Implement the SLIST and the STAILQ macros. This gives a program all the

aesthetics of using the 4.4 queue macros without paying undo space or time
in scenartios where a singly-linked list works fine.

From queue.h:
/*
 * A singly-linked list is headed by a single forward pointer. The elements
 * are singly linked for minimum space and pointer manipulation overhead at
 * the expense of O(n) removal for arbitrary elements. New elements can be
 * added to the list after an existing element or at the head of the list.
 * Elements being removed from the head of the list should use the explicit
 * macro for this purpose for optimum efficiency. A singly-linked list may
 * only be traversed in the forward direction.  Singly-linked lists are ideal
 * for applications with large datasets and few or no removals or for
 * implementing a LIFO queue.
 *
 * A singly-linked tail queue is headed by a pair of pointers, one to the
 * head of the list and the other to the tail of the list. The elements are
 * singly linked for minimum space and pointer manipulation overhead at the
 * expense of O(n) removal for arbitrary elements. New elements can be added
 * to the list after an existing element, at the head of the list, or at the
 * end of the list. Elements being removed from the head of the tail queue
 * should use the explicit macro for this purpose for optimum efficiency.
 * A singly-linked tail queue may only be traversed in the forward direction.
 * Singly-linked tail queues are ideal for applications with large datasets
 * and few or no removals or for implementing a FIFO queue.
 */
This commit is contained in:
Justin T. Gibbs 1996-03-31 03:21:45 +00:00
parent ef6653eddb
commit 088b8b1d26
Notes: svn2git 2020-12-20 02:59:44 +00:00
svn path=/head/; revision=14940

View file

@ -31,15 +31,36 @@
* SUCH DAMAGE.
*
* @(#)queue.h 8.5 (Berkeley) 8/20/94
* $Id: queue.h,v 1.7 1996/02/24 10:58:08 hsu Exp $
* $Id: queue.h,v 1.7 1996/03/11 02:14:38 hsu Exp $
*/
#ifndef _SYS_QUEUE_H_
#define _SYS_QUEUE_H_
/*
* This file defines three types of data structures: lists, tail queues,
* and circular queues.
* This file defines five types of data structures: singly-linked lists,
* slingly-linked tail queues, lists, tail queues, and circular queues.
*
* A singly-linked list is headed by a single forward pointer. The elements
* are singly linked for minimum space and pointer manipulation overhead at
* the expense of O(n) removal for arbitrary elements. New elements can be
* added to the list after an existing element or at the head of the list.
* Elements being removed from the head of the list should use the explicit
* macro for this purpose for optimum efficiency. A singly-linked list may
* only be traversed in the forward direction. Singly-linked lists are ideal
* for applications with large datasets and few or no removals or for
* implementing a LIFO queue.
*
* A singly-linked tail queue is headed by a pair of pointers, one to the
* head of the list and the other to the tail of the list. The elements are
* singly linked for minimum space and pointer manipulation overhead at the
* expense of O(n) removal for arbitrary elements. New elements can be added
* to the list after an existing element, at the head of the list, or at the
* end of the list. Elements being removed from the head of the tail queue
* should use the explicit macro for this purpose for optimum efficiency.
* A singly-linked tail queue may only be traversed in the forward direction.
* Singly-linked tail queues are ideal for applications with large datasets
* and few or no removals or for implementing a FIFO queue.
*
* A list is headed by a single forward pointer (or an array of forward
* pointers for a hash table header). The elements are doubly linked
@ -66,6 +87,113 @@
* For details on the use of these macros, see the queue(3) manual page.
*/
/*
* Singly-linked List definitions.
*/
#define SLIST_HEAD(name, type) \
struct name { \
struct type *slh_first; /* first element */ \
}
#define SLIST_ENTRY(type) \
struct { \
struct type *sle_next; /* next element */ \
}
/*
* Singly-linked List functions.
*/
#define SLIST_INIT(head) { \
(head)->slh_first = NULL; \
}
#define SLIST_INSERT_AFTER(slistelm, elm, field) { \
(elm)->field.sle_next = (slistelm)->field.sle_next; \
(slistelm)->field.sle_next = (elm); \
}
#define SLIST_INSERT_HEAD(head, elm, field) { \
(elm)->field.sle_next = (head)->slh_first; \
(head)->slh_first = (elm); \
}
#define SLIST_REMOVE_HEAD(head, field) { \
(head)->slh_first = (head)->slh_first->field.sle_next; \
}
#define SLIST_REMOVE(head, elm, type, field) { \
if ((head)->slh_first == (elm)) { \
SLIST_REMOVE_HEAD((head), field); \
} \
else { \
struct type *curelm = (head)->slh_first; \
while( curelm->field.sle_next != (elm) ) \
curelm = curelm->field.sle_next; \
curelm->field.sle_next = \
curelm->field.sle_next->field.sle_next; \
} \
}
/*
* Singly-linked Tail queue definitions.
*/
#define STAILQ_HEAD(name, type) \
struct name { \
struct type *stqh_first;/* first element */ \
struct type **stqh_last;/* addr of last next element */ \
}
#define STAILQ_ENTRY(type) \
struct { \
struct type *stqe_next; /* next element */ \
}
/*
* Singly-linked Tail queue functions.
*/
#define STAILQ_INIT(head) { \
(head)->stqh_first = NULL; \
(head)->stqh_last = &(head)->stqh_first; \
}
#define STAILQ_INSERT_HEAD(head, elm, field) { \
if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
(head)->stqh_last = &(elm)->field.stqe_next; \
(head)->stqh_first = (elm); \
}
#define STAILQ_INSERT_TAIL(head, elm, field) { \
(elm)->field.stqe_next = NULL; \
*(head)->stqh_last = (elm); \
(head)->stqh_last = &(elm)->field.stqe_next; \
}
#define STAILQ_INSERT_AFTER(head, tqelm, elm, field) { \
if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
(head)->stqh_last = &(elm)->field.stqe_next; \
(tqelm)->field.stqe_next = (elm); \
}
#define STAILQ_REMOVE_HEAD(head, field) { \
if (((head)->stqh_first = \
(head)->stqh_first->field.stqe_next) == NULL) \
(head)->stqh_last = &(head)->stqh_first; \
}
#define STAILQ_REMOVE(head, elm, type, field) { \
if ((head)->stqh_first == (elm)) { \
STAILQ_REMOVE_HEAD(head, field); \
} \
else { \
struct type *curelm = (head)->stqh_first; \
while( curelm->field.stqe_next != (elm) ) \
curelm = curelm->field.stqe_next; \
if((curelm->field.stqe_next = \
curelm->field.stqe_next->field.stqe_next) == NULL) \
(head)->stqh_last = &(curelm)->field.stqe_next; \
} \
}
/*
* List definitions.
*/