MFV r311477: xz 5.2.3.

MFC after:	2 weeks
This commit is contained in:
Xin LI 2017-01-06 07:54:53 +00:00
commit 1456f0f968
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=311504
50 changed files with 1797 additions and 1045 deletions

File diff suppressed because it is too large Load diff

View file

@ -64,6 +64,7 @@ has been important. :-) In alphabetical order:
- Conley Moorhous
- Rafał Mużyło
- Adrien Nader
- Evan Nemerson
- Hongbo Ni
- Jonathan Nieder
- Andre Noll
@ -74,6 +75,7 @@ has been important. :-) In alphabetical order:
- Diego Elio Pettenò
- Elbert Pol
- Mikko Pouru
- Rich Prohaska
- Trần Ngọc Quân
- Pavel Raiskup
- Ole André Vadla Ravnås
@ -89,6 +91,7 @@ has been important. :-) In alphabetical order:
- Andreas Schwab
- Dan Shechter
- Stuart Shelton
- Sebastian Andrzej Siewior
- Brad Smith
- Jonathan Stott
- Dan Stromberg
@ -102,6 +105,7 @@ has been important. :-) In alphabetical order:
- Christian Weisgerber
- Bert Wesarg
- Fredrik Wikstrom
- Jim Wilcoxson
- Ralf Wildenhues
- Charles Wilson
- Lars Wirzenius

View file

@ -18,6 +18,10 @@
# endif
# include <windows.h>
// glibc >= 2.9
#elif defined(TUKLIB_CPUCORES_SCHED_GETAFFINITY)
# include <sched.h>
// FreeBSD
#elif defined(TUKLIB_CPUCORES_CPUSET)
# include <sys/param.h>
@ -49,6 +53,11 @@ tuklib_cpucores(void)
GetSystemInfo(&sysinfo);
ret = sysinfo.dwNumberOfProcessors;
#elif defined(TUKLIB_CPUCORES_SCHED_GETAFFINITY)
cpu_set_t cpu_mask;
if (sched_getaffinity(0, sizeof(cpu_mask), &cpu_mask) == 0)
ret = CPU_COUNT(&cpu_mask);
#elif defined(TUKLIB_CPUCORES_CPUSET)
cpuset_t set;
if (cpuset_getaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1,

View file

@ -86,7 +86,8 @@ tuklib_physmem(void)
// GlobalMemoryStatusEx() conditionally.
HMODULE kernel32 = GetModuleHandle("kernel32.dll");
if (kernel32 != NULL) {
BOOL (WINAPI *gmse)(LPMEMORYSTATUSEX) = GetProcAddress(
typedef BOOL (WINAPI *gmse_type)(LPMEMORYSTATUSEX);
gmse_type gmse = (gmse_type)GetProcAddress(
kernel32, "GlobalMemoryStatusEx");
if (gmse != NULL) {
MEMORYSTATUSEX meminfo;

View file

@ -22,7 +22,7 @@
*/
#define LZMA_VERSION_MAJOR 5
#define LZMA_VERSION_MINOR 2
#define LZMA_VERSION_PATCH 2
#define LZMA_VERSION_PATCH 3
#define LZMA_VERSION_STABILITY LZMA_VERSION_STABILITY_STABLE
#ifndef LZMA_VERSION_COMMIT

View file

@ -15,7 +15,18 @@
#include "common.h"
#if defined(HAVE_COMMONCRYPTO_COMMONDIGEST_H)
// If the function for external SHA-256 is missing, use the internal SHA-256
// code. Due to how configure works, these defines can only get defined when
// both a usable header and a type have already been found.
#if !(defined(HAVE_CC_SHA256_INIT) \
|| defined(HAVE_SHA256_INIT) \
|| defined(HAVE_SHA256INIT))
# define HAVE_INTERNAL_SHA256 1
#endif
#if defined(HAVE_INTERNAL_SHA256)
// Nothing
#elif defined(HAVE_COMMONCRYPTO_COMMONDIGEST_H)
# include <CommonCrypto/CommonDigest.h>
#elif defined(HAVE_SHA256_H)
# include <sys/types.h>
@ -23,18 +34,9 @@
#elif defined(HAVE_SHA2_H)
# include <sys/types.h>
# include <sha2.h>
#elif defined(HAVE_MINIX_SHA2_H)
# include <sys/types.h>
# include <minix/sha2.h>
#endif
#if defined(HAVE_CC_SHA256_CTX)
typedef CC_SHA256_CTX lzma_sha256_state;
#elif defined(HAVE_SHA256_CTX)
typedef SHA256_CTX lzma_sha256_state;
#elif defined(HAVE_SHA2_CTX)
typedef SHA2_CTX lzma_sha256_state;
#else
#if defined(HAVE_INTERNAL_SHA256)
/// State for the internal SHA-256 implementation
typedef struct {
/// Internal state
@ -43,9 +45,17 @@ typedef struct {
/// Size of the message excluding padding
uint64_t size;
} lzma_sha256_state;
#elif defined(HAVE_CC_SHA256_CTX)
typedef CC_SHA256_CTX lzma_sha256_state;
#elif defined(HAVE_SHA256_CTX)
typedef SHA256_CTX lzma_sha256_state;
#elif defined(HAVE_SHA2_CTX)
typedef SHA2_CTX lzma_sha256_state;
#endif
#if defined(HAVE_CC_SHA256_INIT)
#if defined(HAVE_INTERNAL_SHA256)
// Nothing
#elif defined(HAVE_CC_SHA256_INIT)
# define LZMA_SHA256FUNC(x) CC_SHA256_ ## x
#elif defined(HAVE_SHA256_INIT)
# define LZMA_SHA256FUNC(x) SHA256_ ## x

View file

@ -15,7 +15,7 @@
#include "lz_decoder.h"
struct lzma_coder_s {
typedef struct {
lzma_next_coder next;
enum {
@ -46,17 +46,19 @@ struct lzma_coder_s {
/// Options decoded from the header needed to initialize
/// the LZMA decoder
lzma_options_lzma options;
};
} lzma_alone_coder;
static lzma_ret
alone_decode(lzma_coder *coder,
alone_decode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
lzma_action action)
{
lzma_alone_coder *coder = coder_ptr;
while (*out_pos < out_size
&& (coder->sequence == SEQ_CODE || *in_pos < in_size))
switch (coder->sequence) {
@ -166,8 +168,9 @@ alone_decode(lzma_coder *coder,
static void
alone_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
alone_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_alone_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
@ -175,9 +178,11 @@ alone_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
alone_decoder_memconfig(lzma_coder *coder, uint64_t *memusage,
alone_decoder_memconfig(void *coder_ptr, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit)
{
lzma_alone_coder *coder = coder_ptr;
*memusage = coder->memusage;
*old_memlimit = coder->memlimit;
@ -201,26 +206,29 @@ lzma_alone_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
if (memlimit == 0)
return LZMA_PROG_ERROR;
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_alone_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_alone_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &alone_decode;
next->end = &alone_decoder_end;
next->memconfig = &alone_decoder_memconfig;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
next->coder->sequence = SEQ_PROPERTIES;
next->coder->picky = picky;
next->coder->pos = 0;
next->coder->options.dict_size = 0;
next->coder->options.preset_dict = NULL;
next->coder->options.preset_dict_size = 0;
next->coder->uncompressed_size = 0;
next->coder->memlimit = memlimit;
next->coder->memusage = LZMA_MEMUSAGE_BASE;
coder->sequence = SEQ_PROPERTIES;
coder->picky = picky;
coder->pos = 0;
coder->options.dict_size = 0;
coder->options.preset_dict = NULL;
coder->options.preset_dict_size = 0;
coder->uncompressed_size = 0;
coder->memlimit = memlimit;
coder->memusage = LZMA_MEMUSAGE_BASE;
return LZMA_OK;
}

View file

@ -17,7 +17,7 @@
#define ALONE_HEADER_SIZE (1 + 4 + 8)
struct lzma_coder_s {
typedef struct {
lzma_next_coder next;
enum {
@ -27,17 +27,19 @@ struct lzma_coder_s {
size_t header_pos;
uint8_t header[ALONE_HEADER_SIZE];
};
} lzma_alone_coder;
static lzma_ret
alone_encode(lzma_coder *coder,
alone_encode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
lzma_action action)
{
lzma_alone_coder *coder = coder_ptr;
while (*out_pos < out_size)
switch (coder->sequence) {
case SEQ_HEADER:
@ -65,8 +67,9 @@ alone_encode(lzma_coder *coder,
static void
alone_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
alone_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_alone_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
@ -80,23 +83,26 @@ alone_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
{
lzma_next_coder_init(&alone_encoder_init, next, allocator);
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_alone_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_alone_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &alone_encode;
next->end = &alone_encoder_end;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
// Basic initializations
next->coder->sequence = SEQ_HEADER;
next->coder->header_pos = 0;
coder->sequence = SEQ_HEADER;
coder->header_pos = 0;
// Encode the header:
// - Properties (1 byte)
if (lzma_lzma_lclppb_encode(options, next->coder->header))
if (lzma_lzma_lclppb_encode(options, coder->header))
return LZMA_OPTIONS_ERROR;
// - Dictionary size (4 bytes)
@ -116,10 +122,10 @@ alone_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
if (d != UINT32_MAX)
++d;
unaligned_write32le(next->coder->header + 1, d);
unaligned_write32le(coder->header + 1, d);
// - Uncompressed size (always unknown and using EOPM)
memset(next->coder->header + 1 + 4, 0xFF, 8);
memset(coder->header + 1 + 4, 0xFF, 8);
// Initialize the LZMA encoder.
const lzma_filter_info filters[2] = {
@ -131,7 +137,7 @@ alone_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
}
};
return lzma_next_filter_init(&next->coder->next, allocator, filters);
return lzma_next_filter_init(&coder->next, allocator, filters);
}

View file

@ -14,7 +14,7 @@
#include "alone_decoder.h"
struct lzma_coder_s {
typedef struct {
/// Stream decoder or LZMA_Alone decoder
lzma_next_coder next;
@ -26,15 +26,17 @@ struct lzma_coder_s {
SEQ_CODE,
SEQ_FINISH,
} sequence;
};
} lzma_auto_coder;
static lzma_ret
auto_decode(lzma_coder *coder, const lzma_allocator *allocator,
auto_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_auto_coder *coder = coder_ptr;
switch (coder->sequence) {
case SEQ_INIT:
if (*in_pos >= in_size)
@ -100,8 +102,9 @@ auto_decode(lzma_coder *coder, const lzma_allocator *allocator,
static void
auto_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
auto_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_auto_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
@ -109,8 +112,10 @@ auto_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_check
auto_decoder_get_check(const lzma_coder *coder)
auto_decoder_get_check(const void *coder_ptr)
{
const lzma_auto_coder *coder = coder_ptr;
// It is LZMA_Alone if get_check is NULL.
return coder->next.get_check == NULL ? LZMA_CHECK_NONE
: coder->next.get_check(coder->next.coder);
@ -118,9 +123,11 @@ auto_decoder_get_check(const lzma_coder *coder)
static lzma_ret
auto_decoder_memconfig(lzma_coder *coder, uint64_t *memusage,
auto_decoder_memconfig(void *coder_ptr, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit)
{
lzma_auto_coder *coder = coder_ptr;
lzma_ret ret;
if (coder->next.memconfig != NULL) {
@ -154,21 +161,23 @@ auto_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
if (flags & ~LZMA_SUPPORTED_FLAGS)
return LZMA_OPTIONS_ERROR;
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_auto_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_auto_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &auto_decode;
next->end = &auto_decoder_end;
next->get_check = &auto_decoder_get_check;
next->memconfig = &auto_decoder_memconfig;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
next->coder->memlimit = memlimit;
next->coder->flags = flags;
next->coder->sequence = SEQ_INIT;
coder->memlimit = memlimit;
coder->flags = flags;
coder->sequence = SEQ_INIT;
return LZMA_OK;
}

View file

@ -15,7 +15,7 @@
#include "check.h"
struct lzma_coder_s {
typedef struct {
enum {
SEQ_CODE,
SEQ_PADDING,
@ -48,7 +48,7 @@ struct lzma_coder_s {
/// True if the integrity check won't be calculated and verified.
bool ignore_check;
};
} lzma_block_coder;
static inline bool
@ -74,11 +74,13 @@ is_size_valid(lzma_vli size, lzma_vli reference)
static lzma_ret
block_decode(lzma_coder *coder, const lzma_allocator *allocator,
block_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_block_coder *coder = coder_ptr;
switch (coder->sequence) {
case SEQ_CODE: {
const size_t in_start = *in_pos;
@ -177,8 +179,9 @@ block_decode(lzma_coder *coder, const lzma_allocator *allocator,
static void
block_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
block_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_block_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
@ -198,27 +201,29 @@ lzma_block_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
|| !lzma_vli_is_valid(block->uncompressed_size))
return LZMA_PROG_ERROR;
// Allocate and initialize *next->coder if needed.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
// Allocate *next->coder if needed.
lzma_block_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_block_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &block_decode;
next->end = &block_decoder_end;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
// Basic initializations
next->coder->sequence = SEQ_CODE;
next->coder->block = block;
next->coder->compressed_size = 0;
next->coder->uncompressed_size = 0;
coder->sequence = SEQ_CODE;
coder->block = block;
coder->compressed_size = 0;
coder->uncompressed_size = 0;
// If Compressed Size is not known, we calculate the maximum allowed
// value so that encoded size of the Block (including Block Padding)
// is still a valid VLI and a multiple of four.
next->coder->compressed_limit
coder->compressed_limit
= block->compressed_size == LZMA_VLI_UNKNOWN
? (LZMA_VLI_MAX & ~LZMA_VLI_C(3))
- block->header_size
@ -228,14 +233,14 @@ lzma_block_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
// Initialize the check. It's caller's problem if the Check ID is not
// supported, and the Block decoder cannot verify the Check field.
// Caller can test lzma_check_is_supported(block->check).
next->coder->check_pos = 0;
lzma_check_init(&next->coder->check, block->check);
coder->check_pos = 0;
lzma_check_init(&coder->check, block->check);
next->coder->ignore_check = block->version >= 1
coder->ignore_check = block->version >= 1
? block->ignore_check : false;
// Initialize the filter chain.
return lzma_raw_decoder_init(&next->coder->next, allocator,
return lzma_raw_decoder_init(&coder->next, allocator,
block->filters);
}

View file

@ -15,7 +15,7 @@
#include "check.h"
struct lzma_coder_s {
typedef struct {
/// The filters in the chain; initialized with lzma_raw_decoder_init().
lzma_next_coder next;
@ -41,15 +41,17 @@ struct lzma_coder_s {
/// Check of the uncompressed data
lzma_check_state check;
};
} lzma_block_coder;
static lzma_ret
block_encode(lzma_coder *coder, const lzma_allocator *allocator,
block_encode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_block_coder *coder = coder_ptr;
// Check that our amount of input stays in proper limits.
if (LZMA_VLI_MAX - coder->uncompressed_size < in_size - *in_pos)
return LZMA_DATA_ERROR;
@ -134,8 +136,9 @@ block_encode(lzma_coder *coder, const lzma_allocator *allocator,
static void
block_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
block_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_block_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
@ -143,10 +146,12 @@ block_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
block_encoder_update(lzma_coder *coder, const lzma_allocator *allocator,
block_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
const lzma_filter *filters lzma_attribute((__unused__)),
const lzma_filter *reversed_filters)
{
lzma_block_coder *coder = coder_ptr;
if (coder->sequence != SEQ_CODE)
return LZMA_PROG_ERROR;
@ -178,30 +183,31 @@ lzma_block_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
return LZMA_UNSUPPORTED_CHECK;
// Allocate and initialize *next->coder if needed.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_block_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_block_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &block_encode;
next->end = &block_encoder_end;
next->update = &block_encoder_update;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
// Basic initializations
next->coder->sequence = SEQ_CODE;
next->coder->block = block;
next->coder->compressed_size = 0;
next->coder->uncompressed_size = 0;
next->coder->pos = 0;
coder->sequence = SEQ_CODE;
coder->block = block;
coder->compressed_size = 0;
coder->uncompressed_size = 0;
coder->pos = 0;
// Initialize the check
lzma_check_init(&next->coder->check, block->check);
lzma_check_init(&coder->check, block->check);
// Initialize the requested filters.
return lzma_raw_encoder_init(&next->coder->next, allocator,
block->filters);
return lzma_raw_encoder_init(&coder->next, allocator, block->filters);
}

View file

@ -88,10 +88,6 @@
#define LZMA_TIMED_OUT 32
/// Type of encoder/decoder specific data; the actual structure is defined
/// differently in different coders.
typedef struct lzma_coder_s lzma_coder;
typedef struct lzma_next_coder_s lzma_next_coder;
typedef struct lzma_filter_info_s lzma_filter_info;
@ -107,7 +103,7 @@ typedef lzma_ret (*lzma_init_function)(
/// input and output buffers, but for simplicity they still use this same
/// function prototype.
typedef lzma_ret (*lzma_code_function)(
lzma_coder *coder, const lzma_allocator *allocator,
void *coder, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
@ -115,7 +111,7 @@ typedef lzma_ret (*lzma_code_function)(
/// Type of a function to free the memory allocated for the coder
typedef void (*lzma_end_function)(
lzma_coder *coder, const lzma_allocator *allocator);
void *coder, const lzma_allocator *allocator);
/// Raw coder validates and converts an array of lzma_filter structures to
@ -138,7 +134,7 @@ struct lzma_filter_info_s {
/// Hold data and function pointers of the next filter in the chain.
struct lzma_next_coder_s {
/// Pointer to coder-specific data
lzma_coder *coder;
void *coder;
/// Filter ID. This is LZMA_VLI_UNKNOWN when this structure doesn't
/// point to a filter coder.
@ -160,21 +156,21 @@ struct lzma_next_coder_s {
/// Pointer to a function to get progress information. If this is NULL,
/// lzma_stream.total_in and .total_out are used instead.
void (*get_progress)(lzma_coder *coder,
void (*get_progress)(void *coder,
uint64_t *progress_in, uint64_t *progress_out);
/// Pointer to function to return the type of the integrity check.
/// Most coders won't support this.
lzma_check (*get_check)(const lzma_coder *coder);
lzma_check (*get_check)(const void *coder);
/// Pointer to function to get and/or change the memory usage limit.
/// If new_memlimit == 0, the limit is not changed.
lzma_ret (*memconfig)(lzma_coder *coder, uint64_t *memusage,
lzma_ret (*memconfig)(void *coder, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit);
/// Update the filter-specific options or the whole filter chain
/// in the encoder.
lzma_ret (*update)(lzma_coder *coder, const lzma_allocator *allocator,
lzma_ret (*update)(void *coder, const lzma_allocator *allocator,
const lzma_filter *filters,
const lzma_filter *reversed_filters);
};

View file

@ -202,22 +202,21 @@ index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
if (node->right != NULL)
index_tree_node_end(node->right, allocator, free_func);
if (free_func != NULL)
free_func(node, allocator);
lzma_free(node, allocator);
free_func(node, allocator);
return;
}
/// Free the meory allocated for a tree. If free_func is not NULL,
/// it is called on each node before freeing the node. This is used
/// to free the Record groups from each index_stream before freeing
/// the index_stream itself.
/// Free the memory allocated for a tree. Each node is freed using the
/// given free_func which is either &lzma_free or &index_stream_end.
/// The latter is used to free the Record groups from each index_stream
/// before freeing the index_stream itself.
static void
index_tree_end(index_tree *tree, const lzma_allocator *allocator,
void (*free_func)(void *node, const lzma_allocator *allocator))
{
assert(free_func != NULL);
if (tree->root != NULL)
index_tree_node_end(tree->root, allocator, free_func);
@ -371,7 +370,8 @@ static void
index_stream_end(void *node, const lzma_allocator *allocator)
{
index_stream *s = node;
index_tree_end(&s->groups, allocator, NULL);
index_tree_end(&s->groups, allocator, &lzma_free);
lzma_free(s, allocator);
return;
}
@ -829,6 +829,9 @@ lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
s->groups.rightmost = &newg->node;
lzma_free(g, allocator);
// NOTE: newg isn't leaked here because
// newg == (void *)&newg->node.
}
}
@ -869,11 +872,8 @@ index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
index_stream *dest = index_stream_init(src->node.compressed_base,
src->node.uncompressed_base, src->number,
src->block_number_base, allocator);
// Return immediately if allocation failed or if there are
// no groups to duplicate.
if (dest == NULL || src->groups.leftmost == NULL)
return dest;
if (dest == NULL)
return NULL;
// Copy the overall information.
dest->record_count = src->record_count;
@ -881,6 +881,10 @@ index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
dest->stream_flags = src->stream_flags;
dest->stream_padding = src->stream_padding;
// Return if there are no groups to duplicate.
if (src->groups.leftmost == NULL)
return dest;
// Allocate memory for the Records. We put all the Records into
// a single group. It's simplest and also tends to make
// lzma_index_locate() a little bit faster with very big Indexes.

View file

@ -14,7 +14,7 @@
#include "check.h"
struct lzma_coder_s {
typedef struct {
enum {
SEQ_INDICATOR,
SEQ_COUNT,
@ -50,11 +50,11 @@ struct lzma_coder_s {
/// CRC32 of the List of Records field
uint32_t crc32;
};
} lzma_index_coder;
static lzma_ret
index_decode(lzma_coder *coder, const lzma_allocator *allocator,
index_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size,
uint8_t *restrict out lzma_attribute((__unused__)),
@ -62,6 +62,8 @@ index_decode(lzma_coder *coder, const lzma_allocator *allocator,
size_t out_size lzma_attribute((__unused__)),
lzma_action action lzma_attribute((__unused__)))
{
lzma_index_coder *coder = coder_ptr;
// Similar optimization as in index_encoder.c
const size_t in_start = *in_pos;
lzma_ret ret = LZMA_OK;
@ -207,8 +209,9 @@ index_decode(lzma_coder *coder, const lzma_allocator *allocator,
static void
index_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
index_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_index_coder *coder = coder_ptr;
lzma_index_end(coder->index, allocator);
lzma_free(coder, allocator);
return;
@ -216,9 +219,11 @@ index_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
index_decoder_memconfig(lzma_coder *coder, uint64_t *memusage,
index_decoder_memconfig(void *coder_ptr, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit)
{
lzma_index_coder *coder = coder_ptr;
*memusage = lzma_index_memusage(1, coder->count);
*old_memlimit = coder->memlimit;
@ -234,7 +239,7 @@ index_decoder_memconfig(lzma_coder *coder, uint64_t *memusage,
static lzma_ret
index_decoder_reset(lzma_coder *coder, const lzma_allocator *allocator,
index_decoder_reset(lzma_index_coder *coder, const lzma_allocator *allocator,
lzma_index **i, uint64_t memlimit)
{
// Remember the pointer given by the application. We will set it
@ -269,20 +274,22 @@ index_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
if (i == NULL || memlimit == 0)
return LZMA_PROG_ERROR;
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_index_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_index_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &index_decode;
next->end = &index_decoder_end;
next->memconfig = &index_decoder_memconfig;
next->coder->index = NULL;
coder->index = NULL;
} else {
lzma_index_end(next->coder->index, allocator);
lzma_index_end(coder->index, allocator);
}
return index_decoder_reset(next->coder, allocator, i, memlimit);
return index_decoder_reset(coder, allocator, i, memlimit);
}
@ -309,7 +316,7 @@ lzma_index_buffer_decode(lzma_index **i, uint64_t *memlimit,
return LZMA_PROG_ERROR;
// Initialize the decoder.
lzma_coder coder;
lzma_index_coder coder;
return_if_error(index_decoder_reset(&coder, allocator, i, *memlimit));
// Store the input start position so that we can restore it in case

View file

@ -15,7 +15,7 @@
#include "check.h"
struct lzma_coder_s {
typedef struct {
enum {
SEQ_INDICATOR,
SEQ_COUNT,
@ -37,11 +37,11 @@ struct lzma_coder_s {
/// CRC32 of the List of Records field
uint32_t crc32;
};
} lzma_index_coder;
static lzma_ret
index_encode(lzma_coder *coder,
index_encode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
const uint8_t *restrict in lzma_attribute((__unused__)),
size_t *restrict in_pos lzma_attribute((__unused__)),
@ -50,6 +50,8 @@ index_encode(lzma_coder *coder,
size_t out_size,
lzma_action action lzma_attribute((__unused__)))
{
lzma_index_coder *coder = coder_ptr;
// Position where to start calculating CRC32. The idea is that we
// need to call lzma_crc32() only once per call to index_encode().
const size_t out_start = *out_pos;
@ -159,7 +161,7 @@ index_encode(lzma_coder *coder,
static void
index_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
index_encoder_end(void *coder, const lzma_allocator *allocator)
{
lzma_free(coder, allocator);
return;
@ -167,7 +169,7 @@ index_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static void
index_encoder_reset(lzma_coder *coder, const lzma_index *i)
index_encoder_reset(lzma_index_coder *coder, const lzma_index *i)
{
lzma_index_iter_init(&coder->iter, i);
@ -190,7 +192,7 @@ lzma_index_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
return LZMA_PROG_ERROR;
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
next->coder = lzma_alloc(sizeof(lzma_index_coder), allocator);
if (next->coder == NULL)
return LZMA_MEM_ERROR;
@ -230,7 +232,7 @@ lzma_index_buffer_encode(const lzma_index *i,
// The Index encoder needs just one small data structure so we can
// allocate it on stack.
lzma_coder coder;
lzma_index_coder coder;
index_encoder_reset(&coder, i);
// Do the actual encoding. This should never fail, but store

View file

@ -14,7 +14,7 @@
#include "block_decoder.h"
struct lzma_coder_s {
typedef struct {
enum {
SEQ_STREAM_HEADER,
SEQ_BLOCK_HEADER,
@ -80,11 +80,11 @@ struct lzma_coder_s {
/// Buffer to hold Stream Header, Block Header, and Stream Footer.
/// Block Header has biggest maximum size.
uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
};
} lzma_stream_coder;
static lzma_ret
stream_decoder_reset(lzma_coder *coder, const lzma_allocator *allocator)
stream_decoder_reset(lzma_stream_coder *coder, const lzma_allocator *allocator)
{
// Initialize the Index hash used to verify the Index.
coder->index_hash = lzma_index_hash_init(coder->index_hash, allocator);
@ -100,11 +100,13 @@ stream_decoder_reset(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
stream_decode(lzma_coder *coder, const lzma_allocator *allocator,
stream_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_stream_coder *coder = coder_ptr;
// When decoding the actual Block, it may be able to produce more
// output even if we don't give it any new input.
while (true)
@ -375,8 +377,9 @@ stream_decode(lzma_coder *coder, const lzma_allocator *allocator,
static void
stream_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
stream_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_stream_coder *coder = coder_ptr;
lzma_next_end(&coder->block_decoder, allocator);
lzma_index_hash_end(coder->index_hash, allocator);
lzma_free(coder, allocator);
@ -385,16 +388,19 @@ stream_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_check
stream_decoder_get_check(const lzma_coder *coder)
stream_decoder_get_check(const void *coder_ptr)
{
const lzma_stream_coder *coder = coder_ptr;
return coder->stream_flags.check;
}
static lzma_ret
stream_decoder_memconfig(lzma_coder *coder, uint64_t *memusage,
stream_decoder_memconfig(void *coder_ptr, uint64_t *memusage,
uint64_t *old_memlimit, uint64_t new_memlimit)
{
lzma_stream_coder *coder = coder_ptr;
*memusage = coder->memusage;
*old_memlimit = coder->memlimit;
@ -422,31 +428,33 @@ lzma_stream_decoder_init(
if (flags & ~LZMA_SUPPORTED_FLAGS)
return LZMA_OPTIONS_ERROR;
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_stream_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_stream_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &stream_decode;
next->end = &stream_decoder_end;
next->get_check = &stream_decoder_get_check;
next->memconfig = &stream_decoder_memconfig;
next->coder->block_decoder = LZMA_NEXT_CODER_INIT;
next->coder->index_hash = NULL;
coder->block_decoder = LZMA_NEXT_CODER_INIT;
coder->index_hash = NULL;
}
next->coder->memlimit = memlimit;
next->coder->memusage = LZMA_MEMUSAGE_BASE;
next->coder->tell_no_check = (flags & LZMA_TELL_NO_CHECK) != 0;
next->coder->tell_unsupported_check
coder->memlimit = memlimit;
coder->memusage = LZMA_MEMUSAGE_BASE;
coder->tell_no_check = (flags & LZMA_TELL_NO_CHECK) != 0;
coder->tell_unsupported_check
= (flags & LZMA_TELL_UNSUPPORTED_CHECK) != 0;
next->coder->tell_any_check = (flags & LZMA_TELL_ANY_CHECK) != 0;
next->coder->ignore_check = (flags & LZMA_IGNORE_CHECK) != 0;
next->coder->concatenated = (flags & LZMA_CONCATENATED) != 0;
next->coder->first_stream = true;
coder->tell_any_check = (flags & LZMA_TELL_ANY_CHECK) != 0;
coder->ignore_check = (flags & LZMA_IGNORE_CHECK) != 0;
coder->concatenated = (flags & LZMA_CONCATENATED) != 0;
coder->first_stream = true;
return stream_decoder_reset(next->coder, allocator);
return stream_decoder_reset(coder, allocator);
}

View file

@ -14,7 +14,7 @@
#include "index_encoder.h"
struct lzma_coder_s {
typedef struct {
enum {
SEQ_STREAM_HEADER,
SEQ_BLOCK_INIT,
@ -55,11 +55,11 @@ struct lzma_coder_s {
/// Buffer to hold Stream Header, Block Header, and Stream Footer.
/// Block Header has biggest maximum size.
uint8_t buffer[LZMA_BLOCK_HEADER_SIZE_MAX];
};
} lzma_stream_coder;
static lzma_ret
block_encoder_init(lzma_coder *coder, const lzma_allocator *allocator)
block_encoder_init(lzma_stream_coder *coder, const lzma_allocator *allocator)
{
// Prepare the Block options. Even though Block encoder doesn't need
// compressed_size, uncompressed_size, and header_size to be
@ -78,11 +78,13 @@ block_encoder_init(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
stream_encode(lzma_coder *coder, const lzma_allocator *allocator,
stream_encode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_stream_coder *coder = coder_ptr;
// Main loop
while (*out_pos < out_size)
switch (coder->sequence) {
@ -209,8 +211,10 @@ stream_encode(lzma_coder *coder, const lzma_allocator *allocator,
static void
stream_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
stream_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_stream_coder *coder = coder_ptr;
lzma_next_end(&coder->block_encoder, allocator);
lzma_next_end(&coder->index_encoder, allocator);
lzma_index_end(coder->index, allocator);
@ -224,10 +228,12 @@ stream_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
stream_encoder_update(lzma_coder *coder, const lzma_allocator *allocator,
stream_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
const lzma_filter *filters,
const lzma_filter *reversed_filters)
{
lzma_stream_coder *coder = coder_ptr;
if (coder->sequence <= SEQ_BLOCK_INIT) {
// There is no incomplete Block waiting to be finished,
// thus we can change the whole filter chain. Start by
@ -271,30 +277,33 @@ stream_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
if (filters == NULL)
return LZMA_PROG_ERROR;
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_stream_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_stream_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &stream_encode;
next->end = &stream_encoder_end;
next->update = &stream_encoder_update;
next->coder->filters[0].id = LZMA_VLI_UNKNOWN;
next->coder->block_encoder = LZMA_NEXT_CODER_INIT;
next->coder->index_encoder = LZMA_NEXT_CODER_INIT;
next->coder->index = NULL;
coder->filters[0].id = LZMA_VLI_UNKNOWN;
coder->block_encoder = LZMA_NEXT_CODER_INIT;
coder->index_encoder = LZMA_NEXT_CODER_INIT;
coder->index = NULL;
}
// Basic initializations
next->coder->sequence = SEQ_STREAM_HEADER;
next->coder->block_options.version = 0;
next->coder->block_options.check = check;
coder->sequence = SEQ_STREAM_HEADER;
coder->block_options.version = 0;
coder->block_options.check = check;
// Initialize the Index
lzma_index_end(next->coder->index, allocator);
next->coder->index = lzma_index_init(allocator);
if (next->coder->index == NULL)
lzma_index_end(coder->index, allocator);
coder->index = lzma_index_init(allocator);
if (coder->index == NULL)
return LZMA_MEM_ERROR;
// Encode the Stream Header
@ -303,16 +312,15 @@ stream_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
.check = check,
};
return_if_error(lzma_stream_header_encode(
&stream_flags, next->coder->buffer));
&stream_flags, coder->buffer));
next->coder->buffer_pos = 0;
next->coder->buffer_size = LZMA_STREAM_HEADER_SIZE;
coder->buffer_pos = 0;
coder->buffer_size = LZMA_STREAM_HEADER_SIZE;
// Initialize the Block encoder. This way we detect unsupported
// filter chains when initializing the Stream encoder instead of
// giving an error after Stream Header has already written out.
return stream_encoder_update(
next->coder, allocator, filters, NULL);
return stream_encoder_update(coder, allocator, filters, NULL);
}

View file

@ -44,6 +44,7 @@ typedef enum {
} worker_state;
typedef struct lzma_stream_coder_s lzma_stream_coder;
typedef struct worker_thread_s worker_thread;
struct worker_thread_s {
@ -65,7 +66,7 @@ struct worker_thread_s {
/// Pointer to the main structure is needed when putting this
/// thread back to the stack of free threads.
lzma_coder *coder;
lzma_stream_coder *coder;
/// The allocator is set by the main thread. Since a copy of the
/// pointer is kept here, the application must not change the
@ -96,7 +97,7 @@ struct worker_thread_s {
};
struct lzma_coder_s {
struct lzma_stream_coder_s {
enum {
SEQ_STREAM_HEADER,
SEQ_BLOCK,
@ -417,7 +418,7 @@ worker_start(void *thr_ptr)
/// Make the threads stop but not exit. Optionally wait for them to stop.
static void
threads_stop(lzma_coder *coder, bool wait_for_threads)
threads_stop(lzma_stream_coder *coder, bool wait_for_threads)
{
// Tell the threads to stop.
for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
@ -446,7 +447,7 @@ threads_stop(lzma_coder *coder, bool wait_for_threads)
/// Stop the threads and free the resources associated with them.
/// Wait until the threads have exited.
static void
threads_end(lzma_coder *coder, const lzma_allocator *allocator)
threads_end(lzma_stream_coder *coder, const lzma_allocator *allocator)
{
for (uint32_t i = 0; i < coder->threads_initialized; ++i) {
mythread_sync(coder->threads[i].mutex) {
@ -468,7 +469,8 @@ threads_end(lzma_coder *coder, const lzma_allocator *allocator)
/// Initialize a new worker_thread structure and create a new thread.
static lzma_ret
initialize_new_thread(lzma_coder *coder, const lzma_allocator *allocator)
initialize_new_thread(lzma_stream_coder *coder,
const lzma_allocator *allocator)
{
worker_thread *thr = &coder->threads[coder->threads_initialized];
@ -510,7 +512,7 @@ initialize_new_thread(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
get_thread(lzma_coder *coder, const lzma_allocator *allocator)
get_thread(lzma_stream_coder *coder, const lzma_allocator *allocator)
{
// If there are no free output subqueues, there is no
// point to try getting a thread.
@ -548,7 +550,7 @@ get_thread(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
stream_encode_in(lzma_coder *coder, const lzma_allocator *allocator,
stream_encode_in(lzma_stream_coder *coder, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, lzma_action action)
{
@ -616,7 +618,7 @@ stream_encode_in(lzma_coder *coder, const lzma_allocator *allocator,
/// Wait until more input can be consumed, more output can be read, or
/// an optional timeout is reached.
static bool
wait_for_work(lzma_coder *coder, mythread_condtime *wait_abs,
wait_for_work(lzma_stream_coder *coder, mythread_condtime *wait_abs,
bool *has_blocked, bool has_input)
{
if (coder->timeout != 0 && !*has_blocked) {
@ -662,11 +664,13 @@ wait_for_work(lzma_coder *coder, mythread_condtime *wait_abs,
static lzma_ret
stream_encode_mt(lzma_coder *coder, const lzma_allocator *allocator,
stream_encode_mt(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_stream_coder *coder = coder_ptr;
switch (coder->sequence) {
case SEQ_STREAM_HEADER:
lzma_bufcpy(coder->header, &coder->header_pos,
@ -834,8 +838,10 @@ stream_encode_mt(lzma_coder *coder, const lzma_allocator *allocator,
static void
stream_encoder_mt_end(lzma_coder *coder, const lzma_allocator *allocator)
stream_encoder_mt_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_stream_coder *coder = coder_ptr;
// Threads must be killed before the output queue can be freed.
threads_end(coder, allocator);
lzma_outq_end(&coder->outq, allocator);
@ -907,10 +913,12 @@ get_options(const lzma_mt *options, lzma_options_easy *opt_easy,
static void
get_progress(lzma_coder *coder, uint64_t *progress_in, uint64_t *progress_out)
get_progress(void *coder_ptr, uint64_t *progress_in, uint64_t *progress_out)
{
lzma_stream_coder *coder = coder_ptr;
// Lock coder->mutex to prevent finishing threads from moving their
// progress info from the worker_thread structure to lzma_coder.
// progress info from the worker_thread structure to lzma_stream_coder.
mythread_sync(coder->mutex) {
*progress_in = coder->progress_in;
*progress_out = coder->progress_out;
@ -962,24 +970,27 @@ stream_encoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
return LZMA_UNSUPPORTED_CHECK;
// Allocate and initialize the base structure if needed.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_stream_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_stream_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
// For the mutex and condition variable initializations
// the error handling has to be done here because
// stream_encoder_mt_end() doesn't know if they have
// already been initialized or not.
if (mythread_mutex_init(&next->coder->mutex)) {
lzma_free(next->coder, allocator);
if (mythread_mutex_init(&coder->mutex)) {
lzma_free(coder, allocator);
next->coder = NULL;
return LZMA_MEM_ERROR;
}
if (mythread_cond_init(&next->coder->cond)) {
mythread_mutex_destroy(&next->coder->mutex);
lzma_free(next->coder, allocator);
if (mythread_cond_init(&coder->cond)) {
mythread_mutex_destroy(&coder->mutex);
lzma_free(coder, allocator);
next->coder = NULL;
return LZMA_MEM_ERROR;
}
@ -989,76 +1000,76 @@ stream_encoder_mt_init(lzma_next_coder *next, const lzma_allocator *allocator,
next->get_progress = &get_progress;
// next->update = &stream_encoder_mt_update;
next->coder->filters[0].id = LZMA_VLI_UNKNOWN;
next->coder->index_encoder = LZMA_NEXT_CODER_INIT;
next->coder->index = NULL;
memzero(&next->coder->outq, sizeof(next->coder->outq));
next->coder->threads = NULL;
next->coder->threads_max = 0;
next->coder->threads_initialized = 0;
coder->filters[0].id = LZMA_VLI_UNKNOWN;
coder->index_encoder = LZMA_NEXT_CODER_INIT;
coder->index = NULL;
memzero(&coder->outq, sizeof(coder->outq));
coder->threads = NULL;
coder->threads_max = 0;
coder->threads_initialized = 0;
}
// Basic initializations
next->coder->sequence = SEQ_STREAM_HEADER;
next->coder->block_size = (size_t)(block_size);
next->coder->thread_error = LZMA_OK;
next->coder->thr = NULL;
coder->sequence = SEQ_STREAM_HEADER;
coder->block_size = (size_t)(block_size);
coder->thread_error = LZMA_OK;
coder->thr = NULL;
// Allocate the thread-specific base structures.
assert(options->threads > 0);
if (next->coder->threads_max != options->threads) {
threads_end(next->coder, allocator);
if (coder->threads_max != options->threads) {
threads_end(coder, allocator);
next->coder->threads = NULL;
next->coder->threads_max = 0;
coder->threads = NULL;
coder->threads_max = 0;
next->coder->threads_initialized = 0;
next->coder->threads_free = NULL;
coder->threads_initialized = 0;
coder->threads_free = NULL;
next->coder->threads = lzma_alloc(
coder->threads = lzma_alloc(
options->threads * sizeof(worker_thread),
allocator);
if (next->coder->threads == NULL)
if (coder->threads == NULL)
return LZMA_MEM_ERROR;
next->coder->threads_max = options->threads;
coder->threads_max = options->threads;
} else {
// Reuse the old structures and threads. Tell the running
// threads to stop and wait until they have stopped.
threads_stop(next->coder, true);
threads_stop(coder, true);
}
// Output queue
return_if_error(lzma_outq_init(&next->coder->outq, allocator,
return_if_error(lzma_outq_init(&coder->outq, allocator,
outbuf_size_max, options->threads));
// Timeout
next->coder->timeout = options->timeout;
coder->timeout = options->timeout;
// Free the old filter chain and copy the new one.
for (size_t i = 0; next->coder->filters[i].id != LZMA_VLI_UNKNOWN; ++i)
lzma_free(next->coder->filters[i].options, allocator);
for (size_t i = 0; coder->filters[i].id != LZMA_VLI_UNKNOWN; ++i)
lzma_free(coder->filters[i].options, allocator);
return_if_error(lzma_filters_copy(
filters, next->coder->filters, allocator));
filters, coder->filters, allocator));
// Index
lzma_index_end(next->coder->index, allocator);
next->coder->index = lzma_index_init(allocator);
if (next->coder->index == NULL)
lzma_index_end(coder->index, allocator);
coder->index = lzma_index_init(allocator);
if (coder->index == NULL)
return LZMA_MEM_ERROR;
// Stream Header
next->coder->stream_flags.version = 0;
next->coder->stream_flags.check = options->check;
coder->stream_flags.version = 0;
coder->stream_flags.check = options->check;
return_if_error(lzma_stream_header_encode(
&next->coder->stream_flags, next->coder->header));
&coder->stream_flags, coder->header));
next->coder->header_pos = 0;
coder->header_pos = 0;
// Progress info
next->coder->progress_in = 0;
next->coder->progress_out = LZMA_STREAM_HEADER_SIZE;
coder->progress_in = 0;
coder->progress_out = LZMA_STREAM_HEADER_SIZE;
return LZMA_OK;
}
@ -1111,7 +1122,8 @@ lzma_stream_encoder_mt_memusage(const lzma_mt *options)
return UINT64_MAX;
// Sum them with overflow checking.
uint64_t total_memusage = LZMA_MEMUSAGE_BASE + sizeof(lzma_coder)
uint64_t total_memusage = LZMA_MEMUSAGE_BASE
+ sizeof(lzma_stream_coder)
+ options->threads * sizeof(worker_thread);
if (UINT64_MAX - total_memusage < inbuf_memusage)

View file

@ -15,8 +15,9 @@
static void
delta_coder_end(lzma_coder *coder, const lzma_allocator *allocator)
delta_coder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_delta_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder, allocator);
return;
@ -28,14 +29,17 @@ lzma_delta_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
const lzma_filter_info *filters)
{
// Allocate memory for the decoder if needed.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_delta_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_delta_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
// End function is the same for encoder and decoder.
next->end = &delta_coder_end;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
// Validate the options.
@ -44,15 +48,14 @@ lzma_delta_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
// Set the delta distance.
const lzma_options_delta *opt = filters[0].options;
next->coder->distance = opt->dist;
coder->distance = opt->dist;
// Initialize the rest of the variables.
next->coder->pos = 0;
memzero(next->coder->history, LZMA_DELTA_DIST_MAX);
coder->pos = 0;
memzero(coder->history, LZMA_DELTA_DIST_MAX);
// Initialize the next decoder in the chain, if any.
return lzma_next_filter_init(&next->coder->next,
allocator, filters + 1);
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
}
@ -66,5 +69,5 @@ lzma_delta_coder_memusage(const void *options)
|| opt->dist > LZMA_DELTA_DIST_MAX)
return UINT64_MAX;
return sizeof(lzma_coder);
return sizeof(lzma_delta_coder);
}

View file

@ -15,7 +15,7 @@
static void
decode_buffer(lzma_coder *coder, uint8_t *buffer, size_t size)
decode_buffer(lzma_delta_coder *coder, uint8_t *buffer, size_t size)
{
const size_t distance = coder->distance;
@ -27,11 +27,13 @@ decode_buffer(lzma_coder *coder, uint8_t *buffer, size_t size)
static lzma_ret
delta_decode(lzma_coder *coder, const lzma_allocator *allocator,
delta_decode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_delta_coder *coder = coder_ptr;
assert(coder->next.code != NULL);
const size_t out_start = *out_pos;

View file

@ -18,7 +18,7 @@
/// is the first filter in the chain (and thus the last filter in the
/// encoder's filter stack).
static void
copy_and_encode(lzma_coder *coder,
copy_and_encode(lzma_delta_coder *coder,
const uint8_t *restrict in, uint8_t *restrict out, size_t size)
{
const size_t distance = coder->distance;
@ -35,7 +35,7 @@ copy_and_encode(lzma_coder *coder,
/// Encodes the data in place. This is used when we are the last filter
/// in the chain (and thus non-last filter in the encoder's filter stack).
static void
encode_in_place(lzma_coder *coder, uint8_t *buffer, size_t size)
encode_in_place(lzma_delta_coder *coder, uint8_t *buffer, size_t size)
{
const size_t distance = coder->distance;
@ -49,11 +49,13 @@ encode_in_place(lzma_coder *coder, uint8_t *buffer, size_t size)
static lzma_ret
delta_encode(lzma_coder *coder, const lzma_allocator *allocator,
delta_encode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_delta_coder *coder = coder_ptr;
lzma_ret ret;
if (coder->next.code == NULL) {
@ -84,10 +86,12 @@ delta_encode(lzma_coder *coder, const lzma_allocator *allocator,
static lzma_ret
delta_encoder_update(lzma_coder *coder, const lzma_allocator *allocator,
delta_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
const lzma_filter *filters_null lzma_attribute((__unused__)),
const lzma_filter *reversed_filters)
{
lzma_delta_coder *coder = coder_ptr;
// Delta doesn't and will never support changing the options in
// the middle of encoding. If the app tries to change them, we
// simply ignore them.

View file

@ -15,7 +15,7 @@
#include "delta_common.h"
struct lzma_coder_s {
typedef struct {
/// Next coder in the chain
lzma_next_coder next;
@ -27,7 +27,7 @@ struct lzma_coder_s {
/// Buffer to hold history of the original data
uint8_t history[LZMA_DELTA_DIST_MAX];
};
} lzma_delta_coder;
extern lzma_ret lzma_delta_coder_init(

View file

@ -20,7 +20,7 @@
#include "lz_decoder.h"
struct lzma_coder_s {
typedef struct {
/// Dictionary (history buffer)
lzma_dict dict;
@ -48,7 +48,7 @@ struct lzma_coder_s {
size_t size;
uint8_t buffer[LZMA_BUFFER_SIZE];
} temp;
};
} lzma_coder;
static void
@ -125,13 +125,15 @@ decode_buffer(lzma_coder *coder,
static lzma_ret
lz_decode(lzma_coder *coder,
lz_decode(void *coder_ptr,
const lzma_allocator *allocator lzma_attribute((__unused__)),
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
lzma_action action)
{
lzma_coder *coder = coder_ptr;
if (coder->next.code == NULL)
return decode_buffer(coder, in, in_pos, in_size,
out, out_pos, out_size);
@ -184,8 +186,10 @@ lz_decode(lzma_coder *coder,
static void
lz_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
lz_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder->dict.buf, allocator);
@ -207,24 +211,26 @@ lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
lzma_lz_options *lz_options))
{
// Allocate the base structure if it isn't already allocated.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &lz_decode;
next->end = &lz_decoder_end;
next->coder->dict.buf = NULL;
next->coder->dict.size = 0;
next->coder->lz = LZMA_LZ_DECODER_INIT;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->dict.buf = NULL;
coder->dict.size = 0;
coder->lz = LZMA_LZ_DECODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
// Allocate and initialize the LZ-based decoder. It will also give
// us the dictionary size.
lzma_lz_options lz_options;
return_if_error(lz_init(&next->coder->lz, allocator,
return_if_error(lz_init(&coder->lz, allocator,
filters[0].options, &lz_options));
// If the dictionary size is very small, increase it to 4096 bytes.
@ -248,14 +254,14 @@ lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15));
// Allocate and initialize the dictionary.
if (next->coder->dict.size != lz_options.dict_size) {
lzma_free(next->coder->dict.buf, allocator);
next->coder->dict.buf
if (coder->dict.size != lz_options.dict_size) {
lzma_free(coder->dict.buf, allocator);
coder->dict.buf
= lzma_alloc(lz_options.dict_size, allocator);
if (next->coder->dict.buf == NULL)
if (coder->dict.buf == NULL)
return LZMA_MEM_ERROR;
next->coder->dict.size = lz_options.dict_size;
coder->dict.size = lz_options.dict_size;
}
lz_decoder_reset(next->coder);
@ -268,21 +274,20 @@ lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
const size_t copy_size = my_min(lz_options.preset_dict_size,
lz_options.dict_size);
const size_t offset = lz_options.preset_dict_size - copy_size;
memcpy(next->coder->dict.buf, lz_options.preset_dict + offset,
memcpy(coder->dict.buf, lz_options.preset_dict + offset,
copy_size);
next->coder->dict.pos = copy_size;
next->coder->dict.full = copy_size;
coder->dict.pos = copy_size;
coder->dict.full = copy_size;
}
// Miscellaneous initializations
next->coder->next_finished = false;
next->coder->this_finished = false;
next->coder->temp.pos = 0;
next->coder->temp.size = 0;
coder->next_finished = false;
coder->this_finished = false;
coder->temp.pos = 0;
coder->temp.size = 0;
// Initialize the next filter in the chain, if any.
return lzma_next_filter_init(&next->coder->next, allocator,
filters + 1);
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
}
@ -294,7 +299,8 @@ lzma_lz_decoder_memusage(size_t dictionary_size)
extern void
lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size)
lzma_lz_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
{
lzma_coder *coder = coder_ptr;
coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size);
}

View file

@ -53,21 +53,20 @@ typedef struct {
typedef struct {
/// Data specific to the LZ-based decoder
lzma_coder *coder;
void *coder;
/// Function to decode from in[] to *dict
lzma_ret (*code)(lzma_coder *restrict coder,
lzma_ret (*code)(void *coder,
lzma_dict *restrict dict, const uint8_t *restrict in,
size_t *restrict in_pos, size_t in_size);
void (*reset)(lzma_coder *coder, const void *options);
void (*reset)(void *coder, const void *options);
/// Set the uncompressed size
void (*set_uncompressed)(lzma_coder *coder,
lzma_vli uncompressed_size);
void (*set_uncompressed)(void *coder, lzma_vli uncompressed_size);
/// Free allocated resources
void (*end)(lzma_coder *coder, const lzma_allocator *allocator);
void (*end)(void *coder, const lzma_allocator *allocator);
} lzma_lz_decoder;
@ -92,7 +91,7 @@ extern lzma_ret lzma_lz_decoder_init(lzma_next_coder *next,
extern uint64_t lzma_lz_decoder_memusage(size_t dictionary_size);
extern void lzma_lz_decoder_uncompressed(
lzma_coder *coder, lzma_vli uncompressed_size);
void *coder, lzma_vli uncompressed_size);
//////////////////////

View file

@ -23,7 +23,7 @@
#include "memcmplen.h"
struct lzma_coder_s {
typedef struct {
/// LZ-based encoder e.g. LZMA
lzma_lz_encoder lz;
@ -32,7 +32,7 @@ struct lzma_coder_s {
/// Next coder in the chain
lzma_next_coder next;
};
} lzma_coder;
/// \brief Moves the data in the input window to free space for new data
@ -157,12 +157,14 @@ fill_window(lzma_coder *coder, const lzma_allocator *allocator,
static lzma_ret
lz_encode(lzma_coder *coder, const lzma_allocator *allocator,
lz_encode(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size, lzma_action action)
{
lzma_coder *coder = coder_ptr;
while (*out_pos < out_size
&& (*in_pos < in_size || action != LZMA_RUN)) {
// Read more data to coder->mf.buffer if needed.
@ -481,8 +483,10 @@ lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
static void
lz_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder->mf.son, allocator);
@ -500,10 +504,12 @@ lz_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
lz_encoder_update(lzma_coder *coder, const lzma_allocator *allocator,
lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
const lzma_filter *filters_null lzma_attribute((__unused__)),
const lzma_filter *reversed_filters)
{
lzma_coder *coder = coder_ptr;
if (coder->lz.options_update == NULL)
return LZMA_PROG_ERROR;
@ -528,46 +534,51 @@ lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
#endif
// Allocate and initialize the base data structure.
if (next->coder == NULL) {
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (next->coder == NULL)
lzma_coder *coder = next->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &lz_encode;
next->end = &lz_encoder_end;
next->update = &lz_encoder_update;
next->coder->lz.coder = NULL;
next->coder->lz.code = NULL;
next->coder->lz.end = NULL;
coder->lz.coder = NULL;
coder->lz.code = NULL;
coder->lz.end = NULL;
next->coder->mf.buffer = NULL;
next->coder->mf.hash = NULL;
next->coder->mf.son = NULL;
next->coder->mf.hash_count = 0;
next->coder->mf.sons_count = 0;
// mf.size is initialized to silence Valgrind
// when used on optimized binaries (GCC may reorder
// code in a way that Valgrind gets unhappy).
coder->mf.buffer = NULL;
coder->mf.size = 0;
coder->mf.hash = NULL;
coder->mf.son = NULL;
coder->mf.hash_count = 0;
coder->mf.sons_count = 0;
next->coder->next = LZMA_NEXT_CODER_INIT;
coder->next = LZMA_NEXT_CODER_INIT;
}
// Initialize the LZ-based encoder.
lzma_lz_options lz_options;
return_if_error(lz_init(&next->coder->lz, allocator,
return_if_error(lz_init(&coder->lz, allocator,
filters[0].options, &lz_options));
// Setup the size information into next->coder->mf and deallocate
// Setup the size information into coder->mf and deallocate
// old buffers if they have wrong size.
if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options))
if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
return LZMA_OPTIONS_ERROR;
// Allocate new buffers if needed, and do the rest of
// the initialization.
if (lz_encoder_init(&next->coder->mf, allocator, &lz_options))
if (lz_encoder_init(&coder->mf, allocator, &lz_options))
return LZMA_MEM_ERROR;
// Initialize the next filter in the chain, if any.
return lzma_next_filter_init(&next->coder->next, allocator,
filters + 1);
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
}

View file

@ -191,19 +191,18 @@ typedef struct {
typedef struct {
/// Data specific to the LZ-based encoder
lzma_coder *coder;
void *coder;
/// Function to encode from *dict to out[]
lzma_ret (*code)(lzma_coder *restrict coder,
lzma_ret (*code)(void *coder,
lzma_mf *restrict mf, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size);
/// Free allocated resources
void (*end)(lzma_coder *coder, const lzma_allocator *allocator);
void (*end)(void *coder, const lzma_allocator *allocator);
/// Update the options in the middle of the encoding.
lzma_ret (*options_update)(lzma_coder *coder,
const lzma_filter *filter);
lzma_ret (*options_update)(void *coder, const lzma_filter *filter);
} lzma_lz_encoder;

View file

@ -16,7 +16,7 @@
#include "lzma_decoder.h"
struct lzma_coder_s {
typedef struct {
enum sequence {
SEQ_CONTROL,
SEQ_UNCOMPRESSED_1,
@ -50,14 +50,16 @@ struct lzma_coder_s {
bool need_dictionary_reset;
lzma_options_lzma options;
};
} lzma_lzma2_coder;
static lzma_ret
lzma2_decode(lzma_coder *restrict coder, lzma_dict *restrict dict,
lzma2_decode(void *coder_ptr, lzma_dict *restrict dict,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size)
{
lzma_lzma2_coder *restrict coder = coder_ptr;
// With SEQ_LZMA it is possible that no new input is needed to do
// some progress. The rest of the sequences assume that there is
// at least one byte of input.
@ -209,8 +211,10 @@ lzma2_decode(lzma_coder *restrict coder, lzma_dict *restrict dict,
static void
lzma2_decoder_end(lzma_coder *coder, const lzma_allocator *allocator)
lzma2_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_lzma2_coder *coder = coder_ptr;
assert(coder->lzma.end == NULL);
lzma_free(coder->lzma.coder, allocator);
@ -224,25 +228,27 @@ static lzma_ret
lzma2_decoder_init(lzma_lz_decoder *lz, const lzma_allocator *allocator,
const void *opt, lzma_lz_options *lz_options)
{
if (lz->coder == NULL) {
lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (lz->coder == NULL)
lzma_lzma2_coder *coder = lz->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_lzma2_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
lz->coder = coder;
lz->code = &lzma2_decode;
lz->end = &lzma2_decoder_end;
lz->coder->lzma = LZMA_LZ_DECODER_INIT;
coder->lzma = LZMA_LZ_DECODER_INIT;
}
const lzma_options_lzma *options = opt;
lz->coder->sequence = SEQ_CONTROL;
lz->coder->need_properties = true;
lz->coder->need_dictionary_reset = options->preset_dict == NULL
coder->sequence = SEQ_CONTROL;
coder->need_properties = true;
coder->need_dictionary_reset = options->preset_dict == NULL
|| options->preset_dict_size == 0;
return lzma_lzma_decoder_create(&lz->coder->lzma,
return lzma_lzma_decoder_create(&coder->lzma,
allocator, options, lz_options);
}
@ -263,7 +269,7 @@ lzma_lzma2_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
extern uint64_t
lzma_lzma2_decoder_memusage(const void *options)
{
return sizeof(lzma_coder)
return sizeof(lzma_lzma2_coder)
+ lzma_lzma_decoder_memusage_nocheck(options);
}

View file

@ -17,7 +17,7 @@
#include "lzma2_encoder.h"
struct lzma_coder_s {
typedef struct {
enum {
SEQ_INIT,
SEQ_LZMA_ENCODE,
@ -27,7 +27,7 @@ struct lzma_coder_s {
} sequence;
/// LZMA encoder
lzma_coder *lzma;
void *lzma;
/// LZMA options currently in use.
lzma_options_lzma opt_cur;
@ -48,11 +48,11 @@ struct lzma_coder_s {
/// Buffer to hold the chunk header and LZMA compressed data
uint8_t buf[LZMA2_HEADER_MAX + LZMA2_CHUNK_MAX];
};
} lzma_lzma2_coder;
static void
lzma2_header_lzma(lzma_coder *coder)
lzma2_header_lzma(lzma_lzma2_coder *coder)
{
assert(coder->uncompressed_size > 0);
assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
@ -108,7 +108,7 @@ lzma2_header_lzma(lzma_coder *coder)
static void
lzma2_header_uncompressed(lzma_coder *coder)
lzma2_header_uncompressed(lzma_lzma2_coder *coder)
{
assert(coder->uncompressed_size > 0);
assert(coder->uncompressed_size <= LZMA2_CHUNK_MAX);
@ -133,10 +133,12 @@ lzma2_header_uncompressed(lzma_coder *coder)
static lzma_ret
lzma2_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
lzma2_encode(void *coder_ptr, lzma_mf *restrict mf,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size)
{
lzma_lzma2_coder *restrict coder = coder_ptr;
while (*out_pos < out_size)
switch (coder->sequence) {
case SEQ_INIT:
@ -262,8 +264,9 @@ lzma2_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
static void
lzma2_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
lzma2_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_lzma2_coder *coder = coder_ptr;
lzma_free(coder->lzma, allocator);
lzma_free(coder, allocator);
return;
@ -271,8 +274,10 @@ lzma2_encoder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
lzma2_encoder_options_update(lzma_coder *coder, const lzma_filter *filter)
lzma2_encoder_options_update(void *coder_ptr, const lzma_filter *filter)
{
lzma_lzma2_coder *coder = coder_ptr;
// New options can be set only when there is no incomplete chunk.
// This is the case at the beginning of the raw stream and right
// after LZMA_SYNC_FLUSH.
@ -310,30 +315,32 @@ lzma2_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
if (options == NULL)
return LZMA_PROG_ERROR;
if (lz->coder == NULL) {
lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
if (lz->coder == NULL)
lzma_lzma2_coder *coder = lz->coder;
if (coder == NULL) {
coder = lzma_alloc(sizeof(lzma_lzma2_coder), allocator);
if (coder == NULL)
return LZMA_MEM_ERROR;
lz->coder = coder;
lz->code = &lzma2_encode;
lz->end = &lzma2_encoder_end;
lz->options_update = &lzma2_encoder_options_update;
lz->coder->lzma = NULL;
coder->lzma = NULL;
}
lz->coder->opt_cur = *(const lzma_options_lzma *)(options);
coder->opt_cur = *(const lzma_options_lzma *)(options);
lz->coder->sequence = SEQ_INIT;
lz->coder->need_properties = true;
lz->coder->need_state_reset = false;
lz->coder->need_dictionary_reset
= lz->coder->opt_cur.preset_dict == NULL
|| lz->coder->opt_cur.preset_dict_size == 0;
coder->sequence = SEQ_INIT;
coder->need_properties = true;
coder->need_state_reset = false;
coder->need_dictionary_reset
= coder->opt_cur.preset_dict == NULL
|| coder->opt_cur.preset_dict_size == 0;
// Initialize LZMA encoder
return_if_error(lzma_lzma_encoder_create(&lz->coder->lzma, allocator,
&lz->coder->opt_cur, lz_options));
return_if_error(lzma_lzma_encoder_create(&coder->lzma, allocator,
&coder->opt_cur, lz_options));
// Make sure that we will always have enough history available in
// case we need to use uncompressed chunks. They are used when the
@ -364,7 +371,7 @@ lzma_lzma2_encoder_memusage(const void *options)
if (lzma_mem == UINT64_MAX)
return UINT64_MAX;
return sizeof(lzma_coder) + lzma_mem;
return sizeof(lzma_lzma2_coder) + lzma_mem;
}

View file

@ -161,7 +161,7 @@ typedef struct {
} lzma_length_decoder;
struct lzma_coder_s {
typedef struct {
///////////////////
// Probabilities //
///////////////////
@ -277,14 +277,16 @@ struct lzma_coder_s {
/// If decoding a literal: match byte.
/// If decoding a match: length of the match.
uint32_t len;
};
} lzma_lzma1_decoder;
static lzma_ret
lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
const uint8_t *restrict in,
size_t *restrict in_pos, size_t in_size)
{
lzma_lzma1_decoder *restrict coder = coder_ptr;
////////////////////
// Initialization //
////////////////////
@ -840,23 +842,17 @@ lzma_decode(lzma_coder *restrict coder, lzma_dict *restrict dictptr,
static void
lzma_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size)
lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
{
lzma_lzma1_decoder *coder = coder_ptr;
coder->uncompressed_size = uncompressed_size;
}
/*
extern void
lzma_lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
{
// This is hack.
(*(lzma_coder **)(coder))->uncompressed_size = uncompressed_size;
}
*/
static void
lzma_decoder_reset(lzma_coder *coder, const void *opt)
lzma_decoder_reset(void *coder_ptr, const void *opt)
{
lzma_lzma1_decoder *coder = coder_ptr;
const lzma_options_lzma *options = opt;
// NOTE: We assume that lc/lp/pb are valid since they were
@ -941,7 +937,7 @@ lzma_lzma_decoder_create(lzma_lz_decoder *lz, const lzma_allocator *allocator,
const void *opt, lzma_lz_options *lz_options)
{
if (lz->coder == NULL) {
lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
lz->coder = lzma_alloc(sizeof(lzma_lzma1_decoder), allocator);
if (lz->coder == NULL)
return LZMA_MEM_ERROR;
@ -1014,7 +1010,8 @@ extern uint64_t
lzma_lzma_decoder_memusage_nocheck(const void *options)
{
const lzma_options_lzma *const opt = options;
return sizeof(lzma_coder) + lzma_lz_decoder_memusage(opt->dict_size);
return sizeof(lzma_lzma1_decoder)
+ lzma_lz_decoder_memusage(opt->dict_size);
}

View file

@ -43,7 +43,7 @@ literal_matched(lzma_range_encoder *rc, probability *subcoder,
static inline void
literal(lzma_coder *coder, lzma_mf *mf, uint32_t position)
literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
{
// Locate the literal byte to be encoded and the subcoder.
const uint8_t cur_byte = mf->buffer[
@ -140,7 +140,7 @@ length(lzma_range_encoder *rc, lzma_length_encoder *lc,
///////////
static inline void
match(lzma_coder *coder, const uint32_t pos_state,
match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
const uint32_t distance, const uint32_t len)
{
update_match(coder->state);
@ -187,7 +187,7 @@ match(lzma_coder *coder, const uint32_t pos_state,
////////////////////
static inline void
rep_match(lzma_coder *coder, const uint32_t pos_state,
rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
const uint32_t rep, const uint32_t len)
{
if (rep == 0) {
@ -231,7 +231,7 @@ rep_match(lzma_coder *coder, const uint32_t pos_state,
//////////
static void
encode_symbol(lzma_coder *coder, lzma_mf *mf,
encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
uint32_t back, uint32_t len, uint32_t position)
{
const uint32_t pos_state = position & coder->pos_mask;
@ -265,7 +265,7 @@ encode_symbol(lzma_coder *coder, lzma_mf *mf,
static bool
encode_init(lzma_coder *coder, lzma_mf *mf)
encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
{
assert(mf_position(mf) == 0);
@ -293,7 +293,7 @@ encode_init(lzma_coder *coder, lzma_mf *mf)
static void
encode_eopm(lzma_coder *coder, uint32_t position)
encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
{
const uint32_t pos_state = position & coder->pos_mask;
rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
@ -309,7 +309,7 @@ encode_eopm(lzma_coder *coder, uint32_t position)
extern lzma_ret
lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size, uint32_t limit)
{
@ -402,7 +402,7 @@ lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
static lzma_ret
lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
lzma_encode(void *coder, lzma_mf *restrict mf,
uint8_t *restrict out, size_t *restrict out_pos,
size_t out_size)
{
@ -473,7 +473,8 @@ length_encoder_reset(lzma_length_encoder *lencoder,
extern lzma_ret
lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options)
lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
const lzma_options_lzma *options)
{
if (!is_options_valid(options))
return LZMA_OPTIONS_ERROR;
@ -545,18 +546,18 @@ lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options)
extern lzma_ret
lzma_lzma_encoder_create(lzma_coder **coder_ptr,
lzma_lzma_encoder_create(void **coder_ptr,
const lzma_allocator *allocator,
const lzma_options_lzma *options, lzma_lz_options *lz_options)
{
// Allocate lzma_coder if it wasn't already allocated.
// Allocate lzma_lzma1_encoder if it wasn't already allocated.
if (*coder_ptr == NULL) {
*coder_ptr = lzma_alloc(sizeof(lzma_coder), allocator);
*coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
if (*coder_ptr == NULL)
return LZMA_MEM_ERROR;
}
lzma_coder *coder = *coder_ptr;
lzma_lzma1_encoder *coder = *coder_ptr;
// Set compression mode. We haven't validates the options yet,
// but it's OK here, since nothing bad happens with invalid
@ -636,7 +637,7 @@ lzma_lzma_encoder_memusage(const void *options)
if (lz_memusage == UINT64_MAX)
return UINT64_MAX;
return (uint64_t)(sizeof(lzma_coder)) + lz_memusage;
return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
}

View file

@ -17,6 +17,9 @@
#include "common.h"
typedef struct lzma_lzma1_encoder_s lzma_lzma1_encoder;
extern lzma_ret lzma_lzma_encoder_init(lzma_next_coder *next,
const lzma_allocator *allocator,
const lzma_filter_info *filters);
@ -36,16 +39,16 @@ extern bool lzma_lzma_lclppb_encode(
/// Initializes raw LZMA encoder; this is used by LZMA2.
extern lzma_ret lzma_lzma_encoder_create(
lzma_coder **coder_ptr, const lzma_allocator *allocator,
void **coder_ptr, const lzma_allocator *allocator,
const lzma_options_lzma *options, lzma_lz_options *lz_options);
/// Resets an already initialized LZMA encoder; this is used by LZMA2.
extern lzma_ret lzma_lzma_encoder_reset(
lzma_coder *coder, const lzma_options_lzma *options);
lzma_lzma1_encoder *coder, const lzma_options_lzma *options);
extern lzma_ret lzma_lzma_encode(lzma_coder *restrict coder,
extern lzma_ret lzma_lzma_encode(lzma_lzma1_encoder *restrict coder,
lzma_mf *restrict mf, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size,
uint32_t read_limit);

View file

@ -18,7 +18,8 @@
extern void
lzma_lzma_optimum_fast(lzma_coder *restrict coder, lzma_mf *restrict mf,
lzma_lzma_optimum_fast(lzma_lzma1_encoder *restrict coder,
lzma_mf *restrict mf,
uint32_t *restrict back_res, uint32_t *restrict len_res)
{
const uint32_t nice_len = mf->nice_len;

View file

@ -19,7 +19,7 @@
////////////
static uint32_t
get_literal_price(const lzma_coder *const coder, const uint32_t pos,
get_literal_price(const lzma_lzma1_encoder *const coder, const uint32_t pos,
const uint32_t prev_byte, const bool match_mode,
uint32_t match_byte, uint32_t symbol)
{
@ -65,7 +65,7 @@ get_len_price(const lzma_length_encoder *const lencoder,
static inline uint32_t
get_short_rep_price(const lzma_coder *const coder,
get_short_rep_price(const lzma_lzma1_encoder *const coder,
const lzma_lzma_state state, const uint32_t pos_state)
{
return rc_bit_0_price(coder->is_rep0[state])
@ -74,7 +74,7 @@ get_short_rep_price(const lzma_coder *const coder,
static inline uint32_t
get_pure_rep_price(const lzma_coder *const coder, const uint32_t rep_index,
get_pure_rep_price(const lzma_lzma1_encoder *const coder, const uint32_t rep_index,
const lzma_lzma_state state, uint32_t pos_state)
{
uint32_t price;
@ -99,7 +99,7 @@ get_pure_rep_price(const lzma_coder *const coder, const uint32_t rep_index,
static inline uint32_t
get_rep_price(const lzma_coder *const coder, const uint32_t rep_index,
get_rep_price(const lzma_lzma1_encoder *const coder, const uint32_t rep_index,
const uint32_t len, const lzma_lzma_state state,
const uint32_t pos_state)
{
@ -109,7 +109,7 @@ get_rep_price(const lzma_coder *const coder, const uint32_t rep_index,
static inline uint32_t
get_dist_len_price(const lzma_coder *const coder, const uint32_t dist,
get_dist_len_price(const lzma_lzma1_encoder *const coder, const uint32_t dist,
const uint32_t len, const uint32_t pos_state)
{
const uint32_t dist_state = get_dist_state(len);
@ -130,7 +130,7 @@ get_dist_len_price(const lzma_coder *const coder, const uint32_t dist,
static void
fill_dist_prices(lzma_coder *coder)
fill_dist_prices(lzma_lzma1_encoder *coder)
{
for (uint32_t dist_state = 0; dist_state < DIST_STATES; ++dist_state) {
@ -185,7 +185,7 @@ fill_dist_prices(lzma_coder *coder)
static void
fill_align_prices(lzma_coder *coder)
fill_align_prices(lzma_lzma1_encoder *coder)
{
for (uint32_t i = 0; i < ALIGN_SIZE; ++i)
coder->align_prices[i] = rc_bittree_reverse_price(
@ -221,7 +221,7 @@ make_short_rep(lzma_optimal *optimal)
static void
backward(lzma_coder *restrict coder, uint32_t *restrict len_res,
backward(lzma_lzma1_encoder *restrict coder, uint32_t *restrict len_res,
uint32_t *restrict back_res, uint32_t cur)
{
coder->opts_end_index = cur;
@ -269,7 +269,7 @@ backward(lzma_coder *restrict coder, uint32_t *restrict len_res,
//////////
static inline uint32_t
helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
helper1(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
uint32_t *restrict back_res, uint32_t *restrict len_res,
uint32_t position)
{
@ -441,7 +441,7 @@ helper1(lzma_coder *restrict coder, lzma_mf *restrict mf,
static inline uint32_t
helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
helper2(lzma_lzma1_encoder *coder, uint32_t *reps, const uint8_t *buf,
uint32_t len_end, uint32_t position, const uint32_t cur,
const uint32_t nice_len, const uint32_t buf_avail_full)
{
@ -797,7 +797,8 @@ helper2(lzma_coder *coder, uint32_t *reps, const uint8_t *buf,
extern void
lzma_lzma_optimum_normal(lzma_coder *restrict coder, lzma_mf *restrict mf,
lzma_lzma_optimum_normal(lzma_lzma1_encoder *restrict coder,
lzma_mf *restrict mf,
uint32_t *restrict back_res, uint32_t *restrict len_res,
uint32_t position)
{

View file

@ -2,6 +2,7 @@
//
/// \file lzma_encoder_presets.c
/// \brief Encoder presets
/// \note xz needs this even when only decoding is enabled.
//
// Author: Lasse Collin
//

View file

@ -69,7 +69,7 @@ typedef struct {
} lzma_optimal;
struct lzma_coder_s {
struct lzma_lzma1_encoder_s {
/// Range encoder
lzma_range_encoder rc;
@ -138,10 +138,10 @@ struct lzma_coder_s {
extern void lzma_lzma_optimum_fast(
lzma_coder *restrict coder, lzma_mf *restrict mf,
lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
uint32_t *restrict back_res, uint32_t *restrict len_res);
extern void lzma_lzma_optimum_normal(lzma_coder *restrict coder,
extern void lzma_lzma_optimum_normal(lzma_lzma1_encoder *restrict coder,
lzma_mf *restrict mf, uint32_t *restrict back_res,
uint32_t *restrict len_res, uint32_t position);

View file

@ -15,7 +15,7 @@
static size_t
arm_code(lzma_simple *simple lzma_attribute((__unused__)),
arm_code(void *simple lzma_attribute((__unused__)),
uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{

View file

@ -15,7 +15,7 @@
static size_t
armthumb_code(lzma_simple *simple lzma_attribute((__unused__)),
armthumb_code(void *simple lzma_attribute((__unused__)),
uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{

View file

@ -15,7 +15,7 @@
static size_t
ia64_code(lzma_simple *simple lzma_attribute((__unused__)),
ia64_code(void *simple lzma_attribute((__unused__)),
uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{

View file

@ -15,7 +15,7 @@
static size_t
powerpc_code(lzma_simple *simple lzma_attribute((__unused__)),
powerpc_code(void *simple lzma_attribute((__unused__)),
uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{

View file

@ -18,7 +18,7 @@
/// Copied or encodes/decodes more data to out[].
static lzma_ret
copy_or_code(lzma_coder *coder, const lzma_allocator *allocator,
copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
@ -55,7 +55,7 @@ copy_or_code(lzma_coder *coder, const lzma_allocator *allocator,
static size_t
call_filter(lzma_coder *coder, uint8_t *buffer, size_t size)
call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
{
const size_t filtered = coder->filter(coder->simple,
coder->now_pos, coder->is_encoder,
@ -66,11 +66,13 @@ call_filter(lzma_coder *coder, uint8_t *buffer, size_t size)
static lzma_ret
simple_code(lzma_coder *coder, const lzma_allocator *allocator,
simple_code(void *coder_ptr, const lzma_allocator *allocator,
const uint8_t *restrict in, size_t *restrict in_pos,
size_t in_size, uint8_t *restrict out,
size_t *restrict out_pos, size_t out_size, lzma_action action)
{
lzma_simple_coder *coder = coder_ptr;
// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
// in cases when the filter is able to filter everything. With most
// simple filters it can be done at offset that is a multiple of 2,
@ -198,8 +200,9 @@ simple_code(lzma_coder *coder, const lzma_allocator *allocator,
static void
simple_coder_end(lzma_coder *coder, const lzma_allocator *allocator)
simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
{
lzma_simple_coder *coder = coder_ptr;
lzma_next_end(&coder->next, allocator);
lzma_free(coder->simple, allocator);
lzma_free(coder, allocator);
@ -208,10 +211,12 @@ simple_coder_end(lzma_coder *coder, const lzma_allocator *allocator)
static lzma_ret
simple_coder_update(lzma_coder *coder, const lzma_allocator *allocator,
simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
const lzma_filter *filters_null lzma_attribute((__unused__)),
const lzma_filter *reversed_filters)
{
lzma_simple_coder *coder = coder_ptr;
// No update support, just call the next filter in the chain.
return lzma_next_filter_update(
&coder->next, allocator, reversed_filters + 1);
@ -221,57 +226,57 @@ simple_coder_update(lzma_coder *coder, const lzma_allocator *allocator,
extern lzma_ret
lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
const lzma_filter_info *filters,
size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
size_t (*filter)(void *simple, uint32_t now_pos,
bool is_encoder, uint8_t *buffer, size_t size),
size_t simple_size, size_t unfiltered_max,
uint32_t alignment, bool is_encoder)
{
// Allocate memory for the lzma_coder structure if needed.
if (next->coder == NULL) {
// Allocate memory for the lzma_simple_coder structure if needed.
lzma_simple_coder *coder = next->coder;
if (coder == NULL) {
// Here we allocate space also for the temporary buffer. We
// need twice the size of unfiltered_max, because then it
// is always possible to filter at least unfiltered_max bytes
// more data in coder->buffer[] if it can be filled completely.
next->coder = lzma_alloc(sizeof(lzma_coder)
coder = lzma_alloc(sizeof(lzma_simple_coder)
+ 2 * unfiltered_max, allocator);
if (next->coder == NULL)
if (coder == NULL)
return LZMA_MEM_ERROR;
next->coder = coder;
next->code = &simple_code;
next->end = &simple_coder_end;
next->update = &simple_coder_update;
next->coder->next = LZMA_NEXT_CODER_INIT;
next->coder->filter = filter;
next->coder->allocated = 2 * unfiltered_max;
coder->next = LZMA_NEXT_CODER_INIT;
coder->filter = filter;
coder->allocated = 2 * unfiltered_max;
// Allocate memory for filter-specific data structure.
if (simple_size > 0) {
next->coder->simple = lzma_alloc(
simple_size, allocator);
if (next->coder->simple == NULL)
coder->simple = lzma_alloc(simple_size, allocator);
if (coder->simple == NULL)
return LZMA_MEM_ERROR;
} else {
next->coder->simple = NULL;
coder->simple = NULL;
}
}
if (filters[0].options != NULL) {
const lzma_options_bcj *simple = filters[0].options;
next->coder->now_pos = simple->start_offset;
if (next->coder->now_pos & (alignment - 1))
coder->now_pos = simple->start_offset;
if (coder->now_pos & (alignment - 1))
return LZMA_OPTIONS_ERROR;
} else {
next->coder->now_pos = 0;
coder->now_pos = 0;
}
// Reset variables.
next->coder->is_encoder = is_encoder;
next->coder->end_was_reached = false;
next->coder->pos = 0;
next->coder->filtered = 0;
next->coder->size = 0;
coder->is_encoder = is_encoder;
coder->end_was_reached = false;
coder->pos = 0;
coder->filtered = 0;
coder->size = 0;
return lzma_next_filter_init(
&next->coder->next, allocator, filters + 1);
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
}

View file

@ -16,9 +16,7 @@
#include "simple_coder.h"
typedef struct lzma_simple_s lzma_simple;
struct lzma_coder_s {
typedef struct {
/// Next filter in the chain
lzma_next_coder next;
@ -33,12 +31,12 @@ struct lzma_coder_s {
/// Pointer to filter-specific function, which does
/// the actual filtering.
size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
size_t (*filter)(void *simple, uint32_t now_pos,
bool is_encoder, uint8_t *buffer, size_t size);
/// Pointer to filter-specific data, or NULL if filter doesn't need
/// any extra data.
lzma_simple *simple;
void *simple;
/// The lowest 32 bits of the current position in the data. Most
/// filters need this to do conversions between absolute and relative
@ -62,13 +60,13 @@ struct lzma_coder_s {
/// Temporary buffer
uint8_t buffer[];
};
} lzma_simple_coder;
extern lzma_ret lzma_simple_coder_init(lzma_next_coder *next,
const lzma_allocator *allocator,
const lzma_filter_info *filters,
size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
size_t (*filter)(void *simple, uint32_t now_pos,
bool is_encoder, uint8_t *buffer, size_t size),
size_t simple_size, size_t unfiltered_max,
uint32_t alignment, bool is_encoder);

View file

@ -15,7 +15,7 @@
static size_t
sparc_code(lzma_simple *simple lzma_attribute((__unused__)),
sparc_code(void *simple lzma_attribute((__unused__)),
uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{

View file

@ -17,14 +17,14 @@
#define Test86MSByte(b) ((b) == 0 || (b) == 0xFF)
struct lzma_simple_s {
typedef struct {
uint32_t prev_mask;
uint32_t prev_pos;
};
} lzma_simple_x86;
static size_t
x86_code(lzma_simple *simple, uint32_t now_pos, bool is_encoder,
x86_code(void *simple_ptr, uint32_t now_pos, bool is_encoder,
uint8_t *buffer, size_t size)
{
static const bool MASK_TO_ALLOWED_STATUS[8]
@ -33,6 +33,7 @@ x86_code(lzma_simple *simple, uint32_t now_pos, bool is_encoder,
static const uint32_t MASK_TO_BIT_NUMBER[8]
= { 0, 1, 2, 2, 3, 3, 3, 3 };
lzma_simple_x86 *simple = simple_ptr;
uint32_t prev_mask = simple->prev_mask;
uint32_t prev_pos = simple->prev_pos;
@ -127,11 +128,13 @@ x86_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
const lzma_filter_info *filters, bool is_encoder)
{
const lzma_ret ret = lzma_simple_coder_init(next, allocator, filters,
&x86_code, sizeof(lzma_simple), 5, 1, is_encoder);
&x86_code, sizeof(lzma_simple_x86), 5, 1, is_encoder);
if (ret == LZMA_OK) {
next->coder->simple->prev_mask = 0;
next->coder->simple->prev_pos = (uint32_t)(-5);
lzma_simple_coder *coder = next->coder;
lzma_simple_x86 *simple = coder->simple;
simple->prev_mask = 0;
simple->prev_pos = (uint32_t)(-5);
}
return ret;

View file

@ -635,6 +635,22 @@ args_parse(args_info *args, int argc, char **argv)
// Then from the command line
parse_real(args, argc, argv);
// If encoder or decoder support was omitted at build time,
// show an error now so that the rest of the code can rely on
// that whatever is in opt_mode is also supported.
#ifndef HAVE_ENCODERS
if (opt_mode == MODE_COMPRESS)
message_fatal(_("Compression support was disabled "
"at build time"));
#endif
#ifndef HAVE_DECODERS
// Even MODE_LIST cannot work without decoder support so MODE_COMPRESS
// is the only valid choice.
if (opt_mode != MODE_COMPRESS)
message_fatal(_("Decompression support was disabled "
"at build time"));
#endif
// Never remove the source file when the destination is not on disk.
// In test mode the data is written nowhere, but setting opt_stdout
// will make the rest of the code behave well.

View file

@ -51,7 +51,7 @@ static lzma_check check;
/// This becomes false if the --check=CHECK option is used.
static bool check_default = true;
#ifdef MYTHREAD_ENABLED
#if defined(HAVE_ENCODERS) && defined(MYTHREAD_ENABLED)
static lzma_mt mt_options = {
.flags = 0,
.timeout = 300,
@ -221,9 +221,10 @@ coder_set_compression_settings(void)
// Get the memory usage. Note that if --format=raw was used,
// we can be decompressing.
const uint64_t memory_limit = hardware_memlimit_get(opt_mode);
uint64_t memory_usage;
uint64_t memory_usage = UINT64_MAX;
if (opt_mode == MODE_COMPRESS) {
#ifdef MYTHREAD_ENABLED
#ifdef HAVE_ENCODERS
# ifdef MYTHREAD_ENABLED
if (opt_format == FORMAT_XZ && hardware_threads_get() > 1) {
mt_options.threads = hardware_threads_get();
mt_options.block_size = opt_block_size;
@ -235,12 +236,15 @@ coder_set_compression_settings(void)
" threads."),
mt_options.threads);
} else
#endif
# endif
{
memory_usage = lzma_raw_encoder_memusage(filters);
}
#endif
} else {
#ifdef HAVE_DECODERS
memory_usage = lzma_raw_decoder_memusage(filters);
#endif
}
if (memory_usage == UINT64_MAX)
@ -248,7 +252,11 @@ coder_set_compression_settings(void)
// Print memory usage info before possible dictionary
// size auto-adjusting.
//
// NOTE: If only encoder support was built, we cannot show the
// what the decoder memory usage will be.
message_mem_needed(V_DEBUG, memory_usage);
#ifdef HAVE_DECODERS
if (opt_mode == MODE_COMPRESS) {
const uint64_t decmem = lzma_raw_decoder_memusage(filters);
if (decmem != UINT64_MAX)
@ -256,6 +264,7 @@ coder_set_compression_settings(void)
"%s MiB of memory."), uint64_to_str(
round_up_to_mib(decmem), 0));
}
#endif
if (memory_usage <= memory_limit)
return;
@ -268,7 +277,8 @@ coder_set_compression_settings(void)
assert(opt_mode == MODE_COMPRESS);
#ifdef MYTHREAD_ENABLED
#ifdef HAVE_ENCODERS
# ifdef MYTHREAD_ENABLED
if (opt_format == FORMAT_XZ && mt_options.threads > 1) {
// Try to reduce the number of threads before
// adjusting the compression settings down.
@ -295,7 +305,7 @@ coder_set_compression_settings(void)
uint64_to_str(round_up_to_mib(
memory_limit), 2));
}
#endif
# endif
if (memory_usage <= memory_limit)
return;
@ -349,11 +359,13 @@ coder_set_compression_settings(void)
uint64_to_str(orig_dict_size >> 20, 0),
uint64_to_str(opt->dict_size >> 20, 1),
uint64_to_str(round_up_to_mib(memory_limit), 2));
#endif
return;
}
#ifdef HAVE_DECODERS
/// Return true if the data in in_buf seems to be in the .xz format.
static bool
is_format_xz(void)
@ -411,6 +423,7 @@ is_format_lzma(void)
return true;
}
#endif
/// Detect the input file type (for now, this done only when decompressing),
@ -424,6 +437,7 @@ coder_init(file_pair *pair)
lzma_ret ret = LZMA_PROG_ERROR;
if (opt_mode == MODE_COMPRESS) {
#ifdef HAVE_ENCODERS
switch (opt_format) {
case FORMAT_AUTO:
// args.c ensures this.
@ -431,12 +445,12 @@ coder_init(file_pair *pair)
break;
case FORMAT_XZ:
#ifdef MYTHREAD_ENABLED
# ifdef MYTHREAD_ENABLED
if (hardware_threads_get() > 1)
ret = lzma_stream_encoder_mt(
&strm, &mt_options);
else
#endif
# endif
ret = lzma_stream_encoder(
&strm, filters, check);
break;
@ -449,7 +463,9 @@ coder_init(file_pair *pair)
ret = lzma_raw_encoder(&strm, filters);
break;
}
#endif
} else {
#ifdef HAVE_DECODERS
uint32_t flags = 0;
// It seems silly to warn about unsupported check if the
@ -531,6 +547,7 @@ coder_init(file_pair *pair)
strm.avail_out = 0;
ret = lzma_code(&strm, LZMA_RUN);
}
#endif
}
if (ret != LZMA_OK) {

View file

@ -23,10 +23,20 @@ static bool warn_fchown;
#if defined(HAVE_FUTIMES) || defined(HAVE_FUTIMESAT) || defined(HAVE_UTIMES)
# include <sys/time.h>
#elif defined(HAVE__FUTIME)
# include <sys/utime.h>
#elif defined(HAVE_UTIME)
# include <utime.h>
#endif
#ifdef HAVE_CAPSICUM
# ifdef HAVE_SYS_CAPSICUM_H
# include <sys/capsicum.h>
# else
# include <sys/capability.h>
# endif
#endif
#include "tuklib_open_stdxxx.h"
#ifndef O_BINARY
@ -37,6 +47,14 @@ static bool warn_fchown;
# define O_NOCTTY 0
#endif
// Using this macro to silence a warning from gcc -Wlogical-op.
#if EAGAIN == EWOULDBLOCK
# define IS_EAGAIN_OR_EWOULDBLOCK(e) ((e) == EAGAIN)
#else
# define IS_EAGAIN_OR_EWOULDBLOCK(e) \
((e) == EAGAIN || (e) == EWOULDBLOCK)
#endif
typedef enum {
IO_WAIT_MORE, // Reading or writing is possible.
@ -48,6 +66,11 @@ typedef enum {
/// If true, try to create sparse files when decompressing.
static bool try_sparse = true;
#ifdef ENABLE_SANDBOX
/// True if the conditions for sandboxing (described in main()) have been met.
static bool sandbox_allowed = false;
#endif
#ifndef TUKLIB_DOSLIKE
/// File status flags of standard input. This is used by io_open_src()
/// and io_close_src().
@ -132,6 +155,73 @@ io_no_sparse(void)
}
#ifdef ENABLE_SANDBOX
extern void
io_allow_sandbox(void)
{
sandbox_allowed = true;
return;
}
/// Enables operating-system-specific sandbox if it is possible.
/// src_fd is the file descriptor of the input file.
static void
io_sandbox_enter(int src_fd)
{
if (!sandbox_allowed) {
message(V_DEBUG, _("Sandbox is disabled due "
"to incompatible command line arguments"));
return;
}
const char dummy_str[] = "x";
// Try to ensure that both libc and xz locale files have been
// loaded when NLS is enabled.
snprintf(NULL, 0, "%s%s", _(dummy_str), strerror(EINVAL));
// Try to ensure that iconv data files needed for handling multibyte
// characters have been loaded. This is needed at least with glibc.
tuklib_mbstr_width(dummy_str, NULL);
#ifdef HAVE_CAPSICUM
// Capsicum needs FreeBSD 10.0 or later.
cap_rights_t rights;
if (cap_rights_limit(src_fd, cap_rights_init(&rights,
CAP_EVENT, CAP_FCNTL, CAP_LOOKUP, CAP_READ, CAP_SEEK)))
goto error;
if (cap_rights_limit(STDOUT_FILENO, cap_rights_init(&rights,
CAP_EVENT, CAP_FCNTL, CAP_FSTAT, CAP_LOOKUP,
CAP_WRITE, CAP_SEEK)))
goto error;
if (cap_rights_limit(user_abort_pipe[0], cap_rights_init(&rights,
CAP_EVENT)))
goto error;
if (cap_rights_limit(user_abort_pipe[1], cap_rights_init(&rights,
CAP_WRITE)))
goto error;
if (cap_enter())
goto error;
#else
# error ENABLE_SANDBOX is defined but no sandboxing method was found.
#endif
message(V_DEBUG, _("Sandbox was successfully enabled"));
return;
error:
message(V_DEBUG, _("Failed to enable the sandbox"));
}
#endif // ENABLE_SANDBOX
#ifndef TUKLIB_DOSLIKE
/// \brief Waits for input or output to become available or for a signal
///
@ -369,6 +459,22 @@ io_copy_attrs(const file_pair *pair)
(void)utimes(pair->dest_name, tv);
# endif
#elif defined(HAVE__FUTIME)
// Use one-second precision with Windows-specific _futime().
// We could use utime() too except that for some reason the
// timestamp will get reset at close(). With _futime() it works.
// This struct cannot be const as _futime() takes a non-const pointer.
struct _utimbuf buf = {
.actime = pair->src_st.st_atime,
.modtime = pair->src_st.st_mtime,
};
// Avoid warnings.
(void)atime_nsec;
(void)mtime_nsec;
(void)_futime(pair->dest_fd, &buf);
#elif defined(HAVE_UTIME)
// Use one-second precision. utime() doesn't support using file
// descriptor either. Some systems have broken utime() prototype
@ -649,6 +755,11 @@ io_open_src(const char *src_name)
const bool error = io_open_src_real(&pair);
signals_unblock();
#ifdef ENABLE_SANDBOX
if (!error)
io_sandbox_enter(pair.src_fd);
#endif
return error ? NULL : &pair;
}
@ -675,23 +786,22 @@ io_close_src(file_pair *pair, bool success)
#endif
if (pair->src_fd != STDIN_FILENO && pair->src_fd != -1) {
#ifdef TUKLIB_DOSLIKE
(void)close(pair->src_fd);
#endif
// If we are going to unlink(), do it before closing the file.
// This way there's no risk that someone replaces the file and
// happens to get same inode number, which would make us
// unlink() wrong file.
// Close the file before possibly unlinking it. On DOS-like
// systems this is always required since unlinking will fail
// if the file is open. On POSIX systems it usually works
// to unlink open files, but in some cases it doesn't and
// one gets EBUSY in errno.
//
// NOTE: DOS-like systems are an exception to this, because
// they don't allow unlinking files that are open. *sigh*
// xz 5.2.2 and older unlinked the file before closing it
// (except on DOS-like systems). The old code didn't handle
// EBUSY and could fail e.g. on some CIFS shares. The
// advantage of unlinking before closing is negligible
// (avoids a race between close() and stat()/lstat() and
// unlink()), so let's keep this simple.
(void)close(pair->src_fd);
if (success && !opt_keep_original)
io_unlink(pair->src_name, &pair->src_st);
#ifndef TUKLIB_DOSLIKE
(void)close(pair->src_fd);
#endif
}
return;
@ -1018,7 +1128,7 @@ io_read(file_pair *pair, io_buf *buf_union, size_t size)
}
#ifndef TUKLIB_DOSLIKE
if (errno == EAGAIN || errno == EWOULDBLOCK) {
if (IS_EAGAIN_OR_EWOULDBLOCK(errno)) {
const io_wait_ret ret = io_wait(pair,
mytime_get_flush_timeout(),
true);
@ -1106,7 +1216,7 @@ io_write_buf(file_pair *pair, const uint8_t *buf, size_t size)
}
#ifndef TUKLIB_DOSLIKE
if (errno == EAGAIN || errno == EWOULDBLOCK) {
if (IS_EAGAIN_OR_EWOULDBLOCK(errno)) {
if (io_wait(pair, -1, false) == IO_WAIT_MORE)
continue;

View file

@ -80,6 +80,12 @@ extern void io_write_to_user_abort_pipe(void);
extern void io_no_sparse(void);
#ifdef ENABLE_SANDBOX
/// \brief main() calls this if conditions for sandboxing have been met.
extern void io_allow_sandbox(void);
#endif
/// \brief Open the source file
extern file_pair *io_open_src(const char *src_name);

View file

@ -205,10 +205,31 @@ main(int argc, char **argv)
if (opt_mode != MODE_LIST)
signals_init();
#ifdef ENABLE_SANDBOX
// Set a flag that sandboxing is allowed if all these are true:
// - --files or --files0 wasn't used.
// - There is exactly one input file or we are reading from stdin.
// - We won't create any files: output goes to stdout or --test
// or --list was used. Note that --test implies opt_stdout = true
// but --list doesn't.
//
// This is obviously not ideal but it was easy to implement and
// it covers the most common use cases.
//
// TODO: Make sandboxing work for other situations too.
if (args.files_name == NULL && args.arg_count == 1
&& (opt_stdout || strcmp("-", args.arg_names[0]) == 0
|| opt_mode == MODE_LIST))
io_allow_sandbox();
#endif
// coder_run() handles compression, decompression, and testing.
// list_file() is for --list.
void (*run)(const char *filename) = opt_mode == MODE_LIST
? &list_file : &coder_run;
void (*run)(const char *filename) = &coder_run;
#ifdef HAVE_DECODERS
if (opt_mode == MODE_LIST)
run = &list_file;
#endif
// Process the files given on the command line. Note that if no names
// were given, args_parse() gave us a fake "-" filename.
@ -267,6 +288,7 @@ main(int argc, char **argv)
(void)fclose(args.files_file);
}
#ifdef HAVE_DECODERS
// All files have now been handled. If in --list mode, display
// the totals before exiting. We don't have signal handlers
// enabled in --list mode, so we don't need to check user_abort.
@ -274,6 +296,7 @@ main(int argc, char **argv)
assert(!user_abort);
list_totals();
}
#endif
#ifndef NDEBUG
coder_free();

View file

@ -45,6 +45,10 @@
# define STDERR_FILENO (fileno(stderr))
#endif
#ifdef HAVE_CAPSICUM
# define ENABLE_SANDBOX 1
#endif
#include "main.h"
#include "mytime.h"
#include "coder.h"
@ -56,4 +60,7 @@
#include "signals.h"
#include "suffix.h"
#include "util.h"
#include "list.h"
#ifdef HAVE_DECODERS
# include "list.h"
#endif

View file

@ -25,17 +25,20 @@
/* Define to 1 if you have the <byteswap.h> header file. */
/* #undef HAVE_BYTESWAP_H */
/* Define to 1 if Capsicum is available. */
/* #undef HAVE_CAPSICUM */
/* Define to 1 if the system has the type `CC_SHA256_CTX'. */
/* #undef HAVE_CC_SHA256_CTX */
/* Define to 1 if you have the `CC_SHA256_Init' function. */
/* #undef HAVE_CC_SHA256_INIT */
/* Define to 1 if you have the MacOS X function CFLocaleCopyCurrent in the
/* Define to 1 if you have the Mac OS X function CFLocaleCopyCurrent in the
CoreFoundation framework. */
/* #undef HAVE_CFLOCALECOPYCURRENT */
/* Define to 1 if you have the MacOS X function CFPreferencesCopyAppValue in
/* Define to 1 if you have the Mac OS X function CFPreferencesCopyAppValue in
the CoreFoundation framework. */
/* #undef HAVE_CFPREFERENCESCOPYAPPVALUE */
@ -67,6 +70,9 @@
to 0 if you don't. */
#define HAVE_DECL_PROGRAM_INVOCATION_NAME 0
/* Define to 1 if any of HAVE_DECODER_foo have been defined. */
#define HAVE_DECODERS 1
/* Define to 1 if arm decoder is enabled. */
#define HAVE_DECODER_ARM 1
@ -97,6 +103,9 @@
/* Define to 1 if you have the <dlfcn.h> header file. */
#define HAVE_DLFCN_H 1
/* Define to 1 if any of HAVE_ENCODER_foo have been defined. */
#define HAVE_ENCODERS 1
/* Define to 1 if arm encoder is enabled. */
#define HAVE_ENCODER_ARM 1
@ -182,9 +191,6 @@
/* Define to 1 to enable hc4 match finder. */
#define HAVE_MF_HC4 1
/* Define to 1 if you have the <minix/sha2.h> header file. */
/* #undef HAVE_MINIX_SHA2_H */
/* Define to 1 if getopt.h declares extern int optreset. */
#define HAVE_OPTRESET 1
@ -254,6 +260,9 @@
/* Define to 1 if you have the <sys/byteorder.h> header file. */
/* #undef HAVE_SYS_BYTEORDER_H */
/* Define to 1 if you have the <sys/capsicum.h> header file. */
/* #undef HAVE_SYS_CAPSICUM_H */
/* Define to 1 if you have the <sys/endian.h> header file. */
#define HAVE_SYS_ENDIAN_H 1
@ -291,6 +300,9 @@
/* Define to 1 if the system has the type `_Bool'. */
#define HAVE__BOOL 1
/* Define to 1 if you have the `_futime' function. */
/* #undef HAVE__FUTIME */
/* Define to 1 if _mm_movemask_epi8 is available. */
#if defined(__FreeBSD__) && defined(__amd64__)
#define HAVE__MM_MOVEMASK_EPI8 1
@ -323,7 +335,7 @@
#define PACKAGE_NAME "XZ Utils"
/* Define to the full name and version of this package. */
#define PACKAGE_STRING "XZ Utils 5.2.2"
#define PACKAGE_STRING "XZ Utils 5.2.3"
/* Define to the one symbol short name of this package. */
#define PACKAGE_TARNAME "xz"
@ -332,7 +344,7 @@
#define PACKAGE_URL "http://tukaani.org/xz/"
/* Define to the version of this package. */
#define PACKAGE_VERSION "5.2.2"
#define PACKAGE_VERSION "5.2.3"
/* Define to necessary symbol if this constant uses a non-standard name on
your system. */
@ -352,6 +364,10 @@
pstat_getdynamic(). */
/* #undef TUKLIB_CPUCORES_PSTAT_GETDYNAMIC */
/* Define to 1 if the number of available CPU cores can be detected with
sched_getaffinity() */
/* #undef TUKLIB_CPUCORES_SCHED_GETAFFINITY */
/* Define to 1 if the number of available CPU cores can be detected with
sysconf(_SC_NPROCESSORS_ONLN) or sysconf(_SC_NPROC_ONLN). */
/* #undef TUKLIB_CPUCORES_SYSCONF */
@ -416,7 +432,7 @@
/* Version number of package */
#define VERSION "5.2.2"
#define VERSION "5.2.3"
/* Define WORDS_BIGENDIAN to 1 if your processor stores words with the most
significant byte first (like Motorola and SPARC, unlike Intel). */