the last branching-off
* point, that is, the interior node under which the page with the least
* pindex that is both outside our current path down the trie and more
* than the specified pindex resides. (The node's popmap makes it fast
* and easy to recognize a branching-off point.) If our ordinary lookup
* fails to yield a page with a pindex that is greater than or equal to
* the specified pindex, then we will exit this loop and perform a
* lookup starting from "succ". If "succ" is not NULL, then that lookup
* is guaranteed to succeed.
*/
rnode = vm_radix_root_load(rtree, LOCKED);
succ = NULL;
for (;;) {
if (vm_radix_isleaf(rnode)) {
if ((m = vm_radix_topage(rnode)) != NULL &&
m->pindex >= index)
return (m);
break;
}
if (vm_radix_keybarr(rnode, index, &slot)) {
/*
* If all pages in this subtree have pindex > index,
* then the page in this subtree with the least pindex
* is the answer.
*/
if (rnode->rn_owner > index)
succ = rnode;
break;
}
/*
* Just in case the next search step leads to a subtree of all
* pages with pindex < index, check popmap to see if a next
* bigger step, to a subtree of all pages with pindex > index,
* is available. If so, remember to restart the search here.
*/
if ((rnode->rn_popmap >> slot) > 1)
succ = rnode;
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
}
/*
* Restart the search from the last place visited in the subtree that
* included some pages with pindex > index, if there was such a place.
*/
if (succ == NULL)
return (NULL);
if (succ != rnode) {
/*
* Take a step to the next bigger sibling of the node chosen
* last time. In that subtree, all pages have pindex > index.
*/
slot = vm_radix_slot(succ, index) + 1;
KASSERT((succ->rn_popmap >> slot) != 0,
("%s: no popmap siblings past slot %d in node %p",
__func__, slot, succ));
slot += ffs(succ->rn_popmap >> slot) - 1;
succ = vm_radix_node_load(&succ->rn_child[slot], LOCKED);
}
/*
* Find the page in the subtree rooted at "succ" with the least pindex.
*/
while (!vm_radix_isleaf(succ)) {
KASSERT(succ->rn_popmap != 0,
("%s: no popmap children in node %p", __func__, succ));
slot = ffs(succ->rn_popmap) - 1;
succ = vm_radix_node_load(&succ->rn_child[slot], LOCKED);
}
return (vm_radix_topage(succ));
}
/*
* Returns the page with the greatest pindex that is less than or equal to the
* specified pindex, or NULL if there are no such pages.
*
* Requires that access be externally synchronized by a lock.
*/
vm_page_t
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *pred, *rnode;
vm_page_t m;
int slot;
/*
* Mirror the implementation of vm_radix_lookup_ge, described above.
*/
rnode = vm_radix_root_load(rtree, LOCKED);
pred = NULL;
for (;;) {
if (vm_radix_isleaf(rnode)) {
if ((m = vm_radix_topage(rnode)) != NULL &&
m->pindex <= index)
return (m);
break;
}
if (vm_radix_keybarr(rnode, index, &slot)) {
if (rnode->rn_owner < index)
pred = rnode;
break;
}
if ((rnode->rn_popmap & ((1 << slot) - 1)) != 0)
pred = rnode;
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
}
if (pred == NULL)
return (NULL);
if (pred != rnode) {
slot = vm_radix_slot(pred, index);
KASSERT((pred->rn_popmap & ((1 << slot) - 1)) != 0,
("%s: no popmap siblings before slot %d in node %p",
__func__, slot, pred));
slot = fls(pred->rn_popmap & ((1 << slot) - 1)) - 1;
pred = vm_radix_node_load(&pred->rn_child[slot], LOCKED);
}
while (!vm_radix_isleaf(pred)) {
KASSERT(pred->rn_popmap != 0,
("%s: no popmap children in node %p", __func__, pred));
slot = fls(pred->rn_popmap) - 1;
pred = vm_radix_node_load(&pred->rn_child[slot], LOCKED);
}
return (vm_radix_topage(pred));
}
/*
* Remove the specified index from the trie, and return the value stored at
* that index. If the index is not present, return NULL.
*/
vm_page_t
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
{
struct vm_radix_node *child, *parent, *rnode;
vm_page_t m;
int slot;
rnode = NULL;
child = vm_radix_root_load(rtree, LOCKED);
for (;;) {
if (vm_radix_isleaf(child))
break;
parent = rnode;
rnode = child;
slot = vm_radix_slot(rnode, index);
child = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
}
if ((m = vm_radix_topage(child)) == NULL || m->pindex != index)
return (NULL);
if (rnode == NULL) {
vm_radix_root_store(rtree, VM_RADIX_NULL, LOCKED);
return (m);
}
KASSERT((rnode->rn_popmap & (1 << slot)) != 0,
("%s: bad popmap slot %d in rnode %p", __func__, slot, rnode));
rnode->rn_popmap ^= 1 << slot;
vm_radix_node_store(&rnode->rn_child[slot], VM_RADIX_NULL, LOCKED);
if (!powerof2(rnode->rn_popmap))
return (m);
KASSERT(rnode->rn_popmap != 0, ("%s: bad popmap all zeroes", __func__));
slot = ffs(rnode->rn_popmap) - 1;
child = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
KASSERT(child != VM_RADIX_NULL,
("%s: bad popmap slot %d in rnode %p", __func__, slot, rnode));
if (parent == NULL)
vm_radix_root_store(rtree, child, LOCKED);
else {
slot = vm_radix_slot(parent, index);
KASSERT(rnode ==
vm_radix_node_load(&parent->rn_child[slot], LOCKED),
("%s: invalid child value", __func__));
vm_radix_node_store(&parent->rn_child[slot], child, LOCKED);
}
/*
* The child is still valid and we can not zero the
* pointer until all smr references are gone.
*/
vm_radix_node_put(rnode);
return (m);
}
/*
* Remove and free all the nodes from the radix tree.
* This function is recursive but there is a tight control on it as the
* maximum depth of the tree is fixed.
*/
void
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
{
struct vm_radix_node *root;
root = vm_radix_root_load(rtree, LOCKED);
if (root == VM_RADIX_NULL)
return;
vm_radix_root_store(rtree, VM_RADIX_NULL, UNSERIALIZED);
if (!vm_radix_isleaf(root))
vm_radix_reclaim_allnodes_int(root);
}
/*
* Replace an existing page in the trie with another one.
* Panics if there is not an old page in the trie at the new page's index.
*/
vm_page_t
vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
{
struct vm_radix_node *leaf, *parent, *rnode;
vm_page_t m;
vm_pindex_t index;
int slot;
leaf = vm_radix_toleaf(newpage);
index = newpage->pindex;
rnode = vm_radix_root_load(rtree, LOCKED);
parent = NULL;
for (;;) {
if (vm_radix_isleaf(rnode)) {
if ((m = vm_radix_topage(rnode)) != NULL &&
m->pindex == index) {
if (parent == NULL)
rtree->rt_root = leaf;
else
vm_radix_node_store(
&parent->rn_child[slot], leaf,
LOCKED);
return (m);
}
break;
}
if (vm_radix_keybarr(rnode, index, &slot))
break;
parent = rnode;
rnode = vm_radix_node_load(&rnode->rn_child[slot], LOCKED);
}
panic("%s: original replacing page not found", __func__);
}
void
vm_radix_wait(void)
{
uma_zwait(vm_radix_node_zone);
}
#ifdef DDB
/*
* Show details about the given radix node.
*/
DB_SHOW_COMMAND(radixnode, db_show_radixnode)
{
struct vm_radix_node *rnode, *tmp;
int slot;
rn_popmap_t popmap;
if (!have_addr)
return;
rnode = (struct vm_radix_node *)addr;
db_printf("radixnode %p, owner %jx, children popmap %04x, level %u:\n",
(void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_popmap,
rnode->rn_clev / VM_RADIX_WIDTH);
for (popmap = rnode->rn_popmap; popmap != 0; popmap ^= 1 << slot) {
slot = ffs(popmap) - 1;
tmp = vm_radix_node_load(&rnode->rn_child[slot], UNSERIALIZED);
db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
slot, (void *)tmp,
vm_radix_isleaf(tmp) ? vm_radix_topage(tmp) : NULL,
rnode->rn_clev / VM_RADIX_WIDTH);
}
}
#endif /* DDB */

View File

@ -34,36 +34,114 @@
#include <vm/_vm_radix.h>
#ifdef _KERNEL
#include <sys/pctrie.h>
#include <vm/vm_page.h>
#include <vm/vm.h>
int vm_radix_insert(struct vm_radix *rtree, vm_page_t page);
void vm_radix_wait(void);
vm_page_t vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index);
vm_page_t vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index);
vm_page_t vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index);
vm_page_t vm_radix_lookup_unlocked(struct vm_radix *rtree, vm_pindex_t index);
void vm_radix_reclaim_allnodes(struct vm_radix *rtree);
vm_page_t vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index);
vm_page_t vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage);
void vm_radix_zinit(void);
/*
* Each search path in the trie terminates at a leaf, which is a pointer to a
* page marked with a set 1-bit. A leaf may be associated with a null pointer
* to indicate no page there.
*/
#define VM_RADIX_ISLEAF 0x1
#define VM_RADIX_NULL (struct vm_radix_node *)VM_RADIX_ISLEAF
void *vm_radix_node_alloc(struct pctrie *ptree);
void vm_radix_node_free(struct pctrie *ptree, void *node);
extern smr_t vm_radix_smr;
static __inline void
vm_radix_init(struct vm_radix *rtree)
{
rtree->rt_root = VM_RADIX_NULL;
pctrie_init(&rtree->rt_trie);
}
static __inline bool
vm_radix_is_empty(struct vm_radix *rtree)
{
return (rtree->rt_root == VM_RADIX_NULL);
return (pctrie_is_empty(&rtree->rt_trie));
}
PCTRIE_DEFINE_SMR(VM_RADIX, vm_page, pindex, vm_radix_node_alloc, vm_radix_node_free,
vm_radix_smr);
/*
* Inserts the key-value pair into the trie.
* Panics if the key already exists.
*/
static __inline int
vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
{
return (VM_RADIX_PCTRIE_INSERT(&rtree->rt_trie, page));
}
/*
* Returns the value stored at the index assuming there is an external lock.
*
* If the index is not present, NULL is returned.
*/
static __inline vm_page_t
vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
{
return (VM_RADIX_PCTRIE_LOOKUP(&rtree->rt_trie, index));
}
/*
* Returns the value stored at the index without requiring an external lock.
*
* If the index is not present, NULL is returned.
*/
static __inline vm_page_t
vm_radix_lookup_unlocked(struct vm_radix *rtree, vm_pindex_t index)
{
return (VM_RADIX_PCTRIE_LOOKUP_UNLOCKED(&rtree->rt_trie, index));
}
/*
* Returns the page with the least pindex that is greater than or equal to the
* specified pindex, or NULL if there are no such pages.
*
* Requires that access be externally synchronized by a lock.
*/
static __inline vm_page_t
vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
{
return (VM_RADIX_PCTRIE_LOOKUP_GE(&rtree->rt_trie, index));
}
/*
* Returns the page with the greatest pindex that is less than or equal to the
* specified pindex, or NULL if there are no such pages.
*
* Requires that access be externally synchronized by a lock.
*/
static __inline vm_page_t
vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
{
return (VM_RADIX_PCTRIE_LOOKUP_LE(&rtree->rt_trie, index));
}
/*
* Remove the specified index from the trie, and return the value stored at
* that index. If the index is not present, return NULL.
*/
static __inline vm_page_t
vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
{
return (VM_RADIX_PCTRIE_REMOVE_LOOKUP(&rtree->rt_trie, index));
}
/*
* Remove and free all the nodes from the radix tree.
*/
static __inline void
vm_radix_reclaim_allnodes(struct vm_radix *rtree)
{
VM_RADIX_PCTRIE_RECLAIM(&rtree->rt_trie);
}
/*
* Replace an existing page in the trie with another one.
* Panics if there is not an old page in the trie at the new page's index.
*/
static __inline vm_page_t
vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
{
return (VM_RADIX_PCTRIE_REPLACE(&rtree->rt_trie, newpage));
}
#endif /* _KERNEL */