freebsd-src/contrib/gcc/combine.c

11104 lines
371 KiB
C
Raw Normal View History

/* Optimize by combining instructions for GNU compiler.
Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This module is essentially the "combiner" phase of the U. of Arizona
Portable Optimizer, but redone to work on our list-structured
representation for RTL instead of their string representation.
The LOG_LINKS of each insn identify the most recent assignment
to each REG used in the insn. It is a list of previous insns,
each of which contains a SET for a REG that is used in this insn
and not used or set in between. LOG_LINKs never cross basic blocks.
They were set up by the preceding pass (lifetime analysis).
We try to combine each pair of insns joined by a logical link.
We also try to combine triples of insns A, B and C when
C has a link back to B and B has a link back to A.
LOG_LINKS does not have links for use of the CC0. They don't
need to, because the insn that sets the CC0 is always immediately
before the insn that tests it. So we always regard a branch
insn as having a logical link to the preceding insn. The same is true
for an insn explicitly using CC0.
We check (with use_crosses_set_p) to avoid combining in such a way
as to move a computation to a place where its value would be different.
Combination is done by mathematically substituting the previous
insn(s) values for the regs they set into the expressions in
the later insns that refer to these regs. If the result is a valid insn
for our target machine, according to the machine description,
we install it, delete the earlier insns, and update the data flow
information (LOG_LINKS and REG_NOTES) for what we did.
There are a few exceptions where the dataflow information created by
flow.c aren't completely updated:
- reg_live_length is not updated
- reg_n_refs is not adjusted in the rare case when a register is
no longer required in a computation
- there are extremely rare cases (see distribute_regnotes) when a
REG_DEAD note is lost
- a LOG_LINKS entry that refers to an insn with multiple SETs may be
removed because there is no way to know which register it was
linking
To simplify substitution, we combine only when the earlier insn(s)
consist of only a single assignment. To simplify updating afterward,
we never combine when a subroutine call appears in the middle.
Since we do not represent assignments to CC0 explicitly except when that
is all an insn does, there is no LOG_LINKS entry in an insn that uses
the condition code for the insn that set the condition code.
Fortunately, these two insns must be consecutive.
Therefore, every JUMP_INSN is taken to have an implicit logical link
to the preceding insn. This is not quite right, since non-jumps can
also use the condition code; but in practice such insns would not
combine anyway. */
#include "config.h"
#ifdef __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
/* Must precede rtl.h for FFS. */
#include <stdio.h>
#include "rtl.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "expr.h"
#include "basic-block.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "insn-attr.h"
#include "recog.h"
#include "real.h"
/* It is not safe to use ordinary gen_lowpart in combine.
Use gen_lowpart_for_combine instead. See comments there. */
#define gen_lowpart dont_use_gen_lowpart_you_dummy
/* Number of attempts to combine instructions in this function. */
static int combine_attempts;
/* Number of attempts that got as far as substitution in this function. */
static int combine_merges;
/* Number of instructions combined with added SETs in this function. */
static int combine_extras;
/* Number of instructions combined in this function. */
static int combine_successes;
/* Totals over entire compilation. */
static int total_attempts, total_merges, total_extras, total_successes;
/* Define a default value for REVERSIBLE_CC_MODE.
We can never assume that a condition code mode is safe to reverse unless
the md tells us so. */
#ifndef REVERSIBLE_CC_MODE
#define REVERSIBLE_CC_MODE(MODE) 0
#endif
/* Vector mapping INSN_UIDs to cuids.
The cuids are like uids but increase monotonically always.
Combine always uses cuids so that it can compare them.
But actually renumbering the uids, which we used to do,
proves to be a bad idea because it makes it hard to compare
the dumps produced by earlier passes with those from later passes. */
static int *uid_cuid;
static int max_uid_cuid;
/* Get the cuid of an insn. */
#define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid_cuid \
? (abort(), 0) \
: uid_cuid[INSN_UID (INSN)])
/* Maximum register number, which is the size of the tables below. */
static int combine_max_regno;
/* Record last point of death of (hard or pseudo) register n. */
static rtx *reg_last_death;
/* Record last point of modification of (hard or pseudo) register n. */
static rtx *reg_last_set;
/* Record the cuid of the last insn that invalidated memory
(anything that writes memory, and subroutine calls, but not pushes). */
static int mem_last_set;
/* Record the cuid of the last CALL_INSN
so we can tell whether a potential combination crosses any calls. */
static int last_call_cuid;
/* When `subst' is called, this is the insn that is being modified
(by combining in a previous insn). The PATTERN of this insn
is still the old pattern partially modified and it should not be
looked at, but this may be used to examine the successors of the insn
to judge whether a simplification is valid. */
static rtx subst_insn;
/* This is an insn that belongs before subst_insn, but is not currently
on the insn chain. */
static rtx subst_prev_insn;
/* This is the lowest CUID that `subst' is currently dealing with.
get_last_value will not return a value if the register was set at or
after this CUID. If not for this mechanism, we could get confused if
I2 or I1 in try_combine were an insn that used the old value of a register
to obtain a new value. In that case, we might erroneously get the
new value of the register when we wanted the old one. */
static int subst_low_cuid;
/* This contains any hard registers that are used in newpat; reg_dead_at_p
must consider all these registers to be always live. */
static HARD_REG_SET newpat_used_regs;
/* This is an insn to which a LOG_LINKS entry has been added. If this
insn is the earlier than I2 or I3, combine should rescan starting at
that location. */
static rtx added_links_insn;
/* This is the value of undobuf.num_undo when we started processing this
substitution. This will prevent gen_rtx_combine from re-used a piece
from the previous expression. Doing so can produce circular rtl
structures. */
static int previous_num_undos;
/* Basic block number of the block in which we are performing combines. */
static int this_basic_block;
/* The next group of arrays allows the recording of the last value assigned
to (hard or pseudo) register n. We use this information to see if a
operation being processed is redundant given a prior operation performed
on the register. For example, an `and' with a constant is redundant if
all the zero bits are already known to be turned off.
We use an approach similar to that used by cse, but change it in the
following ways:
(1) We do not want to reinitialize at each label.
(2) It is useful, but not critical, to know the actual value assigned
to a register. Often just its form is helpful.
Therefore, we maintain the following arrays:
reg_last_set_value the last value assigned
reg_last_set_label records the value of label_tick when the
register was assigned
reg_last_set_table_tick records the value of label_tick when a
value using the register is assigned
reg_last_set_invalid set to non-zero when it is not valid
to use the value of this register in some
register's value
To understand the usage of these tables, it is important to understand
the distinction between the value in reg_last_set_value being valid
and the register being validly contained in some other expression in the
table.
Entry I in reg_last_set_value is valid if it is non-zero, and either
reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
Register I may validly appear in any expression returned for the value
of another register if reg_n_sets[i] is 1. It may also appear in the
value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
reg_last_set_invalid[j] is zero.
If an expression is found in the table containing a register which may
not validly appear in an expression, the register is replaced by
something that won't match, (clobber (const_int 0)).
reg_last_set_invalid[i] is set non-zero when register I is being assigned
to and reg_last_set_table_tick[i] == label_tick. */
/* Record last value assigned to (hard or pseudo) register n. */
static rtx *reg_last_set_value;
/* Record the value of label_tick when the value for register n is placed in
reg_last_set_value[n]. */
static int *reg_last_set_label;
/* Record the value of label_tick when an expression involving register n
is placed in reg_last_set_value. */
static int *reg_last_set_table_tick;
/* Set non-zero if references to register n in expressions should not be
used. */
static char *reg_last_set_invalid;
/* Incremented for each label. */
static int label_tick;
/* Some registers that are set more than once and used in more than one
basic block are nevertheless always set in similar ways. For example,
a QImode register may be loaded from memory in two places on a machine
where byte loads zero extend.
We record in the following array what we know about the nonzero
bits of a register, specifically which bits are known to be zero.
If an entry is zero, it means that we don't know anything special. */
static unsigned HOST_WIDE_INT *reg_nonzero_bits;
/* Mode used to compute significance in reg_nonzero_bits. It is the largest
integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
static enum machine_mode nonzero_bits_mode;
/* Nonzero if we know that a register has some leading bits that are always
equal to the sign bit. */
static char *reg_sign_bit_copies;
/* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
It is zero while computing them and after combine has completed. This
former test prevents propagating values based on previously set values,
which can be incorrect if a variable is modified in a loop. */
static int nonzero_sign_valid;
/* These arrays are maintained in parallel with reg_last_set_value
and are used to store the mode in which the register was last set,
the bits that were known to be zero when it was last set, and the
number of sign bits copies it was known to have when it was last set. */
static enum machine_mode *reg_last_set_mode;
static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
static char *reg_last_set_sign_bit_copies;
/* Record one modification to rtl structure
to be undone by storing old_contents into *where.
is_int is 1 if the contents are an int. */
struct undo
{
int is_int;
union {rtx r; int i;} old_contents;
union {rtx *r; int *i;} where;
};
/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
num_undo says how many are currently recorded.
storage is nonzero if we must undo the allocation of new storage.
The value of storage is what to pass to obfree.
other_insn is nonzero if we have modified some other insn in the process
of working on subst_insn. It must be verified too. */
#define MAX_UNDO 50
struct undobuf
{
int num_undo;
char *storage;
struct undo undo[MAX_UNDO];
rtx other_insn;
};
static struct undobuf undobuf;
/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
insn. The substitution can be undone by undo_all. If INTO is already
set to NEWVAL, do not record this change. Because computing NEWVAL might
also call SUBST, we have to compute it before we put anything into
the undo table. */
#define SUBST(INTO, NEWVAL) \
do { rtx _new = (NEWVAL); \
if (undobuf.num_undo < MAX_UNDO) \
{ \
undobuf.undo[undobuf.num_undo].is_int = 0; \
undobuf.undo[undobuf.num_undo].where.r = &INTO; \
undobuf.undo[undobuf.num_undo].old_contents.r = INTO; \
INTO = _new; \
if (undobuf.undo[undobuf.num_undo].old_contents.r != INTO) \
undobuf.num_undo++; \
} \
} while (0)
/* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
expression.
Note that substitution for the value of a CONST_INT is not safe. */
#define SUBST_INT(INTO, NEWVAL) \
do { if (undobuf.num_undo < MAX_UNDO) \
{ \
undobuf.undo[undobuf.num_undo].is_int = 1; \
undobuf.undo[undobuf.num_undo].where.i = (int *) &INTO; \
undobuf.undo[undobuf.num_undo].old_contents.i = INTO; \
INTO = NEWVAL; \
if (undobuf.undo[undobuf.num_undo].old_contents.i != INTO) \
undobuf.num_undo++; \
} \
} while (0)
/* Number of times the pseudo being substituted for
was found and replaced. */
static int n_occurrences;
static void init_reg_last_arrays PROTO(());
static void setup_incoming_promotions PROTO(());
static void set_nonzero_bits_and_sign_copies PROTO((rtx, rtx));
static int can_combine_p PROTO((rtx, rtx, rtx, rtx, rtx *, rtx *));
static int combinable_i3pat PROTO((rtx, rtx *, rtx, rtx, int, rtx *));
static rtx try_combine PROTO((rtx, rtx, rtx));
static void undo_all PROTO((void));
static rtx *find_split_point PROTO((rtx *, rtx));
static rtx subst PROTO((rtx, rtx, rtx, int, int));
static rtx simplify_rtx PROTO((rtx, enum machine_mode, int, int));
static rtx simplify_if_then_else PROTO((rtx));
static rtx simplify_set PROTO((rtx));
static rtx simplify_logical PROTO((rtx, int));
static rtx expand_compound_operation PROTO((rtx));
static rtx expand_field_assignment PROTO((rtx));
static rtx make_extraction PROTO((enum machine_mode, rtx, int, rtx, int,
int, int, int));
static rtx extract_left_shift PROTO((rtx, int));
static rtx make_compound_operation PROTO((rtx, enum rtx_code));
static int get_pos_from_mask PROTO((unsigned HOST_WIDE_INT, int *));
static rtx force_to_mode PROTO((rtx, enum machine_mode,
unsigned HOST_WIDE_INT, rtx, int));
static rtx if_then_else_cond PROTO((rtx, rtx *, rtx *));
static rtx known_cond PROTO((rtx, enum rtx_code, rtx, rtx));
static rtx make_field_assignment PROTO((rtx));
static rtx apply_distributive_law PROTO((rtx));
static rtx simplify_and_const_int PROTO((rtx, enum machine_mode, rtx,
unsigned HOST_WIDE_INT));
static unsigned HOST_WIDE_INT nonzero_bits PROTO((rtx, enum machine_mode));
static int num_sign_bit_copies PROTO((rtx, enum machine_mode));
static int merge_outer_ops PROTO((enum rtx_code *, HOST_WIDE_INT *,
enum rtx_code, HOST_WIDE_INT,
enum machine_mode, int *));
static rtx simplify_shift_const PROTO((rtx, enum rtx_code, enum machine_mode,
rtx, int));
static int recog_for_combine PROTO((rtx *, rtx, rtx *, int *));
static rtx gen_lowpart_for_combine PROTO((enum machine_mode, rtx));
static rtx gen_rtx_combine PVPROTO((enum rtx_code code, enum machine_mode mode,
...));
static rtx gen_binary PROTO((enum rtx_code, enum machine_mode,
rtx, rtx));
static rtx gen_unary PROTO((enum rtx_code, enum machine_mode,
enum machine_mode, rtx));
static enum rtx_code simplify_comparison PROTO((enum rtx_code, rtx *, rtx *));
static int reversible_comparison_p PROTO((rtx));
static void update_table_tick PROTO((rtx));
static void record_value_for_reg PROTO((rtx, rtx, rtx));
static void record_dead_and_set_regs_1 PROTO((rtx, rtx));
static void record_dead_and_set_regs PROTO((rtx));
static int get_last_value_validate PROTO((rtx *, int, int));
static rtx get_last_value PROTO((rtx));
static int use_crosses_set_p PROTO((rtx, int));
static void reg_dead_at_p_1 PROTO((rtx, rtx));
static int reg_dead_at_p PROTO((rtx, rtx));
static void move_deaths PROTO((rtx, int, rtx, rtx *));
static int reg_bitfield_target_p PROTO((rtx, rtx));
static void distribute_notes PROTO((rtx, rtx, rtx, rtx, rtx, rtx));
static void distribute_links PROTO((rtx));
static void mark_used_regs_combine PROTO((rtx));
/* Main entry point for combiner. F is the first insn of the function.
NREGS is the first unused pseudo-reg number. */
void
combine_instructions (f, nregs)
rtx f;
int nregs;
{
register rtx insn, next, prev;
register int i;
register rtx links, nextlinks;
combine_attempts = 0;
combine_merges = 0;
combine_extras = 0;
combine_successes = 0;
undobuf.num_undo = previous_num_undos = 0;
combine_max_regno = nregs;
reg_nonzero_bits
= (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
reg_sign_bit_copies = (char *) alloca (nregs * sizeof (char));
bzero ((char *) reg_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
bzero (reg_sign_bit_copies, nregs * sizeof (char));
reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
reg_last_set_table_tick = (int *) alloca (nregs * sizeof (int));
reg_last_set_label = (int *) alloca (nregs * sizeof (int));
reg_last_set_invalid = (char *) alloca (nregs * sizeof (char));
reg_last_set_mode
= (enum machine_mode *) alloca (nregs * sizeof (enum machine_mode));
reg_last_set_nonzero_bits
= (unsigned HOST_WIDE_INT *) alloca (nregs * sizeof (HOST_WIDE_INT));
reg_last_set_sign_bit_copies
= (char *) alloca (nregs * sizeof (char));
init_reg_last_arrays ();
init_recog_no_volatile ();
/* Compute maximum uid value so uid_cuid can be allocated. */
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
if (INSN_UID (insn) > i)
i = INSN_UID (insn);
uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
max_uid_cuid = i;
nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
/* Don't use reg_nonzero_bits when computing it. This can cause problems
when, for example, we have j <<= 1 in a loop. */
nonzero_sign_valid = 0;
/* Compute the mapping from uids to cuids.
Cuids are numbers assigned to insns, like uids,
except that cuids increase monotonically through the code.
Scan all SETs and see if we can deduce anything about what
bits are known to be zero for some registers and how many copies
of the sign bit are known to exist for those registers.
Also set any known values so that we can use it while searching
for what bits are known to be set. */
label_tick = 1;
/* We need to initialize it here, because record_dead_and_set_regs may call
get_last_value. */
subst_prev_insn = NULL_RTX;
setup_incoming_promotions ();
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
{
uid_cuid[INSN_UID (insn)] = ++i;
subst_low_cuid = i;
subst_insn = insn;
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies);
record_dead_and_set_regs (insn);
}
if (GET_CODE (insn) == CODE_LABEL)
label_tick++;
}
nonzero_sign_valid = 1;
/* Now scan all the insns in forward order. */
this_basic_block = -1;
label_tick = 1;
last_call_cuid = 0;
mem_last_set = 0;
init_reg_last_arrays ();
setup_incoming_promotions ();
for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
{
next = 0;
/* If INSN starts a new basic block, update our basic block number. */
if (this_basic_block + 1 < n_basic_blocks
&& basic_block_head[this_basic_block + 1] == insn)
this_basic_block++;
if (GET_CODE (insn) == CODE_LABEL)
label_tick++;
else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
/* Try this insn with each insn it links back to. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
if ((next = try_combine (insn, XEXP (links, 0), NULL_RTX)) != 0)
goto retry;
/* Try each sequence of three linked insns ending with this one. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, XEXP (links, 0),
XEXP (nextlinks, 0))) != 0)
goto retry;
#ifdef HAVE_cc0
/* Try to combine a jump insn that uses CC0
with a preceding insn that sets CC0, and maybe with its
logical predecessor as well.
This is how we make decrement-and-branch insns.
We need this special code because data flow connections
via CC0 do not get entered in LOG_LINKS. */
if (GET_CODE (insn) == JUMP_INSN
&& (prev = prev_nonnote_insn (insn)) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev)))
{
if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
goto retry;
for (nextlinks = LOG_LINKS (prev); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, prev,
XEXP (nextlinks, 0))) != 0)
goto retry;
}
/* Do the same for an insn that explicitly references CC0. */
if (GET_CODE (insn) == INSN
&& (prev = prev_nonnote_insn (insn)) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev))
&& GET_CODE (PATTERN (insn)) == SET
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
{
if ((next = try_combine (insn, prev, NULL_RTX)) != 0)
goto retry;
for (nextlinks = LOG_LINKS (prev); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, prev,
XEXP (nextlinks, 0))) != 0)
goto retry;
}
/* Finally, see if any of the insns that this insn links to
explicitly references CC0. If so, try this insn, that insn,
and its predecessor if it sets CC0. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
if (GET_CODE (XEXP (links, 0)) == INSN
&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev))
&& (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
goto retry;
#endif
/* Try combining an insn with two different insns whose results it
uses. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
for (nextlinks = XEXP (links, 1); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, XEXP (links, 0),
XEXP (nextlinks, 0))) != 0)
goto retry;
if (GET_CODE (insn) != NOTE)
record_dead_and_set_regs (insn);
retry:
;
}
}
total_attempts += combine_attempts;
total_merges += combine_merges;
total_extras += combine_extras;
total_successes += combine_successes;
nonzero_sign_valid = 0;
}
/* Wipe the reg_last_xxx arrays in preparation for another pass. */
static void
init_reg_last_arrays ()
{
int nregs = combine_max_regno;
bzero ((char *) reg_last_death, nregs * sizeof (rtx));
bzero ((char *) reg_last_set, nregs * sizeof (rtx));
bzero ((char *) reg_last_set_value, nregs * sizeof (rtx));
bzero ((char *) reg_last_set_table_tick, nregs * sizeof (int));
bzero ((char *) reg_last_set_label, nregs * sizeof (int));
bzero (reg_last_set_invalid, nregs * sizeof (char));
bzero ((char *) reg_last_set_mode, nregs * sizeof (enum machine_mode));
bzero ((char *) reg_last_set_nonzero_bits, nregs * sizeof (HOST_WIDE_INT));
bzero (reg_last_set_sign_bit_copies, nregs * sizeof (char));
}
/* Set up any promoted values for incoming argument registers. */
static void
setup_incoming_promotions ()
{
#ifdef PROMOTE_FUNCTION_ARGS
int regno;
rtx reg;
enum machine_mode mode;
int unsignedp;
rtx first = get_insns ();
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (FUNCTION_ARG_REGNO_P (regno)
&& (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
record_value_for_reg (reg, first,
gen_rtx (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
GET_MODE (reg),
gen_rtx (CLOBBER, mode, const0_rtx)));
#endif
}
/* Called via note_stores. If X is a pseudo that is used in more than
one basic block, is narrower that HOST_BITS_PER_WIDE_INT, and is being
set, record what bits are known zero. If we are clobbering X,
ignore this "set" because the clobbered value won't be used.
If we are setting only a portion of X and we can't figure out what
portion, assume all bits will be used since we don't know what will
be happening.
Similarly, set how many bits of X are known to be copies of the sign bit
at all locations in the function. This is the smallest number implied
by any set of X. */
static void
set_nonzero_bits_and_sign_copies (x, set)
rtx x;
rtx set;
{
int num;
if (GET_CODE (x) == REG
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_n_sets[REGNO (x)] > 1
&& reg_basic_block[REGNO (x)] < 0
/* If this register is undefined at the start of the file, we can't
say what its contents were. */
&& ! (basic_block_live_at_start[0][REGNO (x) / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (REGNO (x) % REGSET_ELT_BITS)))
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
{
if (GET_CODE (set) == CLOBBER)
{
reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
reg_sign_bit_copies[REGNO (x)] = 0;
return;
}
/* If this is a complex assignment, see if we can convert it into a
simple assignment. */
set = expand_field_assignment (set);
/* If this is a simple assignment, or we have a paradoxical SUBREG,
set what we know about X. */
if (SET_DEST (set) == x
|| (GET_CODE (SET_DEST (set)) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
&& SUBREG_REG (SET_DEST (set)) == x))
{
rtx src = SET_SRC (set);
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is narrower than a word and SRC is a non-negative
constant that would appear negative in the mode of X,
sign-extend it for use in reg_nonzero_bits because some
machines (maybe most) will actually do the sign-extension
and this is the conservative approach.
??? For 2.5, try to tighten up the MD files in this regard
instead of this kludge. */
if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
&& GET_CODE (src) == CONST_INT
&& INTVAL (src) > 0
&& 0 != (INTVAL (src)
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
src = GEN_INT (INTVAL (src)
| ((HOST_WIDE_INT) (-1)
<< GET_MODE_BITSIZE (GET_MODE (x))));
#endif
reg_nonzero_bits[REGNO (x)]
|= nonzero_bits (src, nonzero_bits_mode);
num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
if (reg_sign_bit_copies[REGNO (x)] == 0
|| reg_sign_bit_copies[REGNO (x)] > num)
reg_sign_bit_copies[REGNO (x)] = num;
}
else
{
reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
reg_sign_bit_copies[REGNO (x)] = 0;
}
}
}
/* See if INSN can be combined into I3. PRED and SUCC are optionally
insns that were previously combined into I3 or that will be combined
into the merger of INSN and I3.
Return 0 if the combination is not allowed for any reason.
If the combination is allowed, *PDEST will be set to the single
destination of INSN and *PSRC to the single source, and this function
will return 1. */
static int
can_combine_p (insn, i3, pred, succ, pdest, psrc)
rtx insn;
rtx i3;
rtx pred, succ;
rtx *pdest, *psrc;
{
int i;
rtx set = 0, src, dest;
rtx p, link;
int all_adjacent = (succ ? (next_active_insn (insn) == succ
&& next_active_insn (succ) == i3)
: next_active_insn (insn) == i3);
/* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
or a PARALLEL consisting of such a SET and CLOBBERs.
If INSN has CLOBBER parallel parts, ignore them for our processing.
By definition, these happen during the execution of the insn. When it
is merged with another insn, all bets are off. If they are, in fact,
needed and aren't also supplied in I3, they may be added by
recog_for_combine. Otherwise, it won't match.
We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
note.
Get the source and destination of INSN. If more than one, can't
combine. */
if (GET_CODE (PATTERN (insn)) == SET)
set = PATTERN (insn);
else if (GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
{
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx elt = XVECEXP (PATTERN (insn), 0, i);
switch (GET_CODE (elt))
{
/* We can ignore CLOBBERs. */
case CLOBBER:
break;
case SET:
/* Ignore SETs whose result isn't used but not those that
have side-effects. */
if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
&& ! side_effects_p (elt))
break;
/* If we have already found a SET, this is a second one and
so we cannot combine with this insn. */
if (set)
return 0;
set = elt;
break;
default:
/* Anything else means we can't combine. */
return 0;
}
}
if (set == 0
/* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
so don't do anything with it. */
|| GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
return 0;
}
else
return 0;
if (set == 0)
return 0;
set = expand_field_assignment (set);
src = SET_SRC (set), dest = SET_DEST (set);
/* Don't eliminate a store in the stack pointer. */
if (dest == stack_pointer_rtx
/* If we couldn't eliminate a field assignment, we can't combine. */
|| GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
/* Don't combine with an insn that sets a register to itself if it has
a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
|| (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
/* Can't merge a function call. */
|| GET_CODE (src) == CALL
/* Don't eliminate a function call argument. */
|| (GET_CODE (i3) == CALL_INSN
&& (find_reg_fusage (i3, USE, dest)
|| (GET_CODE (dest) == REG
&& REGNO (dest) < FIRST_PSEUDO_REGISTER
&& global_regs[REGNO (dest)])))
/* Don't substitute into an incremented register. */
|| FIND_REG_INC_NOTE (i3, dest)
|| (succ && FIND_REG_INC_NOTE (succ, dest))
/* Don't combine the end of a libcall into anything. */
|| find_reg_note (insn, REG_RETVAL, NULL_RTX)
/* Make sure that DEST is not used after SUCC but before I3. */
|| (succ && ! all_adjacent
&& reg_used_between_p (dest, succ, i3))
/* Make sure that the value that is to be substituted for the register
does not use any registers whose values alter in between. However,
If the insns are adjacent, a use can't cross a set even though we
think it might (this can happen for a sequence of insns each setting
the same destination; reg_last_set of that register might point to
a NOTE). If INSN has a REG_EQUIV note, the register is always
equivalent to the memory so the substitution is valid even if there
are intervening stores. Also, don't move a volatile asm or
UNSPEC_VOLATILE across any other insns. */
|| (! all_adjacent
&& (((GET_CODE (src) != MEM
|| ! find_reg_note (insn, REG_EQUIV, src))
&& use_crosses_set_p (src, INSN_CUID (insn)))
|| (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
|| GET_CODE (src) == UNSPEC_VOLATILE))
/* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
better register allocation by not doing the combine. */
|| find_reg_note (i3, REG_NO_CONFLICT, dest)
|| (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
/* Don't combine across a CALL_INSN, because that would possibly
change whether the life span of some REGs crosses calls or not,
and it is a pain to update that information.
Exception: if source is a constant, moving it later can't hurt.
Accept that special case, because it helps -fforce-addr a lot. */
|| (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
return 0;
/* DEST must either be a REG or CC0. */
if (GET_CODE (dest) == REG)
{
/* If register alignment is being enforced for multi-word items in all
cases except for parameters, it is possible to have a register copy
insn referencing a hard register that is not allowed to contain the
mode being copied and which would not be valid as an operand of most
insns. Eliminate this problem by not combining with such an insn.
Also, on some machines we don't want to extend the life of a hard
register. */
if (GET_CODE (src) == REG
&& ((REGNO (dest) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
/* Don't extend the life of a hard register unless it is
user variable (if we have few registers) or it can't
fit into the desired register (meaning something special
is going on). */
|| (REGNO (src) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
#ifdef SMALL_REGISTER_CLASSES
|| ! REG_USERVAR_P (src)
#endif
))))
return 0;
}
else if (GET_CODE (dest) != CC0)
return 0;
/* Don't substitute for a register intended as a clobberable operand.
Similarly, don't substitute an expression containing a register that
will be clobbered in I3. */
if (GET_CODE (PATTERN (i3)) == PARALLEL)
for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
&& (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
src)
|| rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
return 0;
/* If INSN contains anything volatile, or is an `asm' (whether volatile
or not), reject, unless nothing volatile comes between it and I3,
with the exception of SUCC. */
if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
&& p != succ && volatile_refs_p (PATTERN (p)))
return 0;
/* If there are any volatile insns between INSN and I3, reject, because
they might affect machine state. */
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
&& p != succ && volatile_insn_p (PATTERN (p)))
return 0;
/* If INSN or I2 contains an autoincrement or autodecrement,
make sure that register is not used between there and I3,
and not already used in I3 either.
Also insist that I3 not be a jump; if it were one
and the incremented register were spilled, we would lose. */
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& (GET_CODE (i3) == JUMP_INSN
|| reg_used_between_p (XEXP (link, 0), insn, i3)
|| reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
return 0;
#endif
#ifdef HAVE_cc0
/* Don't combine an insn that follows a CC0-setting insn.
An insn that uses CC0 must not be separated from the one that sets it.
We do, however, allow I2 to follow a CC0-setting insn if that insn
is passed as I1; in that case it will be deleted also.
We also allow combining in this case if all the insns are adjacent
because that would leave the two CC0 insns adjacent as well.
It would be more logical to test whether CC0 occurs inside I1 or I2,
but that would be much slower, and this ought to be equivalent. */
p = prev_nonnote_insn (insn);
if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
&& ! all_adjacent)
return 0;
#endif
/* If we get here, we have passed all the tests and the combination is
to be allowed. */
*pdest = dest;
*psrc = src;
return 1;
}
/* LOC is the location within I3 that contains its pattern or the component
of a PARALLEL of the pattern. We validate that it is valid for combining.
One problem is if I3 modifies its output, as opposed to replacing it
entirely, we can't allow the output to contain I2DEST or I1DEST as doing
so would produce an insn that is not equivalent to the original insns.
Consider:
(set (reg:DI 101) (reg:DI 100))
(set (subreg:SI (reg:DI 101) 0) <foo>)
This is NOT equivalent to:
(parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
(set (reg:DI 101) (reg:DI 100))])
Not only does this modify 100 (in which case it might still be valid
if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
We can also run into a problem if I2 sets a register that I1
uses and I1 gets directly substituted into I3 (not via I2). In that
case, we would be getting the wrong value of I2DEST into I3, so we
must reject the combination. This case occurs when I2 and I1 both
feed into I3, rather than when I1 feeds into I2, which feeds into I3.
If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
of a SET must prevent combination from occurring.
On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
if the destination of a SET is a hard register that isn't a user
variable.
Before doing the above check, we first try to expand a field assignment
into a set of logical operations.
If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
we place a register that is both set and used within I3. If more than one
such register is detected, we fail.
Return 1 if the combination is valid, zero otherwise. */
static int
combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
rtx i3;
rtx *loc;
rtx i2dest;
rtx i1dest;
int i1_not_in_src;
rtx *pi3dest_killed;
{
rtx x = *loc;
if (GET_CODE (x) == SET)
{
rtx set = expand_field_assignment (x);
rtx dest = SET_DEST (set);
rtx src = SET_SRC (set);
rtx inner_dest = dest, inner_src = src;
SUBST (*loc, set);
while (GET_CODE (inner_dest) == STRICT_LOW_PART
|| GET_CODE (inner_dest) == SUBREG
|| GET_CODE (inner_dest) == ZERO_EXTRACT)
inner_dest = XEXP (inner_dest, 0);
/* We probably don't need this any more now that LIMIT_RELOAD_CLASS
was added. */
#if 0
while (GET_CODE (inner_src) == STRICT_LOW_PART
|| GET_CODE (inner_src) == SUBREG
|| GET_CODE (inner_src) == ZERO_EXTRACT)
inner_src = XEXP (inner_src, 0);
/* If it is better that two different modes keep two different pseudos,
avoid combining them. This avoids producing the following pattern
on a 386:
(set (subreg:SI (reg/v:QI 21) 0)
(lshiftrt:SI (reg/v:SI 20)
(const_int 24)))
If that were made, reload could not handle the pair of
reg 20/21, since it would try to get any GENERAL_REGS
but some of them don't handle QImode. */
if (rtx_equal_p (inner_src, i2dest)
&& GET_CODE (inner_dest) == REG
&& ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
return 0;
#endif
/* Check for the case where I3 modifies its output, as
discussed above. */
if ((inner_dest != dest
&& (reg_overlap_mentioned_p (i2dest, inner_dest)
|| (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
/* This is the same test done in can_combine_p except that we
allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
CALL operation. */
|| (GET_CODE (inner_dest) == REG
&& REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
GET_MODE (inner_dest))
#ifdef SMALL_REGISTER_CLASSES
|| (GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest))
#endif
))
|| (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
return 0;
/* If DEST is used in I3, it is being killed in this insn,
so record that for later.
Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
STACK_POINTER_REGNUM, since these are always considered to be
live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
if (pi3dest_killed && GET_CODE (dest) == REG
&& reg_referenced_p (dest, PATTERN (i3))
&& REGNO (dest) != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& REGNO (dest) != HARD_FRAME_POINTER_REGNUM
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& (REGNO (dest) != ARG_POINTER_REGNUM
|| ! fixed_regs [REGNO (dest)])
#endif
&& REGNO (dest) != STACK_POINTER_REGNUM)
{
if (*pi3dest_killed)
return 0;
*pi3dest_killed = dest;
}
}
else if (GET_CODE (x) == PARALLEL)
{
int i;
for (i = 0; i < XVECLEN (x, 0); i++)
if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
i1_not_in_src, pi3dest_killed))
return 0;
}
return 1;
}
/* Try to combine the insns I1 and I2 into I3.
Here I1 and I2 appear earlier than I3.
I1 can be zero; then we combine just I2 into I3.
It we are combining three insns and the resulting insn is not recognized,
try splitting it into two insns. If that happens, I2 and I3 are retained
and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
are pseudo-deleted.
Return 0 if the combination does not work. Then nothing is changed.
If we did the combination, return the insn at which combine should
resume scanning. */
static rtx
try_combine (i3, i2, i1)
register rtx i3, i2, i1;
{
/* New patterns for I3 and I3, respectively. */
rtx newpat, newi2pat = 0;
/* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
int added_sets_1, added_sets_2;
/* Total number of SETs to put into I3. */
int total_sets;
/* Nonzero is I2's body now appears in I3. */
int i2_is_used;
/* INSN_CODEs for new I3, new I2, and user of condition code. */
int insn_code_number, i2_code_number, other_code_number;
/* Contains I3 if the destination of I3 is used in its source, which means
that the old life of I3 is being killed. If that usage is placed into
I2 and not in I3, a REG_DEAD note must be made. */
rtx i3dest_killed = 0;
/* SET_DEST and SET_SRC of I2 and I1. */
rtx i2dest, i2src, i1dest = 0, i1src = 0;
/* PATTERN (I2), or a copy of it in certain cases. */
rtx i2pat;
/* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
int i1_feeds_i3 = 0;
/* Notes that must be added to REG_NOTES in I3 and I2. */
rtx new_i3_notes, new_i2_notes;
/* Notes that we substituted I3 into I2 instead of the normal case. */
int i3_subst_into_i2 = 0;
/* Notes that I1, I2 or I3 is a MULT operation. */
int have_mult = 0;
/* Number of clobbers of SCRATCH we had to add. */
int i3_scratches = 0, i2_scratches = 0, other_scratches = 0;
int maxreg;
rtx temp;
register rtx link;
int i;
/* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
This can occur when flow deletes an insn that it has merged into an
auto-increment address. We also can't do anything if I3 has a
REG_LIBCALL note since we don't want to disrupt the contiguity of a
libcall. */
if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
|| GET_RTX_CLASS (GET_CODE (i2)) != 'i'
|| (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i')
|| find_reg_note (i3, REG_LIBCALL, NULL_RTX))
return 0;
combine_attempts++;
undobuf.num_undo = previous_num_undos = 0;
undobuf.other_insn = 0;
/* Save the current high-water-mark so we can free storage if we didn't
accept this combination. */
undobuf.storage = (char *) oballoc (0);
/* Reset the hard register usage information. */
CLEAR_HARD_REG_SET (newpat_used_regs);
/* If I1 and I2 both feed I3, they can be in any order. To simplify the
code below, set I1 to be the earlier of the two insns. */
if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
temp = i1, i1 = i2, i2 = temp;
added_links_insn = 0;
/* First check for one important special-case that the code below will
not handle. Namely, the case where I1 is zero, I2 has multiple sets,
and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
we may be able to replace that destination with the destination of I3.
This occurs in the common code where we compute both a quotient and
remainder into a structure, in which case we want to do the computation
directly into the structure to avoid register-register copies.
We make very conservative checks below and only try to handle the
most common cases of this. For example, we only handle the case
where I2 and I3 are adjacent to avoid making difficult register
usage tests. */
if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
#ifdef SMALL_REGISTER_CLASSES
&& (GET_CODE (SET_DEST (PATTERN (i3))) != REG
|| REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
|| REG_USERVAR_P (SET_DEST (PATTERN (i3))))
#endif
&& find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
&& GET_CODE (PATTERN (i2)) == PARALLEL
&& ! side_effects_p (SET_DEST (PATTERN (i3)))
/* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
below would need to check what is inside (and reg_overlap_mentioned_p
doesn't support those codes anyway). Don't allow those destinations;
the resulting insn isn't likely to be recognized anyway. */
&& GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
&& ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
SET_DEST (PATTERN (i3)))
&& next_real_insn (i2) == i3)
{
rtx p2 = PATTERN (i2);
/* Make sure that the destination of I3,
which we are going to substitute into one output of I2,
is not used within another output of I2. We must avoid making this:
(parallel [(set (mem (reg 69)) ...)
(set (reg 69) ...)])
which is not well-defined as to order of actions.
(Besides, reload can't handle output reloads for this.)
The problem can also happen if the dest of I3 is a memory ref,
if another dest in I2 is an indirect memory ref. */
for (i = 0; i < XVECLEN (p2, 0); i++)
if (GET_CODE (XVECEXP (p2, 0, i)) == SET
&& reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
SET_DEST (XVECEXP (p2, 0, i))))
break;
if (i == XVECLEN (p2, 0))
for (i = 0; i < XVECLEN (p2, 0); i++)
if (SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
{
combine_merges++;
subst_insn = i3;
subst_low_cuid = INSN_CUID (i2);
added_sets_2 = added_sets_1 = 0;
i2dest = SET_SRC (PATTERN (i3));
/* Replace the dest in I2 with our dest and make the resulting
insn the new pattern for I3. Then skip to where we
validate the pattern. Everything was set up above. */
SUBST (SET_DEST (XVECEXP (p2, 0, i)),
SET_DEST (PATTERN (i3)));
newpat = p2;
i3_subst_into_i2 = 1;
goto validate_replacement;
}
}
#ifndef HAVE_cc0
/* If we have no I1 and I2 looks like:
(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
(set Y OP)])
make up a dummy I1 that is
(set Y OP)
and change I2 to be
(set (reg:CC X) (compare:CC Y (const_int 0)))
(We can ignore any trailing CLOBBERs.)
This undoes a previous combination and allows us to match a branch-and-
decrement insn. */
if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
&& XVECLEN (PATTERN (i2), 0) >= 2
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
&& (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
== MODE_CC)
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
&& XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
&& rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
{
for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
break;
if (i == 1)
{
/* We make I1 with the same INSN_UID as I2. This gives it
the same INSN_CUID for value tracking. Our fake I1 will
never appear in the insn stream so giving it the same INSN_UID
as I2 will not cause a problem. */
subst_prev_insn = i1
= gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
SET_DEST (PATTERN (i1)));
}
}
#endif
/* Verify that I2 and I1 are valid for combining. */
if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
|| (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
{
undo_all ();
return 0;
}
/* Record whether I2DEST is used in I2SRC and similarly for the other
cases. Knowing this will help in register status updating below. */
i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
/* See if I1 directly feeds into I3. It does if I1DEST is not used
in I2SRC. */
i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
/* Ensure that I3's pattern can be the destination of combines. */
if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
i1 && i2dest_in_i1src && i1_feeds_i3,
&i3dest_killed))
{
undo_all ();
return 0;
}
/* See if any of the insns is a MULT operation. Unless one is, we will
reject a combination that is, since it must be slower. Be conservative
here. */
if (GET_CODE (i2src) == MULT
|| (i1 != 0 && GET_CODE (i1src) == MULT)
|| (GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
have_mult = 1;
/* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
We used to do this EXCEPT in one case: I3 has a post-inc in an
output operand. However, that exception can give rise to insns like
mov r3,(r3)+
which is a famous insn on the PDP-11 where the value of r3 used as the
source was model-dependent. Avoid this sort of thing. */
#if 0
if (!(GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
|| GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
/* It's not the exception. */
#endif
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
|| (i1 != 0
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
{
undo_all ();
return 0;
}
#endif
/* See if the SETs in I1 or I2 need to be kept around in the merged
instruction: whenever the value set there is still needed past I3.
For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
For the SET in I1, we have two cases: If I1 and I2 independently
feed into I3, the set in I1 needs to be kept around if I1DEST dies
or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
in I1 needs to be kept around unless I1DEST dies or is set in either
I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
I1DEST. If so, we know I1 feeds into I2. */
added_sets_2 = ! dead_or_set_p (i3, i2dest);
added_sets_1
= i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
: (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
/* If the set in I2 needs to be kept around, we must make a copy of
PATTERN (I2), so that when we substitute I1SRC for I1DEST in
PATTERN (I2), we are only substituting for the original I1DEST, not into
an already-substituted copy. This also prevents making self-referential
rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
I2DEST. */
i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
? gen_rtx (SET, VOIDmode, i2dest, i2src)
: PATTERN (i2));
if (added_sets_2)
i2pat = copy_rtx (i2pat);
combine_merges++;
/* Substitute in the latest insn for the regs set by the earlier ones. */
maxreg = max_reg_num ();
subst_insn = i3;
/* It is possible that the source of I2 or I1 may be performing an
unneeded operation, such as a ZERO_EXTEND of something that is known
to have the high part zero. Handle that case by letting subst look at
the innermost one of them.
Another way to do this would be to have a function that tries to
simplify a single insn instead of merging two or more insns. We don't
do this because of the potential of infinite loops and because
of the potential extra memory required. However, doing it the way
we are is a bit of a kludge and doesn't catch all cases.
But only do this if -fexpensive-optimizations since it slows things down
and doesn't usually win. */
if (flag_expensive_optimizations)
{
/* Pass pc_rtx so no substitutions are done, just simplifications.
The cases that we are interested in here do not involve the few
cases were is_replaced is checked. */
if (i1)
{
subst_low_cuid = INSN_CUID (i1);
i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
}
else
{
subst_low_cuid = INSN_CUID (i2);
i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
}
previous_num_undos = undobuf.num_undo;
}
#ifndef HAVE_cc0
/* Many machines that don't use CC0 have insns that can both perform an
arithmetic operation and set the condition code. These operations will
be represented as a PARALLEL with the first element of the vector
being a COMPARE of an arithmetic operation with the constant zero.
The second element of the vector will set some pseudo to the result
of the same arithmetic operation. If we simplify the COMPARE, we won't
match such a pattern and so will generate an extra insn. Here we test
for this case, where both the comparison and the operation result are
needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
I2SRC. Later we will make the PARALLEL that contains I2. */
if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
&& XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
{
rtx *cc_use;
enum machine_mode compare_mode;
newpat = PATTERN (i3);
SUBST (XEXP (SET_SRC (newpat), 0), i2src);
i2_is_used = 1;
#ifdef EXTRA_CC_MODES
/* See if a COMPARE with the operand we substituted in should be done
with the mode that is currently being used. If not, do the same
processing we do in `subst' for a SET; namely, if the destination
is used only once, try to replace it with a register of the proper
mode and also replace the COMPARE. */
if (undobuf.other_insn == 0
&& (cc_use = find_single_use (SET_DEST (newpat), i3,
&undobuf.other_insn))
&& ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
i2src, const0_rtx))
!= GET_MODE (SET_DEST (newpat))))
{
int regno = REGNO (SET_DEST (newpat));
rtx new_dest = gen_rtx (REG, compare_mode, regno);
if (regno < FIRST_PSEUDO_REGISTER
|| (reg_n_sets[regno] == 1 && ! added_sets_2
&& ! REG_USERVAR_P (SET_DEST (newpat))))
{
if (regno >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[regno], new_dest);
SUBST (SET_DEST (newpat), new_dest);
SUBST (XEXP (*cc_use, 0), new_dest);
SUBST (SET_SRC (newpat),
gen_rtx_combine (COMPARE, compare_mode,
i2src, const0_rtx));
}
else
undobuf.other_insn = 0;
}
#endif
}
else
#endif
{
n_occurrences = 0; /* `subst' counts here */
/* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
need to make a unique copy of I2SRC each time we substitute it
to avoid self-referential rtl. */
subst_low_cuid = INSN_CUID (i2);
newpat = subst (PATTERN (i3), i2dest, i2src, 0,
! i1_feeds_i3 && i1dest_in_i1src);
previous_num_undos = undobuf.num_undo;
/* Record whether i2's body now appears within i3's body. */
i2_is_used = n_occurrences;
}
/* If we already got a failure, don't try to do more. Otherwise,
try to substitute in I1 if we have it. */
if (i1 && GET_CODE (newpat) != CLOBBER)
{
/* Before we can do this substitution, we must redo the test done
above (see detailed comments there) that ensures that I1DEST
isn't mentioned in any SETs in NEWPAT that are field assignments. */
if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
0, NULL_PTR))
{
undo_all ();
return 0;
}
n_occurrences = 0;
subst_low_cuid = INSN_CUID (i1);
newpat = subst (newpat, i1dest, i1src, 0, 0);
previous_num_undos = undobuf.num_undo;
}
/* Fail if an autoincrement side-effect has been duplicated. Be careful
to count all the ways that I2SRC and I1SRC can be used. */
if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
&& i2_is_used + added_sets_2 > 1)
|| (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
&& (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
> 1))
/* Fail if we tried to make a new register (we used to abort, but there's
really no reason to). */
|| max_reg_num () != maxreg
/* Fail if we couldn't do something and have a CLOBBER. */
|| GET_CODE (newpat) == CLOBBER
/* Fail if this new pattern is a MULT and we didn't have one before
at the outer level. */
|| (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
&& ! have_mult))
{
undo_all ();
return 0;
}
/* If the actions of the earlier insns must be kept
in addition to substituting them into the latest one,
we must make a new PARALLEL for the latest insn
to hold additional the SETs. */
if (added_sets_1 || added_sets_2)
{
combine_extras++;
if (GET_CODE (newpat) == PARALLEL)
{
rtvec old = XVEC (newpat, 0);
total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
bcopy ((char *) &old->elem[0], (char *) &XVECEXP (newpat, 0, 0),
sizeof (old->elem[0]) * old->num_elem);
}
else
{
rtx old = newpat;
total_sets = 1 + added_sets_1 + added_sets_2;
newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
XVECEXP (newpat, 0, 0) = old;
}
if (added_sets_1)
XVECEXP (newpat, 0, --total_sets)
= (GET_CODE (PATTERN (i1)) == PARALLEL
? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
if (added_sets_2)
{
/* If there is no I1, use I2's body as is. We used to also not do
the subst call below if I2 was substituted into I3,
but that could lose a simplification. */
if (i1 == 0)
XVECEXP (newpat, 0, --total_sets) = i2pat;
else
/* See comment where i2pat is assigned. */
XVECEXP (newpat, 0, --total_sets)
= subst (i2pat, i1dest, i1src, 0, 0);
}
}
/* We come here when we are replacing a destination in I2 with the
destination of I3. */
validate_replacement:
/* Note which hard regs this insn has as inputs. */
mark_used_regs_combine (newpat);
/* Is the result of combination a valid instruction? */
insn_code_number
= recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
/* If the result isn't valid, see if it is a PARALLEL of two SETs where
the second SET's destination is a register that is unused. In that case,
we just need the first SET. This can occur when simplifying a divmod
insn. We *must* test for this case here because the code below that
splits two independent SETs doesn't handle this case correctly when it
updates the register status. Also check the case where the first
SET's destination is unused. That would not cause incorrect code, but
does cause an unneeded insn to remain. */
if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
&& find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
&& ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
&& asm_noperands (newpat) < 0)
{
newpat = XVECEXP (newpat, 0, 0);
insn_code_number
= recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
}
else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
&& find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
&& ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
&& asm_noperands (newpat) < 0)
{
newpat = XVECEXP (newpat, 0, 1);
insn_code_number
= recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
}
/* If we were combining three insns and the result is a simple SET
with no ASM_OPERANDS that wasn't recognized, try to split it into two
insns. There are two ways to do this. It can be split using a
machine-specific method (like when you have an addition of a large
constant) or by combine in the function find_split_point. */
if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
&& asm_noperands (newpat) < 0)
{
rtx m_split, *split;
rtx ni2dest = i2dest;
/* See if the MD file can split NEWPAT. If it can't, see if letting it
use I2DEST as a scratch register will help. In the latter case,
convert I2DEST to the mode of the source of NEWPAT if we can. */
m_split = split_insns (newpat, i3);
/* We can only use I2DEST as a scratch reg if it doesn't overlap any
inputs of NEWPAT. */
/* ??? If I2DEST is not safe, and I1DEST exists, then it would be
possible to try that as a scratch reg. This would require adding
more code to make it work though. */
if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
{
/* If I2DEST is a hard register or the only use of a pseudo,
we can change its mode. */
if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
&& GET_MODE (SET_DEST (newpat)) != VOIDmode
&& GET_CODE (i2dest) == REG
&& (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|| (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
&& ! REG_USERVAR_P (i2dest))))
ni2dest = gen_rtx (REG, GET_MODE (SET_DEST (newpat)),
REGNO (i2dest));
m_split = split_insns (gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (2, newpat,
gen_rtx (CLOBBER,
VOIDmode,
ni2dest))),
i3);
}
if (m_split && GET_CODE (m_split) == SEQUENCE
&& XVECLEN (m_split, 0) == 2
&& (next_real_insn (i2) == i3
|| ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
INSN_CUID (i2))))
{
rtx i2set, i3set;
rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
i3set = single_set (XVECEXP (m_split, 0, 1));
i2set = single_set (XVECEXP (m_split, 0, 0));
/* In case we changed the mode of I2DEST, replace it in the
pseudo-register table here. We can't do it above in case this
code doesn't get executed and we do a split the other way. */
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes,
&i2_scratches);
/* If I2 or I3 has multiple SETs, we won't know how to track
register status, so don't use these insns. */
if (i2_code_number >= 0 && i2set && i3set)
insn_code_number = recog_for_combine (&newi3pat, i3, &new_i3_notes,
&i3_scratches);
if (insn_code_number >= 0)
newpat = newi3pat;
/* It is possible that both insns now set the destination of I3.
If so, we must show an extra use of it. */
if (insn_code_number >= 0 && GET_CODE (SET_DEST (i3set)) == REG
&& GET_CODE (SET_DEST (i2set)) == REG
&& REGNO (SET_DEST (i3set)) == REGNO (SET_DEST (i2set)))
reg_n_sets[REGNO (SET_DEST (i2set))]++;
}
/* If we can split it and use I2DEST, go ahead and see if that
helps things be recognized. Verify that none of the registers
are set between I2 and I3. */
if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
#ifdef HAVE_cc0
&& GET_CODE (i2dest) == REG
#endif
/* We need I2DEST in the proper mode. If it is a hard register
or the only use of a pseudo, we can change its mode. */
&& (GET_MODE (*split) == GET_MODE (i2dest)
|| GET_MODE (*split) == VOIDmode
|| REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|| (reg_n_sets[REGNO (i2dest)] == 1 && ! added_sets_2
&& ! REG_USERVAR_P (i2dest)))
&& (next_real_insn (i2) == i3
|| ! use_crosses_set_p (*split, INSN_CUID (i2)))
/* We can't overwrite I2DEST if its value is still used by
NEWPAT. */
&& ! reg_referenced_p (i2dest, newpat))
{
rtx newdest = i2dest;
enum rtx_code split_code = GET_CODE (*split);
enum machine_mode split_mode = GET_MODE (*split);
/* Get NEWDEST as a register in the proper mode. We have already
validated that we can do this. */
if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
{
newdest = gen_rtx (REG, split_mode, REGNO (i2dest));
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
}
/* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
an ASHIFT. This can occur if it was inside a PLUS and hence
appeared to be a memory address. This is a kludge. */
if (split_code == MULT
&& GET_CODE (XEXP (*split, 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
{
SUBST (*split, gen_rtx_combine (ASHIFT, split_mode,
XEXP (*split, 0), GEN_INT (i)));
/* Update split_code because we may not have a multiply
anymore. */
split_code = GET_CODE (*split);
}
#ifdef INSN_SCHEDULING
/* If *SPLIT is a paradoxical SUBREG, when we split it, it should
be written as a ZERO_EXTEND. */
if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
SUBST (*split, gen_rtx_combine (ZERO_EXTEND, split_mode,
XEXP (*split, 0)));
#endif
newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
SUBST (*split, newdest);
i2_code_number
= recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
/* If the split point was a MULT and we didn't have one before,
don't use one now. */
if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
insn_code_number
= recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
}
}
/* Check for a case where we loaded from memory in a narrow mode and
then sign extended it, but we need both registers. In that case,
we have a PARALLEL with both loads from the same memory location.
We can split this into a load from memory followed by a register-register
copy. This saves at least one insn, more if register allocation can
eliminate the copy.
We cannot do this if the destination of the second assignment is
a register that we have already assumed is zero-extended. Similarly
for a SUBREG of such a register. */
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
&& GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
INSN_CUID (i2))
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
&& ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
(GET_CODE (temp) == REG
&& reg_nonzero_bits[REGNO (temp)] != 0
&& GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
&& (reg_nonzero_bits[REGNO (temp)]
!= GET_MODE_MASK (word_mode))))
&& ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
&& (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
(GET_CODE (temp) == REG
&& reg_nonzero_bits[REGNO (temp)] != 0
&& GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
&& (reg_nonzero_bits[REGNO (temp)]
!= GET_MODE_MASK (word_mode)))))
&& ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
SET_SRC (XVECEXP (newpat, 0, 1)))
&& ! find_reg_note (i3, REG_UNUSED,
SET_DEST (XVECEXP (newpat, 0, 0))))
{
rtx ni2dest;
newi2pat = XVECEXP (newpat, 0, 0);
ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
newpat = XVECEXP (newpat, 0, 1);
SUBST (SET_SRC (newpat),
gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
i2_code_number
= recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
if (i2_code_number >= 0)
insn_code_number
= recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
if (insn_code_number >= 0)
{
rtx insn;
rtx link;
/* If we will be able to accept this, we have made a change to the
destination of I3. This can invalidate a LOG_LINKS pointing
to I3. No other part of combine.c makes such a transformation.
The new I3 will have a destination that was previously the
destination of I1 or I2 and which was used in i2 or I3. Call
distribute_links to make a LOG_LINK from the next use of
that destination. */
PATTERN (i3) = newpat;
distribute_links (gen_rtx (INSN_LIST, VOIDmode, i3, NULL_RTX));
/* I3 now uses what used to be its destination and which is
now I2's destination. That means we need a LOG_LINK from
I3 to I2. But we used to have one, so we still will.
However, some later insn might be using I2's dest and have
a LOG_LINK pointing at I3. We must remove this link.
The simplest way to remove the link is to point it at I1,
which we know will be a NOTE. */
for (insn = NEXT_INSN (i3);
insn && (this_basic_block == n_basic_blocks - 1
|| insn != basic_block_head[this_basic_block + 1]);
insn = NEXT_INSN (insn))
{
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_referenced_p (ni2dest, PATTERN (insn)))
{
for (link = LOG_LINKS (insn); link;
link = XEXP (link, 1))
if (XEXP (link, 0) == i3)
XEXP (link, 0) = i1;
break;
}
}
}
}
/* Similarly, check for a case where we have a PARALLEL of two independent
SETs but we started with three insns. In this case, we can do the sets
as two separate insns. This case occurs when some SET allows two
other insns to combine, but the destination of that SET is still live. */
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
&& GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
INSN_CUID (i2))
/* Don't pass sets with (USE (MEM ...)) dests to the following. */
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
XVECEXP (newpat, 0, 0))
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
XVECEXP (newpat, 0, 1)))
{
newi2pat = XVECEXP (newpat, 0, 1);
newpat = XVECEXP (newpat, 0, 0);
i2_code_number
= recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
if (i2_code_number >= 0)
insn_code_number
= recog_for_combine (&newpat, i3, &new_i3_notes, &i3_scratches);
}
/* If it still isn't recognized, fail and change things back the way they
were. */
if ((insn_code_number < 0
/* Is the result a reasonable ASM_OPERANDS? */
&& (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
{
undo_all ();
return 0;
}
/* If we had to change another insn, make sure it is valid also. */
if (undobuf.other_insn)
{
rtx other_pat = PATTERN (undobuf.other_insn);
rtx new_other_notes;
rtx note, next;
CLEAR_HARD_REG_SET (newpat_used_regs);
other_code_number
= recog_for_combine (&other_pat, undobuf.other_insn,
&new_other_notes, &other_scratches);
if (other_code_number < 0 && ! check_asm_operands (other_pat))
{
undo_all ();
return 0;
}
PATTERN (undobuf.other_insn) = other_pat;
/* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
are still valid. Then add any non-duplicate notes added by
recog_for_combine. */
for (note = REG_NOTES (undobuf.other_insn); note; note = next)
{
next = XEXP (note, 1);
if (REG_NOTE_KIND (note) == REG_UNUSED
&& ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
{
if (GET_CODE (XEXP (note, 0)) == REG)
reg_n_deaths[REGNO (XEXP (note, 0))]--;
remove_note (undobuf.other_insn, note);
}
}
for (note = new_other_notes; note; note = XEXP (note, 1))
if (GET_CODE (XEXP (note, 0)) == REG)
reg_n_deaths[REGNO (XEXP (note, 0))]++;
distribute_notes (new_other_notes, undobuf.other_insn,
undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
}
/* We now know that we can do this combination. Merge the insns and
update the status of registers and LOG_LINKS. */
{
rtx i3notes, i2notes, i1notes = 0;
rtx i3links, i2links, i1links = 0;
rtx midnotes = 0;
register int regno;
/* Compute which registers we expect to eliminate. */
rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
? 0 : i2dest);
rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
/* Get the old REG_NOTES and LOG_LINKS from all our insns and
clear them. */
i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
if (i1)
i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
/* Ensure that we do not have something that should not be shared but
occurs multiple times in the new insns. Check this by first
resetting all the `used' flags and then copying anything is shared. */
reset_used_flags (i3notes);
reset_used_flags (i2notes);
reset_used_flags (i1notes);
reset_used_flags (newpat);
reset_used_flags (newi2pat);
if (undobuf.other_insn)
reset_used_flags (PATTERN (undobuf.other_insn));
i3notes = copy_rtx_if_shared (i3notes);
i2notes = copy_rtx_if_shared (i2notes);
i1notes = copy_rtx_if_shared (i1notes);
newpat = copy_rtx_if_shared (newpat);
newi2pat = copy_rtx_if_shared (newi2pat);
if (undobuf.other_insn)
reset_used_flags (PATTERN (undobuf.other_insn));
INSN_CODE (i3) = insn_code_number;
PATTERN (i3) = newpat;
if (undobuf.other_insn)
INSN_CODE (undobuf.other_insn) = other_code_number;
/* We had one special case above where I2 had more than one set and
we replaced a destination of one of those sets with the destination
of I3. In that case, we have to update LOG_LINKS of insns later
in this basic block. Note that this (expensive) case is rare.
Also, in this case, we must pretend that all REG_NOTEs for I2
actually came from I3, so that REG_UNUSED notes from I2 will be
properly handled. */
if (i3_subst_into_i2)
{
for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
&& SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
&& ! find_reg_note (i2, REG_UNUSED,
SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
for (temp = NEXT_INSN (i2);
temp && (this_basic_block == n_basic_blocks - 1
|| basic_block_head[this_basic_block] != temp);
temp = NEXT_INSN (temp))
if (temp != i3 && GET_RTX_CLASS (GET_CODE (temp)) == 'i')
for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
if (XEXP (link, 0) == i2)
XEXP (link, 0) = i3;
if (i3notes)
{
rtx link = i3notes;
while (XEXP (link, 1))
link = XEXP (link, 1);
XEXP (link, 1) = i2notes;
}
else
i3notes = i2notes;
i2notes = 0;
}
LOG_LINKS (i3) = 0;
REG_NOTES (i3) = 0;
LOG_LINKS (i2) = 0;
REG_NOTES (i2) = 0;
if (newi2pat)
{
INSN_CODE (i2) = i2_code_number;
PATTERN (i2) = newi2pat;
}
else
{
PUT_CODE (i2, NOTE);
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (i2) = 0;
}
if (i1)
{
LOG_LINKS (i1) = 0;
REG_NOTES (i1) = 0;
PUT_CODE (i1, NOTE);
NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (i1) = 0;
}
/* Get death notes for everything that is now used in either I3 or
I2 and used to die in a previous insn. */
move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3, &midnotes);
if (newi2pat)
move_deaths (newi2pat, INSN_CUID (i1), i2, &midnotes);
/* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
if (i3notes)
distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
if (i2notes)
distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
if (i1notes)
distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
if (midnotes)
distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
elim_i2, elim_i1);
/* Distribute any notes added to I2 or I3 by recog_for_combine. We
know these are REG_UNUSED and want them to go to the desired insn,
so we always pass it as i3. We have not counted the notes in
reg_n_deaths yet, so we need to do so now. */
if (newi2pat && new_i2_notes)
{
for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
if (GET_CODE (XEXP (temp, 0)) == REG)
reg_n_deaths[REGNO (XEXP (temp, 0))]++;
distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
}
if (new_i3_notes)
{
for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
if (GET_CODE (XEXP (temp, 0)) == REG)
reg_n_deaths[REGNO (XEXP (temp, 0))]++;
distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
}
/* If I3DEST was used in I3SRC, it really died in I3. We may need to
put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
Show an additional death due to the REG_DEAD note we make here. If
we discard it in distribute_notes, we will decrement it again. */
if (i3dest_killed)
{
if (GET_CODE (i3dest_killed) == REG)
reg_n_deaths[REGNO (i3dest_killed)]++;
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
NULL_RTX),
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
NULL_RTX, NULL_RTX);
}
/* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
we passed I3 in that case, it might delete I2. */
if (i2dest_in_i2src)
{
if (GET_CODE (i2dest) == REG)
reg_n_deaths[REGNO (i2dest)]++;
if (newi2pat && reg_set_p (i2dest, newi2pat))
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
else
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, NULL_RTX),
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
NULL_RTX, NULL_RTX);
}
if (i1dest_in_i1src)
{
if (GET_CODE (i1dest) == REG)
reg_n_deaths[REGNO (i1dest)]++;
if (newi2pat && reg_set_p (i1dest, newi2pat))
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
else
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, NULL_RTX),
NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
NULL_RTX, NULL_RTX);
}
distribute_links (i3links);
distribute_links (i2links);
distribute_links (i1links);
if (GET_CODE (i2dest) == REG)
{
rtx link;
rtx i2_insn = 0, i2_val = 0, set;
/* The insn that used to set this register doesn't exist, and
this life of the register may not exist either. See if one of
I3's links points to an insn that sets I2DEST. If it does,
that is now the last known value for I2DEST. If we don't update
this and I2 set the register to a value that depended on its old
contents, we will get confused. If this insn is used, thing
will be set correctly in combine_instructions. */
for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
if ((set = single_set (XEXP (link, 0))) != 0
&& rtx_equal_p (i2dest, SET_DEST (set)))
i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
record_value_for_reg (i2dest, i2_insn, i2_val);
/* If the reg formerly set in I2 died only once and that was in I3,
zero its use count so it won't make `reload' do any work. */
if (! added_sets_2 && newi2pat == 0 && ! i2dest_in_i2src)
{
regno = REGNO (i2dest);
reg_n_sets[regno]--;
if (reg_n_sets[regno] == 0
&& ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
reg_n_refs[regno] = 0;
}
}
if (i1 && GET_CODE (i1dest) == REG)
{
rtx link;
rtx i1_insn = 0, i1_val = 0, set;
for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
if ((set = single_set (XEXP (link, 0))) != 0
&& rtx_equal_p (i1dest, SET_DEST (set)))
i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
record_value_for_reg (i1dest, i1_insn, i1_val);
regno = REGNO (i1dest);
if (! added_sets_1 && ! i1dest_in_i1src)
{
reg_n_sets[regno]--;
if (reg_n_sets[regno] == 0
&& ! (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
reg_n_refs[regno] = 0;
}
}
/* Update reg_nonzero_bits et al for any changes that may have been made
to this insn. */
note_stores (newpat, set_nonzero_bits_and_sign_copies);
if (newi2pat)
note_stores (newi2pat, set_nonzero_bits_and_sign_copies);
/* If we added any (clobber (scratch)), add them to the max for a
block. This is a very pessimistic calculation, since we might
have had them already and this might not be the worst block, but
it's not worth doing any better. */
max_scratch += i3_scratches + i2_scratches + other_scratches;
/* If I3 is now an unconditional jump, ensure that it has a
BARRIER following it since it may have initially been a
conditional jump. It may also be the last nonnote insn. */
if ((GET_CODE (newpat) == RETURN || simplejump_p (i3))
&& ((temp = next_nonnote_insn (i3)) == NULL_RTX
|| GET_CODE (temp) != BARRIER))
emit_barrier_after (i3);
}
combine_successes++;
/* Clear this here, so that subsequent get_last_value calls are not
affected. */
subst_prev_insn = NULL_RTX;
if (added_links_insn
&& (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
&& INSN_CUID (added_links_insn) < INSN_CUID (i3))
return added_links_insn;
else
return newi2pat ? i2 : i3;
}
/* Undo all the modifications recorded in undobuf. */
static void
undo_all ()
{
register int i;
if (undobuf.num_undo > MAX_UNDO)
undobuf.num_undo = MAX_UNDO;
for (i = undobuf.num_undo - 1; i >= 0; i--)
{
if (undobuf.undo[i].is_int)
*undobuf.undo[i].where.i = undobuf.undo[i].old_contents.i;
else
*undobuf.undo[i].where.r = undobuf.undo[i].old_contents.r;
}
obfree (undobuf.storage);
undobuf.num_undo = 0;
/* Clear this here, so that subsequent get_last_value calls are not
affected. */
subst_prev_insn = NULL_RTX;
}
/* Find the innermost point within the rtx at LOC, possibly LOC itself,
where we have an arithmetic expression and return that point. LOC will
be inside INSN.
try_combine will call this function to see if an insn can be split into
two insns. */
static rtx *
find_split_point (loc, insn)
rtx *loc;
rtx insn;
{
rtx x = *loc;
enum rtx_code code = GET_CODE (x);
rtx *split;
int len = 0, pos, unsignedp;
rtx inner;
/* First special-case some codes. */
switch (code)
{
case SUBREG:
#ifdef INSN_SCHEDULING
/* If we are making a paradoxical SUBREG invalid, it becomes a split
point. */
if (GET_CODE (SUBREG_REG (x)) == MEM)
return loc;
#endif
return find_split_point (&SUBREG_REG (x), insn);
case MEM:
#ifdef HAVE_lo_sum
/* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
using LO_SUM and HIGH. */
if (GET_CODE (XEXP (x, 0)) == CONST
|| GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
{
SUBST (XEXP (x, 0),
gen_rtx_combine (LO_SUM, Pmode,
gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
XEXP (x, 0)));
return &XEXP (XEXP (x, 0), 0);
}
#endif
/* If we have a PLUS whose second operand is a constant and the
address is not valid, perhaps will can split it up using
the machine-specific way to split large constants. We use
the first pseudo-reg (one of the virtual regs) as a placeholder;
it will not remain in the result. */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
{
rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
rtx seq = split_insns (gen_rtx (SET, VOIDmode, reg, XEXP (x, 0)),
subst_insn);
/* This should have produced two insns, each of which sets our
placeholder. If the source of the second is a valid address,
we can make put both sources together and make a split point
in the middle. */
if (seq && XVECLEN (seq, 0) == 2
&& GET_CODE (XVECEXP (seq, 0, 0)) == INSN
&& GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
&& SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
&& ! reg_mentioned_p (reg,
SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
&& GET_CODE (XVECEXP (seq, 0, 1)) == INSN
&& GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
&& SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
&& memory_address_p (GET_MODE (x),
SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
{
rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
/* Replace the placeholder in SRC2 with SRC1. If we can
find where in SRC2 it was placed, that can become our
split point and we can replace this address with SRC2.
Just try two obvious places. */
src2 = replace_rtx (src2, reg, src1);
split = 0;
if (XEXP (src2, 0) == src1)
split = &XEXP (src2, 0);
else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
&& XEXP (XEXP (src2, 0), 0) == src1)
split = &XEXP (XEXP (src2, 0), 0);
if (split)
{
SUBST (XEXP (x, 0), src2);
return split;
}
}
/* If that didn't work, perhaps the first operand is complex and
needs to be computed separately, so make a split point there.
This will occur on machines that just support REG + CONST
and have a constant moved through some previous computation. */
else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
&& ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
== 'o')))
return &XEXP (XEXP (x, 0), 0);
}
break;
case SET:
#ifdef HAVE_cc0
/* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
ZERO_EXTRACT, the most likely reason why this doesn't match is that
we need to put the operand into a register. So split at that
point. */
if (SET_DEST (x) == cc0_rtx
&& GET_CODE (SET_SRC (x)) != COMPARE
&& GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
&& GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
&& ! (GET_CODE (SET_SRC (x)) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
return &SET_SRC (x);
#endif
/* See if we can split SET_SRC as it stands. */
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
/* See if this is a bitfield assignment with everything constant. If
so, this is an IOR of an AND, so split it into that. */
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
<= HOST_BITS_PER_WIDE_INT)
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
&& GET_CODE (SET_SRC (x)) == CONST_INT
&& ((INTVAL (XEXP (SET_DEST (x), 1))
+ INTVAL (XEXP (SET_DEST (x), 2)))
<= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
&& ! side_effects_p (XEXP (SET_DEST (x), 0)))
{
int pos = INTVAL (XEXP (SET_DEST (x), 2));
int len = INTVAL (XEXP (SET_DEST (x), 1));
int src = INTVAL (SET_SRC (x));
rtx dest = XEXP (SET_DEST (x), 0);
enum machine_mode mode = GET_MODE (dest);
unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
if (BITS_BIG_ENDIAN)
pos = GET_MODE_BITSIZE (mode) - len - pos;
if (src == mask)
SUBST (SET_SRC (x),
gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
else
SUBST (SET_SRC (x),
gen_binary (IOR, mode,
gen_binary (AND, mode, dest,
GEN_INT (~ (mask << pos)
& GET_MODE_MASK (mode))),
GEN_INT (src << pos)));
SUBST (SET_DEST (x), dest);
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
/* Otherwise, see if this is an operation that we can split into two.
If so, try to split that. */
code = GET_CODE (SET_SRC (x));
switch (code)
{
case AND:
/* If we are AND'ing with a large constant that is only a single
bit and the result is only being used in a context where we
need to know if it is zero or non-zero, replace it with a bit
extraction. This will avoid the large constant, which might
have taken more than one insn to make. If the constant were
not a valid argument to the AND but took only one insn to make,
this is no worse, but if it took more than one insn, it will
be better. */
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_SRC (x), 0)) == REG
&& (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
&& GET_CODE (SET_DEST (x)) == REG
&& (split = find_single_use (SET_DEST (x), insn, NULL_PTR)) != 0
&& (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
&& XEXP (*split, 0) == SET_DEST (x)
&& XEXP (*split, 1) == const0_rtx)
{
SUBST (SET_SRC (x),
make_extraction (GET_MODE (SET_DEST (x)),
XEXP (SET_SRC (x), 0),
pos, NULL_RTX, 1, 1, 0, 0));
return find_split_point (loc, insn);
}
break;
case SIGN_EXTEND:
inner = XEXP (SET_SRC (x), 0);
pos = 0;
len = GET_MODE_BITSIZE (GET_MODE (inner));
unsignedp = 0;
break;
case SIGN_EXTRACT:
case ZERO_EXTRACT:
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
{
inner = XEXP (SET_SRC (x), 0);
len = INTVAL (XEXP (SET_SRC (x), 1));
pos = INTVAL (XEXP (SET_SRC (x), 2));
if (BITS_BIG_ENDIAN)
pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
unsignedp = (code == ZERO_EXTRACT);
}
break;
}
if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
{
enum machine_mode mode = GET_MODE (SET_SRC (x));
/* For unsigned, we have a choice of a shift followed by an
AND or two shifts. Use two shifts for field sizes where the
constant might be too large. We assume here that we can
always at least get 8-bit constants in an AND insn, which is
true for every current RISC. */
if (unsignedp && len <= 8)
{
SUBST (SET_SRC (x),
gen_rtx_combine
(AND, mode,
gen_rtx_combine (LSHIFTRT, mode,
gen_lowpart_for_combine (mode, inner),
GEN_INT (pos)),
GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
else
{
SUBST (SET_SRC (x),
gen_rtx_combine
(unsignedp ? LSHIFTRT : ASHIFTRT, mode,
gen_rtx_combine (ASHIFT, mode,
gen_lowpart_for_combine (mode, inner),
GEN_INT (GET_MODE_BITSIZE (mode)
- len - pos)),
GEN_INT (GET_MODE_BITSIZE (mode) - len)));
split = find_split_point (&SET_SRC (x), insn);
if (split && split != &SET_SRC (x))
return split;
}
}
/* See if this is a simple operation with a constant as the second
operand. It might be that this constant is out of range and hence
could be used as a split point. */
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
&& CONSTANT_P (XEXP (SET_SRC (x), 1))
&& (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
|| (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
== 'o'))))
return &XEXP (SET_SRC (x), 1);
/* Finally, see if this is a simple operation with its first operand
not in a register. The operation might require this operand in a
register, so return it as a split point. We can always do this
because if the first operand were another operation, we would have
already found it as a split point. */
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
&& ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
return &XEXP (SET_SRC (x), 0);
return 0;
case AND:
case IOR:
/* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
it is better to write this as (not (ior A B)) so we can split it.
Similarly for IOR. */
if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
{
SUBST (*loc,
gen_rtx_combine (NOT, GET_MODE (x),
gen_rtx_combine (code == IOR ? AND : IOR,
GET_MODE (x),
XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 1), 0))));
return find_split_point (loc, insn);
}
/* Many RISC machines have a large set of logical insns. If the
second operand is a NOT, put it first so we will try to split the
other operand first. */
if (GET_CODE (XEXP (x, 1)) == NOT)
{
rtx tem = XEXP (x, 0);
SUBST (XEXP (x, 0), XEXP (x, 1));
SUBST (XEXP (x, 1), tem);
}
break;
}
/* Otherwise, select our actions depending on our rtx class. */
switch (GET_RTX_CLASS (code))
{
case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
case '3':
split = find_split_point (&XEXP (x, 2), insn);
if (split)
return split;
/* ... fall through ... */
case '2':
case 'c':
case '<':
split = find_split_point (&XEXP (x, 1), insn);
if (split)
return split;
/* ... fall through ... */
case '1':
/* Some machines have (and (shift ...) ...) insns. If X is not
an AND, but XEXP (X, 0) is, use it as our split point. */
if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
return &XEXP (x, 0);
split = find_split_point (&XEXP (x, 0), insn);
if (split)
return split;
return loc;
}
/* Otherwise, we don't have a split point. */
return 0;
}
/* Throughout X, replace FROM with TO, and return the result.
The result is TO if X is FROM;
otherwise the result is X, but its contents may have been modified.
If they were modified, a record was made in undobuf so that
undo_all will (among other things) return X to its original state.
If the number of changes necessary is too much to record to undo,
the excess changes are not made, so the result is invalid.
The changes already made can still be undone.
undobuf.num_undo is incremented for such changes, so by testing that
the caller can tell whether the result is valid.
`n_occurrences' is incremented each time FROM is replaced.
IN_DEST is non-zero if we are processing the SET_DEST of a SET.
UNIQUE_COPY is non-zero if each substitution must be unique. We do this
by copying if `n_occurrences' is non-zero. */
static rtx
subst (x, from, to, in_dest, unique_copy)
register rtx x, from, to;
int in_dest;
int unique_copy;
{
register enum rtx_code code = GET_CODE (x);
enum machine_mode op0_mode = VOIDmode;
register char *fmt;
register int len, i;
rtx new;
/* Two expressions are equal if they are identical copies of a shared
RTX or if they are both registers with the same register number
and mode. */
#define COMBINE_RTX_EQUAL_P(X,Y) \
((X) == (Y) \
|| (GET_CODE (X) == REG && GET_CODE (Y) == REG \
&& REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
{
n_occurrences++;
return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
}
/* If X and FROM are the same register but different modes, they will
not have been seen as equal above. However, flow.c will make a
LOG_LINKS entry for that case. If we do nothing, we will try to
rerecognize our original insn and, when it succeeds, we will
delete the feeding insn, which is incorrect.
So force this insn not to match in this (rare) case. */
if (! in_dest && code == REG && GET_CODE (from) == REG
&& REGNO (x) == REGNO (from))
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
/* If this is an object, we are done unless it is a MEM or LO_SUM, both
of which may contain things that can be combined. */
if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
return x;
/* It is possible to have a subexpression appear twice in the insn.
Suppose that FROM is a register that appears within TO.
Then, after that subexpression has been scanned once by `subst',
the second time it is scanned, TO may be found. If we were
to scan TO here, we would find FROM within it and create a
self-referent rtl structure which is completely wrong. */
if (COMBINE_RTX_EQUAL_P (x, to))
return to;
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
/* We don't need to process a SET_DEST that is a register, CC0, or PC, so
set up to skip this common case. All other cases where we want to
suppress replacing something inside a SET_SRC are handled via the
IN_DEST operand. */
if (code == SET
&& (GET_CODE (SET_DEST (x)) == REG
|| GET_CODE (SET_DEST (x)) == CC0
|| GET_CODE (SET_DEST (x)) == PC))
fmt = "ie";
/* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
if (fmt[0] == 'e')
op0_mode = GET_MODE (XEXP (x, 0));
for (i = 0; i < len; i++)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
{
if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
{
new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
n_occurrences++;
}
else
{
new = subst (XVECEXP (x, i, j), from, to, 0, unique_copy);
/* If this substitution failed, this whole thing fails. */
if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
return new;
}
SUBST (XVECEXP (x, i, j), new);
}
}
else if (fmt[i] == 'e')
{
if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
{
/* In general, don't install a subreg involving two modes not
tieable. It can worsen register allocation, and can even
make invalid reload insns, since the reg inside may need to
be copied from in the outside mode, and that may be invalid
if it is an fp reg copied in integer mode.
We allow two exceptions to this: It is valid if it is inside
another SUBREG and the mode of that SUBREG and the mode of
the inside of TO is tieable and it is valid if X is a SET
that copies FROM to CC0. */
if (GET_CODE (to) == SUBREG
&& ! MODES_TIEABLE_P (GET_MODE (to),
GET_MODE (SUBREG_REG (to)))
&& ! (code == SUBREG
&& MODES_TIEABLE_P (GET_MODE (x),
GET_MODE (SUBREG_REG (to))))
#ifdef HAVE_cc0
&& ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
#endif
)
return gen_rtx (CLOBBER, VOIDmode, const0_rtx);
new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
n_occurrences++;
}
else
/* If we are in a SET_DEST, suppress most cases unless we
have gone inside a MEM, in which case we want to
simplify the address. We assume here that things that
are actually part of the destination have their inner
parts in the first expression. This is true for SUBREG,
STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
things aside from REG and MEM that should appear in a
SET_DEST. */
new = subst (XEXP (x, i), from, to,
(((in_dest
&& (code == SUBREG || code == STRICT_LOW_PART
|| code == ZERO_EXTRACT))
|| code == SET)
&& i == 0), unique_copy);
/* If we found that we will have to reject this combination,
indicate that by returning the CLOBBER ourselves, rather than
an expression containing it. This will speed things up as
well as prevent accidents where two CLOBBERs are considered
to be equal, thus producing an incorrect simplification. */
if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
return new;
SUBST (XEXP (x, i), new);
}
}
/* Try to simplify X. If the simplification changed the code, it is likely
that further simplification will help, so loop, but limit the number
of repetitions that will be performed. */
for (i = 0; i < 4; i++)
{
/* If X is sufficiently simple, don't bother trying to do anything
with it. */
if (code != CONST_INT && code != REG && code != CLOBBER)
x = simplify_rtx (x, op0_mode, i == 3, in_dest);
if (GET_CODE (x) == code)
break;
code = GET_CODE (x);
/* We no longer know the original mode of operand 0 since we
have changed the form of X) */
op0_mode = VOIDmode;
}
return x;
}
/* Simplify X, a piece of RTL. We just operate on the expression at the
outer level; call `subst' to simplify recursively. Return the new
expression.
OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
will be the iteration even if an expression with a code different from
X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
static rtx
simplify_rtx (x, op0_mode, last, in_dest)
rtx x;
enum machine_mode op0_mode;
int last;
int in_dest;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
rtx temp;
int i;
/* If this is a commutative operation, put a constant last and a complex
expression first. We don't need to do this for comparisons here. */
if (GET_RTX_CLASS (code) == 'c'
&& ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
|| (GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
{
temp = XEXP (x, 0);
SUBST (XEXP (x, 0), XEXP (x, 1));
SUBST (XEXP (x, 1), temp);
}
/* If this is a PLUS, MINUS, or MULT, and the first operand is the
sign extension of a PLUS with a constant, reverse the order of the sign
extension and the addition. Note that this not the same as the original
code, but overflow is undefined for signed values. Also note that the
PLUS will have been partially moved "inside" the sign-extension, so that
the first operand of X will really look like:
(ashiftrt (plus (ashift A C4) C5) C4).
We convert this to
(plus (ashiftrt (ashift A C4) C2) C4)
and replace the first operand of X with that expression. Later parts
of this function may simplify the expression further.
For example, if we start with (mult (sign_extend (plus A C1)) C2),
we swap the SIGN_EXTEND and PLUS. Later code will apply the
distributive law to produce (plus (mult (sign_extend X) C1) C3).
We do this to simplify address expressions. */
if ((code == PLUS || code == MINUS || code == MULT)
&& GET_CODE (XEXP (x, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& (temp = simplify_binary_operation (ASHIFTRT, mode,
XEXP (XEXP (XEXP (x, 0), 0), 1),
XEXP (XEXP (x, 0), 1))) != 0)
{
rtx new
= simplify_shift_const (NULL_RTX, ASHIFT, mode,
XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
INTVAL (XEXP (XEXP (x, 0), 1)));
new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
INTVAL (XEXP (XEXP (x, 0), 1)));
SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
}
/* If this is a simple operation applied to an IF_THEN_ELSE, try
applying it to the arms of the IF_THEN_ELSE. This often simplifies
things. Check for cases where both arms are testing the same
condition.
Don't do anything if all operands are very simple. */
if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
|| GET_RTX_CLASS (code) == '<')
&& ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
== 'o')))
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
&& ! (GET_CODE (XEXP (x, 1)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
== 'o')))))
|| (GET_RTX_CLASS (code) == '1'
&& ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
== 'o'))))))
{
rtx cond, true, false;
cond = if_then_else_cond (x, &true, &false);
if (cond != 0)
{
rtx cop1 = const0_rtx;
enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
return x;
/* Simplify the alternative arms; this may collapse the true and
false arms to store-flag values. */
true = subst (true, pc_rtx, pc_rtx, 0, 0);
false = subst (false, pc_rtx, pc_rtx, 0, 0);
/* Restarting if we generate a store-flag expression will cause
us to loop. Just drop through in this case. */
/* If the result values are STORE_FLAG_VALUE and zero, we can
just make the comparison operation. */
if (true == const_true_rtx && false == const0_rtx)
x = gen_binary (cond_code, mode, cond, cop1);
else if (true == const0_rtx && false == const_true_rtx)
x = gen_binary (reverse_condition (cond_code), mode, cond, cop1);
/* Likewise, we can make the negate of a comparison operation
if the result values are - STORE_FLAG_VALUE and zero. */
else if (GET_CODE (true) == CONST_INT
&& INTVAL (true) == - STORE_FLAG_VALUE
&& false == const0_rtx)
x = gen_unary (NEG, mode, mode,
gen_binary (cond_code, mode, cond, cop1));
else if (GET_CODE (false) == CONST_INT
&& INTVAL (false) == - STORE_FLAG_VALUE
&& true == const0_rtx)
x = gen_unary (NEG, mode, mode,
gen_binary (reverse_condition (cond_code),
mode, cond, cop1));
else
return gen_rtx (IF_THEN_ELSE, mode,
gen_binary (cond_code, VOIDmode, cond, cop1),
true, false);
code = GET_CODE (x);
op0_mode = VOIDmode;
}
}
/* Try to fold this expression in case we have constants that weren't
present before. */
temp = 0;
switch (GET_RTX_CLASS (code))
{
case '1':
temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
break;
case '<':
temp = simplify_relational_operation (code, op0_mode,
XEXP (x, 0), XEXP (x, 1));
#ifdef FLOAT_STORE_FLAG_VALUE
if (temp != 0 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
temp = ((temp == const0_rtx) ? CONST0_RTX (GET_MODE (x))
: immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, GET_MODE (x)));
#endif
break;
case 'c':
case '2':
temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
break;
case 'b':
case '3':
temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
XEXP (x, 1), XEXP (x, 2));
break;
}
if (temp)
x = temp, code = GET_CODE (temp);
/* First see if we can apply the inverse distributive law. */
if (code == PLUS || code == MINUS
|| code == AND || code == IOR || code == XOR)
{
x = apply_distributive_law (x);
code = GET_CODE (x);
}
/* If CODE is an associative operation not otherwise handled, see if we
can associate some operands. This can win if they are constants or
if they are logically related (i.e. (a & b) & a. */
if ((code == PLUS || code == MINUS
|| code == MULT || code == AND || code == IOR || code == XOR
|| code == DIV || code == UDIV
|| code == SMAX || code == SMIN || code == UMAX || code == UMIN)
&& INTEGRAL_MODE_P (mode))
{
if (GET_CODE (XEXP (x, 0)) == code)
{
rtx other = XEXP (XEXP (x, 0), 0);
rtx inner_op0 = XEXP (XEXP (x, 0), 1);
rtx inner_op1 = XEXP (x, 1);
rtx inner;
/* Make sure we pass the constant operand if any as the second
one if this is a commutative operation. */
if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
{
rtx tem = inner_op0;
inner_op0 = inner_op1;
inner_op1 = tem;
}
inner = simplify_binary_operation (code == MINUS ? PLUS
: code == DIV ? MULT
: code == UDIV ? MULT
: code,
mode, inner_op0, inner_op1);
/* For commutative operations, try the other pair if that one
didn't simplify. */
if (inner == 0 && GET_RTX_CLASS (code) == 'c')
{
other = XEXP (XEXP (x, 0), 1);
inner = simplify_binary_operation (code, mode,
XEXP (XEXP (x, 0), 0),
XEXP (x, 1));
}
if (inner)
return gen_binary (code, mode, other, inner);
}
}
/* A little bit of algebraic simplification here. */
switch (code)
{
case MEM:
/* Ensure that our address has any ASHIFTs converted to MULT in case
address-recognizing predicates are called later. */
temp = make_compound_operation (XEXP (x, 0), MEM);
SUBST (XEXP (x, 0), temp);
break;
case SUBREG:
/* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
is paradoxical. If we can't do that safely, then it becomes
something nonsensical so that this combination won't take place. */
if (GET_CODE (SUBREG_REG (x)) == MEM
&& (GET_MODE_SIZE (mode)
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
rtx inner = SUBREG_REG (x);
int endian_offset = 0;
/* Don't change the mode of the MEM
if that would change the meaning of the address. */
if (MEM_VOLATILE_P (SUBREG_REG (x))
|| mode_dependent_address_p (XEXP (inner, 0)))
return gen_rtx (CLOBBER, mode, const0_rtx);
if (BYTES_BIG_ENDIAN)
{
if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
endian_offset -= (UNITS_PER_WORD
- GET_MODE_SIZE (GET_MODE (inner)));
}
/* Note if the plus_constant doesn't make a valid address
then this combination won't be accepted. */
x = gen_rtx (MEM, mode,
plus_constant (XEXP (inner, 0),
(SUBREG_WORD (x) * UNITS_PER_WORD
+ endian_offset)));
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
return x;
}
/* If we are in a SET_DEST, these other cases can't apply. */
if (in_dest)
return x;
/* Changing mode twice with SUBREG => just change it once,
or not at all if changing back to starting mode. */
if (GET_CODE (SUBREG_REG (x)) == SUBREG)
{
if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
&& SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
return SUBREG_REG (SUBREG_REG (x));
SUBST_INT (SUBREG_WORD (x),
SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
}
/* SUBREG of a hard register => just change the register number
and/or mode. If the hard register is not valid in that mode,
suppress this combination. If the hard register is the stack,
frame, or argument pointer, leave this as a SUBREG. */
if (GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
&& REGNO (SUBREG_REG (x)) != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
&& REGNO (SUBREG_REG (x)) != HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& REGNO (SUBREG_REG (x)) != ARG_POINTER_REGNUM
#endif
&& REGNO (SUBREG_REG (x)) != STACK_POINTER_REGNUM)
{
if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x)) + SUBREG_WORD (x),
mode))
return gen_rtx (REG, mode,
REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
else
return gen_rtx (CLOBBER, mode, const0_rtx);
}
/* For a constant, try to pick up the part we want. Handle a full
word and low-order part. Only do this if we are narrowing
the constant; if it is being widened, we have no idea what
the extra bits will have been set to. */
if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
&& GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD
&& GET_MODE_CLASS (mode) == MODE_INT)
{
temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
0, op0_mode);
if (temp)
return temp;
}
/* If we want a subreg of a constant, at offset 0,
take the low bits. On a little-endian machine, that's
always valid. On a big-endian machine, it's valid
only if the constant's mode fits in one word. */
if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x)
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (op0_mode)
&& (! WORDS_BIG_ENDIAN
|| GET_MODE_BITSIZE (op0_mode) <= BITS_PER_WORD))
return gen_lowpart_for_combine (mode, SUBREG_REG (x));
/* A paradoxical SUBREG of a VOIDmode constant is the same constant,
since we are saying that the high bits don't matter. */
if (CONSTANT_P (SUBREG_REG (x)) && GET_MODE (SUBREG_REG (x)) == VOIDmode
&& GET_MODE_SIZE (mode) > GET_MODE_SIZE (op0_mode))
return SUBREG_REG (x);
/* Note that we cannot do any narrowing for non-constants since
we might have been counting on using the fact that some bits were
zero. We now do this in the SET. */
break;
case NOT:
/* (not (plus X -1)) can become (neg X). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 1) == constm1_rtx)
return gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
/* Similarly, (not (neg X)) is (plus X -1). */
if (GET_CODE (XEXP (x, 0)) == NEG)
return gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0),
constm1_rtx);
/* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
if (GET_CODE (XEXP (x, 0)) == XOR
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (temp = simplify_unary_operation (NOT, mode,
XEXP (XEXP (x, 0), 1),
mode)) != 0)
return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
other than 1, but that is not valid. We could do a similar
simplification for (not (lshiftrt C X)) where C is just the sign bit,
but this doesn't seem common enough to bother with. */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& XEXP (XEXP (x, 0), 0) == const1_rtx)
return gen_rtx (ROTATE, mode, gen_unary (NOT, mode, mode, const1_rtx),
XEXP (XEXP (x, 0), 1));
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
&& XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
x = gen_rtx (ROTATE, inner_mode,
gen_unary (NOT, inner_mode, inner_mode, const1_rtx),
XEXP (SUBREG_REG (XEXP (x, 0)), 1));
return gen_lowpart_for_combine (mode, x);
}
#if STORE_FLAG_VALUE == -1
/* (not (comparison foo bar)) can be done by reversing the comparison
code if valid. */
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& reversible_comparison_p (XEXP (x, 0)))
return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1));
/* (ashiftrt foo C) where C is the number of bits in FOO minus 1
is (lt foo (const_int 0)), so we can perform the above
simplification. */
if (XEXP (x, 1) == const1_rtx
&& GET_CODE (XEXP (x, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
return gen_rtx_combine (GE, mode, XEXP (XEXP (x, 0), 0), const0_rtx);
#endif
/* Apply De Morgan's laws to reduce number of patterns for machines
with negating logical insns (and-not, nand, etc.). If result has
only one NOT, put it first, since that is how the patterns are
coded. */
if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
{
rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
if (GET_CODE (in1) == NOT)
in1 = XEXP (in1, 0);
else
in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
if (GET_CODE (in2) == NOT)
in2 = XEXP (in2, 0);
else if (GET_CODE (in2) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
in2 = GEN_INT (GET_MODE_MASK (mode) & ~ INTVAL (in2));
else
in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
if (GET_CODE (in2) == NOT)
{
rtx tem = in2;
in2 = in1; in1 = tem;
}
return gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
mode, in1, in2);
}
break;
case NEG:
/* (neg (plus X 1)) can become (not X). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
return gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
/* Similarly, (neg (not X)) is (plus X 1). */
if (GET_CODE (XEXP (x, 0)) == NOT)
return plus_constant (XEXP (XEXP (x, 0), 0), 1);
/* (neg (minus X Y)) can become (minus Y X). */
if (GET_CODE (XEXP (x, 0)) == MINUS
&& (! FLOAT_MODE_P (mode)
/* x-y != -(y-x) with IEEE floating point. */
|| TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| flag_fast_math))
return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
XEXP (XEXP (x, 0), 0));
/* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
&& nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
/* NEG commutes with ASHIFT since it is multiplication. Only do this
if we can then eliminate the NEG (e.g.,
if the operand is a constant). */
if (GET_CODE (XEXP (x, 0)) == ASHIFT)
{
temp = simplify_unary_operation (NEG, mode,
XEXP (XEXP (x, 0), 0), mode);
if (temp)
{
SUBST (XEXP (XEXP (x, 0), 0), temp);
return XEXP (x, 0);
}
}
temp = expand_compound_operation (XEXP (x, 0));
/* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
replaced by (lshiftrt X C). This will convert
(neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
if (GET_CODE (temp) == ASHIFTRT
&& GET_CODE (XEXP (temp, 1)) == CONST_INT
&& INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
INTVAL (XEXP (temp, 1)));
/* If X has only a single bit that might be nonzero, say, bit I, convert
(neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
(sign_extract X 1 Y). But only do this if TEMP isn't a register
or a SUBREG of one since we'd be making the expression more
complex if it was just a register. */
if (GET_CODE (temp) != REG
&& ! (GET_CODE (temp) == SUBREG
&& GET_CODE (SUBREG_REG (temp)) == REG)
&& (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
{
rtx temp1 = simplify_shift_const
(NULL_RTX, ASHIFTRT, mode,
simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
GET_MODE_BITSIZE (mode) - 1 - i),
GET_MODE_BITSIZE (mode) - 1 - i);
/* If all we did was surround TEMP with the two shifts, we
haven't improved anything, so don't use it. Otherwise,
we are better off with TEMP1. */
if (GET_CODE (temp1) != ASHIFTRT
|| GET_CODE (XEXP (temp1, 0)) != ASHIFT
|| XEXP (XEXP (temp1, 0), 0) != temp)
return temp1;
}
break;
case TRUNCATE:
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
SUBST (XEXP (x, 0),
force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
GET_MODE_MASK (mode), NULL_RTX, 0));
break;
case FLOAT_TRUNCATE:
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
return XEXP (XEXP (x, 0), 0);
/* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
(OP:SF foo:SF) if OP is NEG or ABS. */
if ((GET_CODE (XEXP (x, 0)) == ABS
|| GET_CODE (XEXP (x, 0)) == NEG)
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
&& GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
return gen_unary (GET_CODE (XEXP (x, 0)), mode, mode,
XEXP (XEXP (XEXP (x, 0), 0), 0));
/* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
is (float_truncate:SF x). */
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
return SUBREG_REG (XEXP (x, 0));
break;
#ifdef HAVE_cc0
case COMPARE:
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
using cc0, in which case we want to leave it as a COMPARE
so we can distinguish it from a register-register-copy. */
if (XEXP (x, 1) == const0_rtx)
return XEXP (x, 0);
/* In IEEE floating point, x-0 is not the same as x. */
if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
|| flag_fast_math)
&& XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
return XEXP (x, 0);
break;
#endif
case CONST:
/* (const (const X)) can become (const X). Do it this way rather than
returning the inner CONST since CONST can be shared with a
REG_EQUAL note. */
if (GET_CODE (XEXP (x, 0)) == CONST)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
#ifdef HAVE_lo_sum
case LO_SUM:
/* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
can add in an offset. find_split_point will split this address up
again if it doesn't match. */
if (GET_CODE (XEXP (x, 0)) == HIGH
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
return XEXP (x, 1);
break;
#endif
case PLUS:
/* If we have (plus (plus (A const) B)), associate it so that CONST is
outermost. That's because that's the way indexed addresses are
supposed to appear. This code used to check many more cases, but
they are now checked elsewhere. */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
return gen_binary (PLUS, mode,
gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
XEXP (x, 1)),
XEXP (XEXP (x, 0), 1));
/* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
when c is (const_int (pow2 + 1) / 2) is a sign extension of a
bit-field and can be replaced by either a sign_extend or a
sign_extract. The `and' may be a zero_extend. */
if (GET_CODE (XEXP (x, 0)) == XOR
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
&& (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
== ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
== i + 1))))
return simplify_shift_const
(NULL_RTX, ASHIFTRT, mode,
simplify_shift_const (NULL_RTX, ASHIFT, mode,
XEXP (XEXP (XEXP (x, 0), 0), 0),
GET_MODE_BITSIZE (mode) - (i + 1)),
GET_MODE_BITSIZE (mode) - (i + 1));
/* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
is 1. This produces better code than the alternative immediately
below. */
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& reversible_comparison_p (XEXP (x, 0))
&& ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
|| (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx)))
return
gen_unary (NEG, mode, mode,
gen_binary (reverse_condition (GET_CODE (XEXP (x, 0))),
mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1)));
/* If only the low-order bit of X is possibly nonzero, (plus x -1)
can become (ashiftrt (ashift (xor x 1) C) C) where C is
the bitsize of the mode - 1. This allows simplification of
"a = (b & 8) == 0;" */
if (XEXP (x, 1) == constm1_rtx
&& GET_CODE (XEXP (x, 0)) != REG
&& ! (GET_CODE (XEXP (x,0)) == SUBREG
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
&& nonzero_bits (XEXP (x, 0), mode) == 1)
return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
simplify_shift_const (NULL_RTX, ASHIFT, mode,
gen_rtx_combine (XOR, mode,
XEXP (x, 0), const1_rtx),
GET_MODE_BITSIZE (mode) - 1),
GET_MODE_BITSIZE (mode) - 1);
/* If we are adding two things that have no bits in common, convert
the addition into an IOR. This will often be further simplified,
for example in cases like ((a & 1) + (a & 2)), which can
become a & 3. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (x, 0), mode)
& nonzero_bits (XEXP (x, 1), mode)) == 0)
return gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
break;
case MINUS:
#if STORE_FLAG_VALUE == 1
/* (minus 1 (comparison foo bar)) can be done by reversing the comparison
code if valid. */
if (XEXP (x, 0) == const1_rtx
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
&& reversible_comparison_p (XEXP (x, 1)))
return gen_binary (reverse_condition (GET_CODE (XEXP (x, 1))),
mode, XEXP (XEXP (x, 1), 0),
XEXP (XEXP (x, 1), 1));
#endif
/* (minus <foo> (and <foo> (const_int -pow2))) becomes
(and <foo> (const_int pow2-1)) */
if (GET_CODE (XEXP (x, 1)) == AND
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
- INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
/* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
integers. */
if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
return gen_binary (MINUS, mode,
gen_binary (MINUS, mode, XEXP (x, 0),
XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
break;
case MULT:
/* If we have (mult (plus A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. This
occurs mostly in addresses, often when unrolling loops. */
if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,
gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
if (GET_CODE (x) != MULT)
return x;
}
break;
case UDIV:
/* If this is a divide by a power of two, treat it as a shift if
its first operand is a shift. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
&& (GET_CODE (XEXP (x, 0)) == ASHIFT
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT
|| GET_CODE (XEXP (x, 0)) == ASHIFTRT
|| GET_CODE (XEXP (x, 0)) == ROTATE
|| GET_CODE (XEXP (x, 0)) == ROTATERT))
return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
break;
case EQ: case NE:
case GT: case GTU: case GE: case GEU:
case LT: case LTU: case LE: case LEU:
/* If the first operand is a condition code, we can't do anything
with it. */
if (GET_CODE (XEXP (x, 0)) == COMPARE
|| (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
#ifdef HAVE_cc0
&& XEXP (x, 0) != cc0_rtx
#endif
))
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
enum rtx_code new_code;
if (GET_CODE (op0) == COMPARE)
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
/* Simplify our comparison, if possible. */
new_code = simplify_comparison (code, &op0, &op1);
#if STORE_FLAG_VALUE == 1
/* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
if only the low-order bit is possibly nonzero in X (such as when
X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
(xor X 1) or (minus 1 X); we use the former. Finally, if X is
known to be either 0 or -1, NE becomes a NEG and EQ becomes
(plus X 1).
Remove any ZERO_EXTRACT we made when thinking this was a
comparison. It may now be simpler to use, e.g., an AND. If a
ZERO_EXTRACT is indeed appropriate, it will be placed back by
the call to make_compound_operation in the SET case. */
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& nonzero_bits (op0, mode) == 1)
return gen_lowpart_for_combine (mode,
expand_compound_operation (op0));
else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
{
op0 = expand_compound_operation (op0);
return gen_unary (NEG, mode, mode,
gen_lowpart_for_combine (mode, op0));
}
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& nonzero_bits (op0, mode) == 1)
{
op0 = expand_compound_operation (op0);
return gen_binary (XOR, mode,
gen_lowpart_for_combine (mode, op0),
const1_rtx);
}
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
{
op0 = expand_compound_operation (op0);
return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
}
#endif
#if STORE_FLAG_VALUE == -1
/* If STORE_FLAG_VALUE is -1, we have cases similar to
those above. */
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
return gen_lowpart_for_combine (mode,
expand_compound_operation (op0));
else if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& nonzero_bits (op0, mode) == 1)
{
op0 = expand_compound_operation (op0);
return gen_unary (NEG, mode, mode,
gen_lowpart_for_combine (mode, op0));
}
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& (num_sign_bit_copies (op0, mode)
== GET_MODE_BITSIZE (mode)))
{
op0 = expand_compound_operation (op0);
return gen_unary (NOT, mode, mode,
gen_lowpart_for_combine (mode, op0));
}
/* If X is 0/1, (eq X 0) is X-1. */
else if (new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
&& op1 == const0_rtx
&& nonzero_bits (op0, mode) == 1)
{
op0 = expand_compound_operation (op0);
return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
}
#endif
/* If STORE_FLAG_VALUE says to just test the sign bit and X has just
one bit that might be nonzero, we can convert (ne x 0) to
(ashift x c) where C puts the bit in the sign bit. Remove any
AND with STORE_FLAG_VALUE when we are done, since we are only
going to test the sign bit. */
if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (STORE_FLAG_VALUE
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
{
x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
expand_compound_operation (op0),
GET_MODE_BITSIZE (mode) - 1 - i);
if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
return XEXP (x, 0);
else
return x;
}
/* If the code changed, return a whole new comparison. */
if (new_code != code)
return gen_rtx_combine (new_code, mode, op0, op1);
/* Otherwise, keep this operation, but maybe change its operands.
This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
SUBST (XEXP (x, 0), op0);
SUBST (XEXP (x, 1), op1);
}
break;
case IF_THEN_ELSE:
return simplify_if_then_else (x);
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case ZERO_EXTEND:
case SIGN_EXTEND:
/* If we are processing SET_DEST, we are done. */
if (in_dest)
return x;
return expand_compound_operation (x);
case SET:
return simplify_set (x);
case AND:
case IOR:
case XOR:
return simplify_logical (x, last);
case ABS:
/* (abs (neg <foo>)) -> (abs <foo>) */
if (GET_CODE (XEXP (x, 0)) == NEG)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
/* If operand is something known to be positive, ignore the ABS. */
if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
|| ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
== 0)))
return XEXP (x, 0);
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
return gen_rtx_combine (NEG, mode, XEXP (x, 0));
break;
case FFS:
/* (ffs (*_extend <X>)) = (ffs <X>) */
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
case FLOAT:
/* (float (sign_extend <X>)) = (float <X>). */
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
case ROTATE:
case ROTATERT:
/* If this is a shift by a constant amount, simplify it. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
return simplify_shift_const (x, code, mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)));
#ifdef SHIFT_COUNT_TRUNCATED
else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
SUBST (XEXP (x, 1),
force_to_mode (XEXP (x, 1), GET_MODE (x),
((HOST_WIDE_INT) 1
<< exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
- 1,
NULL_RTX, 0));
#endif
break;
}
return x;
}
/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
static rtx
simplify_if_then_else (x)
rtx x;
{
enum machine_mode mode = GET_MODE (x);
rtx cond = XEXP (x, 0);
rtx true = XEXP (x, 1);
rtx false = XEXP (x, 2);
enum rtx_code true_code = GET_CODE (cond);
int comparison_p = GET_RTX_CLASS (true_code) == '<';
rtx temp;
int i;
/* Simplify storing of the truth value. */
if (comparison_p && true == const_true_rtx && false == const0_rtx)
return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
/* Also when the truth value has to be reversed. */
if (comparison_p && reversible_comparison_p (cond)
&& true == const0_rtx && false == const_true_rtx)
return gen_binary (reverse_condition (true_code),
mode, XEXP (cond, 0), XEXP (cond, 1));
/* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
in it is being compared against certain values. Get the true and false
comparisons and see if that says anything about the value of each arm. */
if (comparison_p && reversible_comparison_p (cond)
&& GET_CODE (XEXP (cond, 0)) == REG)
{
HOST_WIDE_INT nzb;
rtx from = XEXP (cond, 0);
enum rtx_code false_code = reverse_condition (true_code);
rtx true_val = XEXP (cond, 1);
rtx false_val = true_val;
int swapped = 0;
/* If FALSE_CODE is EQ, swap the codes and arms. */
if (false_code == EQ)
{
swapped = 1, true_code = EQ, false_code = NE;
temp = true, true = false, false = temp;
}
/* If we are comparing against zero and the expression being tested has
only a single bit that might be nonzero, that is its value when it is
not equal to zero. Similarly if it is known to be -1 or 0. */
if (true_code == EQ && true_val == const0_rtx
&& exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
false_code = EQ, false_val = GEN_INT (nzb);
else if (true_code == EQ && true_val == const0_rtx
&& (num_sign_bit_copies (from, GET_MODE (from))
== GET_MODE_BITSIZE (GET_MODE (from))))
false_code = EQ, false_val = constm1_rtx;
/* Now simplify an arm if we know the value of the register in the
branch and it is used in the arm. Be careful due to the potential
of locally-shared RTL. */
if (reg_mentioned_p (from, true))
true = subst (known_cond (copy_rtx (true), true_code, from, true_val),
pc_rtx, pc_rtx, 0, 0);
if (reg_mentioned_p (from, false))
false = subst (known_cond (copy_rtx (false), false_code,
from, false_val),
pc_rtx, pc_rtx, 0, 0);
SUBST (XEXP (x, 1), swapped ? false : true);
SUBST (XEXP (x, 2), swapped ? true : false);
true = XEXP (x, 1), false = XEXP (x, 2), true_code = GET_CODE (cond);
}
/* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
reversed, do so to avoid needing two sets of patterns for
subtract-and-branch insns. Similarly if we have a constant in the true
arm, the false arm is the same as the first operand of the comparison, or
the false arm is more complicated than the true arm. */
if (comparison_p && reversible_comparison_p (cond)
&& (true == pc_rtx
|| (CONSTANT_P (true)
&& GET_CODE (false) != CONST_INT && false != pc_rtx)
|| true == const0_rtx
|| (GET_RTX_CLASS (GET_CODE (true)) == 'o'
&& GET_RTX_CLASS (GET_CODE (false)) != 'o')
|| (GET_CODE (true) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
&& GET_RTX_CLASS (GET_CODE (false)) != 'o')
|| reg_mentioned_p (true, false)
|| rtx_equal_p (false, XEXP (cond, 0))))
{
true_code = reverse_condition (true_code);
SUBST (XEXP (x, 0),
gen_binary (true_code, GET_MODE (cond), XEXP (cond, 0),
XEXP (cond, 1)));
SUBST (XEXP (x, 1), false);
SUBST (XEXP (x, 2), true);
temp = true, true = false, false = temp, cond = XEXP (x, 0);
}
/* If the two arms are identical, we don't need the comparison. */
if (rtx_equal_p (true, false) && ! side_effects_p (cond))
return true;
/* Look for cases where we have (abs x) or (neg (abs X)). */
if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_CODE (false) == NEG
&& rtx_equal_p (true, XEXP (false, 0))
&& comparison_p
&& rtx_equal_p (true, XEXP (cond, 0))
&& ! side_effects_p (true))
switch (true_code)
{
case GT:
case GE:
return gen_unary (ABS, mode, mode, true);
case LT:
case LE:
return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
}
/* Look for MIN or MAX. */
if ((! FLOAT_MODE_P (mode) || flag_fast_math)
&& comparison_p
&& rtx_equal_p (XEXP (cond, 0), true)
&& rtx_equal_p (XEXP (cond, 1), false)
&& ! side_effects_p (cond))
switch (true_code)
{
case GE:
case GT:
return gen_binary (SMAX, mode, true, false);
case LE:
case LT:
return gen_binary (SMIN, mode, true, false);
case GEU:
case GTU:
return gen_binary (UMAX, mode, true, false);
case LEU:
case LTU:
return gen_binary (UMIN, mode, true, false);
}
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
/* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
second operand is zero, this can be done as (OP Z (mult COND C2)) where
C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
We can do this kind of thing in some cases when STORE_FLAG_VALUE is
neither of the above, but it isn't worth checking for. */
if (comparison_p && mode != VOIDmode && ! side_effects_p (x))
{
rtx t = make_compound_operation (true, SET);
rtx f = make_compound_operation (false, SET);
rtx cond_op0 = XEXP (cond, 0);
rtx cond_op1 = XEXP (cond, 1);
enum rtx_code op, extend_op = NIL;
enum machine_mode m = mode;
rtx z = 0, c1;
if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
|| GET_CODE (t) == IOR || GET_CODE (t) == XOR
|| GET_CODE (t) == ASHIFT
|| GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
&& rtx_equal_p (XEXP (t, 0), f))
c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
/* If an identity-zero op is commutative, check whether there
would be a match if we swapped the operands. */
else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
|| GET_CODE (t) == XOR)
&& rtx_equal_p (XEXP (t, 1), f))
c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
else if (GET_CODE (t) == SIGN_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == MINUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
&& (num_sign_bit_copies (f, GET_MODE (f))
> (GET_MODE_BITSIZE (mode)
- GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
{
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = SIGN_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
else if (GET_CODE (t) == SIGN_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR)
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
&& (num_sign_bit_copies (f, GET_MODE (f))
> (GET_MODE_BITSIZE (mode)
- GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
{
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = SIGN_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
else if (GET_CODE (t) == ZERO_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == MINUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
&& ((nonzero_bits (f, GET_MODE (f))
& ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
== 0))
{
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = ZERO_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
else if (GET_CODE (t) == ZERO_EXTEND
&& (GET_CODE (XEXP (t, 0)) == PLUS
|| GET_CODE (XEXP (t, 0)) == IOR
|| GET_CODE (XEXP (t, 0)) == XOR)
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
&& ((nonzero_bits (f, GET_MODE (f))
& ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
== 0))
{
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
extend_op = ZERO_EXTEND;
m = GET_MODE (XEXP (t, 0));
}
if (z)
{
temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
pc_rtx, pc_rtx, 0, 0);
temp = gen_binary (MULT, m, temp,
gen_binary (MULT, m, c1, const_true_rtx));
temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
if (extend_op != NIL)
temp = gen_unary (extend_op, mode, m, temp);
return temp;
}
}
#endif
/* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
negation of a single bit, we can convert this operation to a shift. We
can actually do this more generally, but it doesn't seem worth it. */
if (true_code == NE && XEXP (cond, 1) == const0_rtx
&& false == const0_rtx && GET_CODE (true) == CONST_INT
&& ((1 == nonzero_bits (XEXP (cond, 0), mode)
&& (i = exact_log2 (INTVAL (true))) >= 0)
|| ((num_sign_bit_copies (XEXP (cond, 0), mode)
== GET_MODE_BITSIZE (mode))
&& (i = exact_log2 (- INTVAL (true))) >= 0)))
return
simplify_shift_const (NULL_RTX, ASHIFT, mode,
gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
return x;
}
/* Simplify X, a SET expression. Return the new expression. */
static rtx
simplify_set (x)
rtx x;
{
rtx src = SET_SRC (x);
rtx dest = SET_DEST (x);
enum machine_mode mode
= GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
rtx other_insn;
rtx *cc_use;
/* (set (pc) (return)) gets written as (return). */
if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
return src;
/* Now that we know for sure which bits of SRC we are using, see if we can
simplify the expression for the object knowing that we only need the
low-order bits. */
if (GET_MODE_CLASS (mode) == MODE_INT)
src = force_to_mode (src, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
/* If we are setting CC0 or if the source is a COMPARE, look for the use of
the comparison result and try to simplify it unless we already have used
undobuf.other_insn. */
if ((GET_CODE (src) == COMPARE
#ifdef HAVE_cc0
|| dest == cc0_rtx
#endif
)
&& (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
&& (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
&& GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
&& rtx_equal_p (XEXP (*cc_use, 0), dest))
{
enum rtx_code old_code = GET_CODE (*cc_use);
enum rtx_code new_code;
rtx op0, op1;
int other_changed = 0;
enum machine_mode compare_mode = GET_MODE (dest);
if (GET_CODE (src) == COMPARE)
op0 = XEXP (src, 0), op1 = XEXP (src, 1);
else
op0 = src, op1 = const0_rtx;
/* Simplify our comparison, if possible. */
new_code = simplify_comparison (old_code, &op0, &op1);
#ifdef EXTRA_CC_MODES
/* If this machine has CC modes other than CCmode, check to see if we
need to use a different CC mode here. */
compare_mode = SELECT_CC_MODE (new_code, op0, op1);
#endif /* EXTRA_CC_MODES */
#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
/* If the mode changed, we have to change SET_DEST, the mode in the
compare, and the mode in the place SET_DEST is used. If SET_DEST is
a hard register, just build new versions with the proper mode. If it
is a pseudo, we lose unless it is only time we set the pseudo, in
which case we can safely change its mode. */
if (compare_mode != GET_MODE (dest))
{
int regno = REGNO (dest);
rtx new_dest = gen_rtx (REG, compare_mode, regno);
if (regno < FIRST_PSEUDO_REGISTER
|| (reg_n_sets[regno] == 1 && ! REG_USERVAR_P (dest)))
{
if (regno >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[regno], new_dest);
SUBST (SET_DEST (x), new_dest);
SUBST (XEXP (*cc_use, 0), new_dest);
other_changed = 1;
dest = new_dest;
}
}
#endif
/* If the code changed, we have to build a new comparison in
undobuf.other_insn. */
if (new_code != old_code)
{
unsigned HOST_WIDE_INT mask;
SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
dest, const0_rtx));
/* If the only change we made was to change an EQ into an NE or
vice versa, OP0 has only one bit that might be nonzero, and OP1
is zero, check if changing the user of the condition code will
produce a valid insn. If it won't, we can keep the original code
in that insn by surrounding our operation with an XOR. */
if (((old_code == NE && new_code == EQ)
|| (old_code == EQ && new_code == NE))
&& ! other_changed && op1 == const0_rtx
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
&& exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
{
rtx pat = PATTERN (other_insn), note = 0;
int scratches;
if ((recog_for_combine (&pat, other_insn, &note, &scratches) < 0
&& ! check_asm_operands (pat)))
{
PUT_CODE (*cc_use, old_code);
other_insn = 0;
op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
}
}
other_changed = 1;
}
if (other_changed)
undobuf.other_insn = other_insn;
#ifdef HAVE_cc0
/* If we are now comparing against zero, change our source if
needed. If we do not use cc0, we always have a COMPARE. */
if (op1 == const0_rtx && dest == cc0_rtx)
{
SUBST (SET_SRC (x), op0);
src = op0;
}
else
#endif
/* Otherwise, if we didn't previously have a COMPARE in the
correct mode, we need one. */
if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
{
SUBST (SET_SRC (x),
gen_rtx_combine (COMPARE, compare_mode, op0, op1));
src = SET_SRC (x);
}
else
{
/* Otherwise, update the COMPARE if needed. */
SUBST (XEXP (src, 0), op0);
SUBST (XEXP (src, 1), op1);
}
}
else
{
/* Get SET_SRC in a form where we have placed back any
compound expressions. Then do the checks below. */
src = make_compound_operation (src, SET);
SUBST (SET_SRC (x), src);
}
/* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
and X being a REG or (subreg (reg)), we may be able to convert this to
(set (subreg:m2 x) (op)).
We can always do this if M1 is narrower than M2 because that means that
we only care about the low bits of the result.
However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
perform a narrower operation that requested since the high-order bits will
be undefined. On machine where it is defined, this transformation is safe
as long as M1 and M2 have the same number of words. */
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
&& (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
/ UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
#ifndef WORD_REGISTER_OPERATIONS
&& (GET_MODE_SIZE (GET_MODE (src))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
#endif
#ifdef CLASS_CANNOT_CHANGE_SIZE
&& ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
&& (TEST_HARD_REG_BIT
(reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
REGNO (dest)))
&& (GET_MODE_SIZE (GET_MODE (src))
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
#endif
&& (GET_CODE (dest) == REG
|| (GET_CODE (dest) == SUBREG
&& GET_CODE (SUBREG_REG (dest)) == REG)))
{
SUBST (SET_DEST (x),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
dest));
SUBST (SET_SRC (x), SUBREG_REG (src));
src = SET_SRC (x), dest = SET_DEST (x);
}
#ifdef LOAD_EXTEND_OP
/* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
would require a paradoxical subreg. Replace the subreg with a
zero_extend to avoid the reload that would otherwise be required. */
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
&& SUBREG_WORD (src) == 0
&& (GET_MODE_SIZE (GET_MODE (src))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
&& GET_CODE (SUBREG_REG (src)) == MEM)
{
SUBST (SET_SRC (x),
gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
GET_MODE (src), XEXP (src, 0)));
src = SET_SRC (x);
}
#endif
/* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
are comparing an item known to be 0 or -1 against 0, use a logical
operation instead. Check for one of the arms being an IOR of the other
arm with some value. We compute three terms to be IOR'ed together. In
practice, at most two will be nonzero. Then we do the IOR's. */
if (GET_CODE (dest) != PC
&& GET_CODE (src) == IF_THEN_ELSE
&& GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
&& (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
&& XEXP (XEXP (src, 0), 1) == const0_rtx
&& GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
#ifdef HAVE_conditional_move
&& ! can_conditionally_move_p (GET_MODE (src))
#endif
&& (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
GET_MODE (XEXP (XEXP (src, 0), 0)))
== GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
&& ! side_effects_p (src))
{
rtx true = (GET_CODE (XEXP (src, 0)) == NE
? XEXP (src, 1) : XEXP (src, 2));
rtx false = (GET_CODE (XEXP (src, 0)) == NE
? XEXP (src, 2) : XEXP (src, 1));
rtx term1 = const0_rtx, term2, term3;
if (GET_CODE (true) == IOR && rtx_equal_p (XEXP (true, 0), false))
term1 = false, true = XEXP (true, 1), false = const0_rtx;
else if (GET_CODE (true) == IOR
&& rtx_equal_p (XEXP (true, 1), false))
term1 = false, true = XEXP (true, 0), false = const0_rtx;
else if (GET_CODE (false) == IOR
&& rtx_equal_p (XEXP (false, 0), true))
term1 = true, false = XEXP (false, 1), true = const0_rtx;
else if (GET_CODE (false) == IOR
&& rtx_equal_p (XEXP (false, 1), true))
term1 = true, false = XEXP (false, 0), true = const0_rtx;
term2 = gen_binary (AND, GET_MODE (src), XEXP (XEXP (src, 0), 0), true);
term3 = gen_binary (AND, GET_MODE (src),
gen_unary (NOT, GET_MODE (src), GET_MODE (src),
XEXP (XEXP (src, 0), 0)),
false);
SUBST (SET_SRC (x),
gen_binary (IOR, GET_MODE (src),
gen_binary (IOR, GET_MODE (src), term1, term2),
term3));
src = SET_SRC (x);
}
/* If either SRC or DEST is a CLOBBER of (const_int 0), make this
whole thing fail. */
if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
return src;
else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
return dest;
else
/* Convert this into a field assignment operation, if possible. */
return make_field_assignment (x);
}
/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
result. LAST is nonzero if this is the last retry. */
static rtx
simplify_logical (x, last)
rtx x;
int last;
{
enum machine_mode mode = GET_MODE (x);
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
switch (GET_CODE (x))
{
case AND:
/* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
insn (and may simplify more). */
if (GET_CODE (op0) == XOR
&& rtx_equal_p (XEXP (op0, 0), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode,
gen_unary (NOT, mode, mode, XEXP (op0, 1)), op1);
if (GET_CODE (op0) == XOR
&& rtx_equal_p (XEXP (op0, 1), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode,
gen_unary (NOT, mode, mode, XEXP (op0, 0)), op1);
/* Similarly for (~ (A ^ B)) & A. */
if (GET_CODE (op0) == NOT
&& GET_CODE (XEXP (op0, 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
if (GET_CODE (op0) == NOT
&& GET_CODE (XEXP (op0, 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
&& ! side_effects_p (op1))
x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
if (GET_CODE (op1) == CONST_INT)
{
x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
/* If we have (ior (and (X C1) C2)) and the next restart would be
the last, simplify this by making C1 as small as possible
and then exit. */
if (last
&& GET_CODE (x) == IOR && GET_CODE (op0) == AND
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (op1) == CONST_INT)
return gen_binary (IOR, mode,
gen_binary (AND, mode, XEXP (op0, 0),
GEN_INT (INTVAL (XEXP (op0, 1))
& ~ INTVAL (op1))), op1);
if (GET_CODE (x) != AND)
return x;
if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
|| GET_RTX_CLASS (GET_CODE (x)) == '2')
op0 = XEXP (x, 0), op1 = XEXP (x, 1);
}
/* Convert (A | B) & A to A. */
if (GET_CODE (op0) == IOR
&& (rtx_equal_p (XEXP (op0, 0), op1)
|| rtx_equal_p (XEXP (op0, 1), op1))
&& ! side_effects_p (XEXP (op0, 0))
&& ! side_effects_p (XEXP (op0, 1)))
return op1;
/* In the following group of tests (and those in case IOR below),
we start with some combination of logical operations and apply
the distributive law followed by the inverse distributive law.
Most of the time, this results in no change. However, if some of
the operands are the same or inverses of each other, simplifications
will result.
For example, (and (ior A B) (not B)) can occur as the result of
expanding a bit field assignment. When we apply the distributive
law to this, we get (ior (and (A (not B))) (and (B (not B)))),
which then simplifies to (and (A (not B))).
If we have (and (ior A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. */
if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
{
x = apply_distributive_law
(gen_binary (GET_CODE (op0), mode,
gen_binary (AND, mode, XEXP (op0, 0), op1),
gen_binary (AND, mode, XEXP (op0, 1), op1)));
if (GET_CODE (x) != AND)
return x;
}
if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
return apply_distributive_law
(gen_binary (GET_CODE (op1), mode,
gen_binary (AND, mode, XEXP (op1, 0), op0),
gen_binary (AND, mode, XEXP (op1, 1), op0)));
/* Similarly, taking advantage of the fact that
(and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
return apply_distributive_law
(gen_binary (XOR, mode,
gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 1))));
else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
return apply_distributive_law
(gen_binary (XOR, mode,
gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 1))));
break;
case IOR:
/* (ior A C) is C if all bits of A that might be nonzero are on in C. */
if (GET_CODE (op1) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode) & ~ INTVAL (op1)) == 0)
return op1;
/* Convert (A & B) | A to A. */
if (GET_CODE (op0) == AND
&& (rtx_equal_p (XEXP (op0, 0), op1)
|| rtx_equal_p (XEXP (op0, 1), op1))
&& ! side_effects_p (XEXP (op0, 0))
&& ! side_effects_p (XEXP (op0, 1)))
return op1;
/* If we have (ior (and A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. */
if (GET_CODE (op0) == AND)
{
x = apply_distributive_law
(gen_binary (AND, mode,
gen_binary (IOR, mode, XEXP (op0, 0), op1),
gen_binary (IOR, mode, XEXP (op0, 1), op1)));
if (GET_CODE (x) != IOR)
return x;
}
if (GET_CODE (op1) == AND)
{
x = apply_distributive_law
(gen_binary (AND, mode,
gen_binary (IOR, mode, XEXP (op1, 0), op0),
gen_binary (IOR, mode, XEXP (op1, 1), op0)));
if (GET_CODE (x) != IOR)
return x;
}
/* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
mode size to (rotate A CX). */
if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
|| (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
&& (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
== GET_MODE_BITSIZE (mode)))
return gen_rtx (ROTATE, mode, XEXP (op0, 0),
(GET_CODE (op0) == ASHIFT
? XEXP (op0, 1) : XEXP (op1, 1)));
/* If OP0 is (ashiftrt (plus ...) C), it might actually be
a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
does not affect any of the bits in OP1, it can really be done
as a PLUS and we can associate. We do this by seeing if OP1
can be safely shifted left C bits. */
if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
&& GET_CODE (XEXP (op0, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
{
int count = INTVAL (XEXP (op0, 1));
HOST_WIDE_INT mask = INTVAL (op1) << count;
if (mask >> count == INTVAL (op1)
&& (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
{
SUBST (XEXP (XEXP (op0, 0), 1),
GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
return op0;
}
}
break;
case XOR:
/* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
(NOT y). */
{
int num_negated = 0;
if (GET_CODE (op0) == NOT)
num_negated++, op0 = XEXP (op0, 0);
if (GET_CODE (op1) == NOT)
num_negated++, op1 = XEXP (op1, 0);
if (num_negated == 2)
{
SUBST (XEXP (x, 0), op0);
SUBST (XEXP (x, 1), op1);
}
else if (num_negated == 1)
return gen_unary (NOT, mode, mode, gen_binary (XOR, mode, op0, op1));
}
/* Convert (xor (and A B) B) to (and (not A) B). The latter may
correspond to a machine insn or result in further simplifications
if B is a constant. */
if (GET_CODE (op0) == AND
&& rtx_equal_p (XEXP (op0, 1), op1)
&& ! side_effects_p (op1))
return gen_binary (AND, mode,
gen_unary (NOT, mode, mode, XEXP (op0, 0)),
op1);
else if (GET_CODE (op0) == AND
&& rtx_equal_p (XEXP (op0, 0), op1)
&& ! side_effects_p (op1))
return gen_binary (AND, mode,
gen_unary (NOT, mode, mode, XEXP (op0, 1)),
op1);
#if STORE_FLAG_VALUE == 1
/* (xor (comparison foo bar) (const_int 1)) can become the reversed
comparison. */
if (op1 == const1_rtx
&& GET_RTX_CLASS (GET_CODE (op0)) == '<'
&& reversible_comparison_p (op0))
return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
mode, XEXP (op0, 0), XEXP (op0, 1));
/* (lshiftrt foo C) where C is the number of bits in FOO minus 1
is (lt foo (const_int 0)), so we can perform the above
simplification. */
if (op1 == const1_rtx
&& GET_CODE (op0) == LSHIFTRT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
return gen_rtx_combine (GE, mode, XEXP (op0, 0), const0_rtx);
#endif
/* (xor (comparison foo bar) (const_int sign-bit))
when STORE_FLAG_VALUE is the sign bit. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (STORE_FLAG_VALUE
== (HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
&& op1 == const_true_rtx
&& GET_RTX_CLASS (GET_CODE (op0)) == '<'
&& reversible_comparison_p (op0))
return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
mode, XEXP (op0, 0), XEXP (op0, 1));
break;
}
return x;
}
/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
operations" because they can be replaced with two more basic operations.
ZERO_EXTEND is also considered "compound" because it can be replaced with
an AND operation, which is simpler, though only one operation.
The function expand_compound_operation is called with an rtx expression
and will convert it to the appropriate shifts and AND operations,
simplifying at each stage.
The function make_compound_operation is called to convert an expression
consisting of shifts and ANDs into the equivalent compound expression.
It is the inverse of this function, loosely speaking. */
static rtx
expand_compound_operation (x)
rtx x;
{
int pos = 0, len;
int unsignedp = 0;
int modewidth;
rtx tem;
switch (GET_CODE (x))
{
case ZERO_EXTEND:
unsignedp = 1;
case SIGN_EXTEND:
/* We can't necessarily use a const_int for a multiword mode;
it depends on implicitly extending the value.
Since we don't know the right way to extend it,
we can't tell whether the implicit way is right.
Even for a mode that is no wider than a const_int,
we can't win, because we need to sign extend one of its bits through
the rest of it, and we don't know which bit. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
return x;
/* Return if (subreg:MODE FROM 0) is not a safe replacement for
(zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
reloaded. If not for that, MEM's would very rarely be safe.
Reject MODEs bigger than a word, because we might not be able
to reference a two-register group starting with an arbitrary register
(and currently gen_lowpart might crash for a SUBREG). */
if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
return x;
len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
/* If the inner object has VOIDmode (the only way this can happen
is if it is a ASM_OPERANDS), we can't do anything since we don't
know how much masking to do. */
if (len == 0)
return x;
break;
case ZERO_EXTRACT:
unsignedp = 1;
case SIGN_EXTRACT:
/* If the operand is a CLOBBER, just return it. */
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
return XEXP (x, 0);
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| GET_CODE (XEXP (x, 2)) != CONST_INT
|| GET_MODE (XEXP (x, 0)) == VOIDmode)
return x;
len = INTVAL (XEXP (x, 1));
pos = INTVAL (XEXP (x, 2));
/* If this goes outside the object being extracted, replace the object
with a (use (mem ...)) construct that only combine understands
and is used only for this purpose. */
if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
if (BITS_BIG_ENDIAN)
pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
break;
default:
return x;
}
/* If we reach here, we want to return a pair of shifts. The inner
shift is a left shift of BITSIZE - POS - LEN bits. The outer
shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
logical depending on the value of UNSIGNEDP.
If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
converted into an AND of a shift.
We must check for the case where the left shift would have a negative
count. This can happen in a case like (x >> 31) & 255 on machines
that can't shift by a constant. On those machines, we would first
combine the shift with the AND to produce a variable-position
extraction. Then the constant of 31 would be substituted in to produce
a such a position. */
modewidth = GET_MODE_BITSIZE (GET_MODE (x));
if (modewidth >= pos - len)
tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
GET_MODE (x),
simplify_shift_const (NULL_RTX, ASHIFT,
GET_MODE (x),
XEXP (x, 0),
modewidth - pos - len),
modewidth - len);
else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
simplify_shift_const (NULL_RTX, LSHIFTRT,
GET_MODE (x),
XEXP (x, 0), pos),
((HOST_WIDE_INT) 1 << len) - 1);
else
/* Any other cases we can't handle. */
return x;
/* If we couldn't do this for some reason, return the original
expression. */
if (GET_CODE (tem) == CLOBBER)
return x;
return tem;
}
/* X is a SET which contains an assignment of one object into
a part of another (such as a bit-field assignment, STRICT_LOW_PART,
or certain SUBREGS). If possible, convert it into a series of
logical operations.
We half-heartedly support variable positions, but do not at all
support variable lengths. */
static rtx
expand_field_assignment (x)
rtx x;
{
rtx inner;
rtx pos; /* Always counts from low bit. */
int len;
rtx mask;
enum machine_mode compute_mode;
/* Loop until we find something we can't simplify. */
while (1)
{
if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
{
inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
pos = const0_rtx;
}
else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
{
inner = XEXP (SET_DEST (x), 0);
len = INTVAL (XEXP (SET_DEST (x), 1));
pos = XEXP (SET_DEST (x), 2);
/* If the position is constant and spans the width of INNER,
surround INNER with a USE to indicate this. */
if (GET_CODE (pos) == CONST_INT
&& INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
if (BITS_BIG_ENDIAN)
{
if (GET_CODE (pos) == CONST_INT)
pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
- INTVAL (pos));
else if (GET_CODE (pos) == MINUS
&& GET_CODE (XEXP (pos, 1)) == CONST_INT
&& (INTVAL (XEXP (pos, 1))
== GET_MODE_BITSIZE (GET_MODE (inner)) - len))
/* If position is ADJUST - X, new position is X. */
pos = XEXP (pos, 0);
else
pos = gen_binary (MINUS, GET_MODE (pos),
GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
- len),
pos);
}
}
/* A SUBREG between two modes that occupy the same numbers of words
can be done by moving the SUBREG to the source. */
else if (GET_CODE (SET_DEST (x)) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
{
x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
SET_SRC (x)));
continue;
}
else
break;
while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
inner = SUBREG_REG (inner);
compute_mode = GET_MODE (inner);
/* Compute a mask of LEN bits, if we can do this on the host machine. */
if (len < HOST_BITS_PER_WIDE_INT)
mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
else
break;
/* Now compute the equivalent expression. Make a copy of INNER
for the SET_DEST in case it is a MEM into which we will substitute;
we don't want shared RTL in that case. */
x = gen_rtx (SET, VOIDmode, copy_rtx (inner),
gen_binary (IOR, compute_mode,
gen_binary (AND, compute_mode,
gen_unary (NOT, compute_mode,
compute_mode,
gen_binary (ASHIFT,
compute_mode,
mask, pos)),
inner),
gen_binary (ASHIFT, compute_mode,
gen_binary (AND, compute_mode,
gen_lowpart_for_combine
(compute_mode,
SET_SRC (x)),
mask),
pos)));
}
return x;
}
/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
it is an RTX that represents a variable starting position; otherwise,
POS is the (constant) starting bit position (counted from the LSB).
INNER may be a USE. This will occur when we started with a bitfield
that went outside the boundary of the object in memory, which is
allowed on most machines. To isolate this case, we produce a USE
whose mode is wide enough and surround the MEM with it. The only
code that understands the USE is this routine. If it is not removed,
it will cause the resulting insn not to match.
UNSIGNEDP is non-zero for an unsigned reference and zero for a
signed reference.
IN_DEST is non-zero if this is a reference in the destination of a
SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
be used.
IN_COMPARE is non-zero if we are in a COMPARE. This means that a
ZERO_EXTRACT should be built even for bits starting at bit 0.
MODE is the desired mode of the result (if IN_DEST == 0). */
static rtx
make_extraction (mode, inner, pos, pos_rtx, len,
unsignedp, in_dest, in_compare)
enum machine_mode mode;
rtx inner;
int pos;
rtx pos_rtx;
int len;
int unsignedp;
int in_dest, in_compare;
{
/* This mode describes the size of the storage area
to fetch the overall value from. Within that, we
ignore the POS lowest bits, etc. */
enum machine_mode is_mode = GET_MODE (inner);
enum machine_mode inner_mode;
enum machine_mode wanted_mem_mode = byte_mode;
enum machine_mode pos_mode = word_mode;
enum machine_mode extraction_mode = word_mode;
enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
int spans_byte = 0;
rtx new = 0;
rtx orig_pos_rtx = pos_rtx;
int orig_pos;
/* Get some information about INNER and get the innermost object. */
if (GET_CODE (inner) == USE)
/* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
/* We don't need to adjust the position because we set up the USE
to pretend that it was a full-word object. */
spans_byte = 1, inner = XEXP (inner, 0);
else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
{
/* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
consider just the QI as the memory to extract from.
The subreg adds or removes high bits; its mode is
irrelevant to the meaning of this extraction,
since POS and LEN count from the lsb. */
if (GET_CODE (SUBREG_REG (inner)) == MEM)
is_mode = GET_MODE (SUBREG_REG (inner));
inner = SUBREG_REG (inner);
}
inner_mode = GET_MODE (inner);
if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
pos = INTVAL (pos_rtx), pos_rtx = 0;
/* See if this can be done without an extraction. We never can if the
width of the field is not the same as that of some integer mode. For
registers, we can only avoid the extraction if the position is at the
low-order bit and this is either not in the destination or we have the
appropriate STRICT_LOW_PART operation available.
For MEM, we can avoid an extract if the field starts on an appropriate
boundary and we can change the mode of the memory reference. However,
we cannot directly access the MEM if we have a USE and the underlying
MEM is not TMODE. This combination means that MEM was being used in a
context where bits outside its mode were being referenced; that is only
valid in bit-field insns. */
if (tmode != BLKmode
&& ! (spans_byte && inner_mode != tmode)
&& ((pos_rtx == 0 && pos == 0 && GET_CODE (inner) != MEM
&& (! in_dest
|| (GET_CODE (inner) == REG
&& (movstrict_optab->handlers[(int) tmode].insn_code
!= CODE_FOR_nothing))))
|| (GET_CODE (inner) == MEM && pos_rtx == 0
&& (pos
% (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
: BITS_PER_UNIT)) == 0
/* We can't do this if we are widening INNER_MODE (it
may not be aligned, for one thing). */
&& GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
&& (inner_mode == tmode
|| (! mode_dependent_address_p (XEXP (inner, 0))
&& ! MEM_VOLATILE_P (inner))))))
{
/* If INNER is a MEM, make a new MEM that encompasses just the desired
field. If the original and current mode are the same, we need not
adjust the offset. Otherwise, we do if bytes big endian.
If INNER is not a MEM, get a piece consisting of the just the field
of interest (in this case POS must be 0). */
if (GET_CODE (inner) == MEM)
{
int offset;
/* POS counts from lsb, but make OFFSET count in memory order. */
if (BYTES_BIG_ENDIAN)
offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
else
offset = pos / BITS_PER_UNIT;
new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
}
else if (GET_CODE (inner) == REG)
{
/* We can't call gen_lowpart_for_combine here since we always want
a SUBREG and it would sometimes return a new hard register. */
if (tmode != inner_mode)
new = gen_rtx (SUBREG, tmode, inner,
(WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD
? ((GET_MODE_SIZE (inner_mode)
- GET_MODE_SIZE (tmode))
/ UNITS_PER_WORD)
: 0));
else
new = inner;
}
else
new = force_to_mode (inner, tmode,
len >= HOST_BITS_PER_WIDE_INT
? GET_MODE_MASK (tmode)
: ((HOST_WIDE_INT) 1 << len) - 1,
NULL_RTX, 0);
/* If this extraction is going into the destination of a SET,
make a STRICT_LOW_PART unless we made a MEM. */
if (in_dest)
return (GET_CODE (new) == MEM ? new
: (GET_CODE (new) != SUBREG
? gen_rtx (CLOBBER, tmode, const0_rtx)
: gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new)));
/* Otherwise, sign- or zero-extend unless we already are in the
proper mode. */
return (mode == tmode ? new
: gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
mode, new));
}
/* Unless this is a COMPARE or we have a funny memory reference,
don't do anything with zero-extending field extracts starting at
the low-order bit since they are simple AND operations. */
if (pos_rtx == 0 && pos == 0 && ! in_dest
&& ! in_compare && ! spans_byte && unsignedp)
return 0;
/* Unless we are allowed to span bytes, reject this if we would be
spanning bytes or if the position is not a constant and the length
is not 1. In all other cases, we would only be going outside
out object in cases when an original shift would have been
undefined. */
if (! spans_byte
&& ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
|| (pos_rtx != 0 && len != 1)))
return 0;
/* Get the mode to use should INNER be a MEM, the mode for the position,
and the mode for the result. */
#ifdef HAVE_insv
if (in_dest)
{
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
}
#endif
#ifdef HAVE_extzv
if (! in_dest && unsignedp)
{
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
}
#endif
#ifdef HAVE_extv
if (! in_dest && ! unsignedp)
{
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
}
#endif
/* Never narrow an object, since that might not be safe. */
if (mode != VOIDmode
&& GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
extraction_mode = mode;
if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_mode = GET_MODE (pos_rtx);
/* If this is not from memory or we have to change the mode of memory and
cannot, the desired mode is EXTRACTION_MODE. */
if (GET_CODE (inner) != MEM
|| (inner_mode != wanted_mem_mode
&& (mode_dependent_address_p (XEXP (inner, 0))
|| MEM_VOLATILE_P (inner))))
wanted_mem_mode = extraction_mode;
orig_pos = pos;
if (BITS_BIG_ENDIAN)
{
/* If position is constant, compute new position. Otherwise,
build subtraction. */
if (pos_rtx == 0)
pos = (MAX (GET_MODE_BITSIZE (is_mode),
GET_MODE_BITSIZE (wanted_mem_mode))
- len - pos);
else
pos_rtx
= gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
GEN_INT (MAX (GET_MODE_BITSIZE (is_mode),
GET_MODE_BITSIZE (wanted_mem_mode))
- len),
pos_rtx);
}
/* If INNER has a wider mode, make it smaller. If this is a constant
extract, try to adjust the byte to point to the byte containing
the value. */
if (wanted_mem_mode != VOIDmode
&& GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
&& ((GET_CODE (inner) == MEM
&& (inner_mode == wanted_mem_mode
|| (! mode_dependent_address_p (XEXP (inner, 0))
&& ! MEM_VOLATILE_P (inner))))))
{
int offset = 0;
/* The computations below will be correct if the machine is big
endian in both bits and bytes or little endian in bits and bytes.
If it is mixed, we must adjust. */
/* If bytes are big endian and we had a paradoxical SUBREG, we must
adjust OFFSET to compensate. */
if (BYTES_BIG_ENDIAN
&& ! spans_byte
&& GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
/* If this is a constant position, we can move to the desired byte. */
if (pos_rtx == 0)
{
offset += pos / BITS_PER_UNIT;
pos %= GET_MODE_BITSIZE (wanted_mem_mode);
}
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
&& ! spans_byte
&& is_mode != wanted_mem_mode)
offset = (GET_MODE_SIZE (is_mode)
- GET_MODE_SIZE (wanted_mem_mode) - offset);
if (offset != 0 || inner_mode != wanted_mem_mode)
{
rtx newmem = gen_rtx (MEM, wanted_mem_mode,
plus_constant (XEXP (inner, 0), offset));
RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
inner = newmem;
}
}
/* If INNER is not memory, we can always get it into the proper mode. */
else if (GET_CODE (inner) != MEM)
inner = force_to_mode (inner, extraction_mode,
pos_rtx || len + orig_pos >= HOST_BITS_PER_WIDE_INT
? GET_MODE_MASK (extraction_mode)
: (((HOST_WIDE_INT) 1 << len) - 1) << orig_pos,
NULL_RTX, 0);
/* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
have to zero extend. Otherwise, we can just use a SUBREG. */
if (pos_rtx != 0
&& GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
else if (pos_rtx != 0
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
/* Make POS_RTX unless we already have it and it is correct. If we don't
have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
be a CONST_INT. */
if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
pos_rtx = orig_pos_rtx;
else if (pos_rtx == 0)
pos_rtx = GEN_INT (pos);
/* Make the required operation. See if we can use existing rtx. */
new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
extraction_mode, inner, GEN_INT (len), pos_rtx);
if (! in_dest)
new = gen_lowpart_for_combine (mode, new);
return new;
}
/* See if X contains an ASHIFT of COUNT or more bits that can be commuted
with any other operations in X. Return X without that shift if so. */
static rtx
extract_left_shift (x, count)
rtx x;
int count;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
rtx tem;
switch (code)
{
case ASHIFT:
/* This is the shift itself. If it is wide enough, we will return
either the value being shifted if the shift count is equal to
COUNT or a shift for the difference. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= count)
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)) - count);
break;
case NEG: case NOT:
if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
return gen_unary (code, mode, mode, tem);
break;
case PLUS: case IOR: case XOR: case AND:
/* If we can safely shift this constant and we find the inner shift,
make a new operation. */
if (GET_CODE (XEXP (x,1)) == CONST_INT
&& (INTVAL (XEXP (x, 1)) & (((HOST_WIDE_INT) 1 << count)) - 1) == 0
&& (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
return gen_binary (code, mode, tem,
GEN_INT (INTVAL (XEXP (x, 1)) >> count));
break;
}
return 0;
}
/* Look at the expression rooted at X. Look for expressions
equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
Form these expressions.
Return the new rtx, usually just X.
Also, for machines like the Vax that don't have logical shift insns,
try to convert logical to arithmetic shift operations in cases where
they are equivalent. This undoes the canonicalizations to logical
shifts done elsewhere.
We try, as much as possible, to re-use rtl expressions to save memory.
IN_CODE says what kind of expression we are processing. Normally, it is
SET. In a memory address (inside a MEM, PLUS or minus, the latter two
being kludges), it is MEM. When processing the arguments of a comparison
or a COMPARE against zero, it is COMPARE. */
static rtx
make_compound_operation (x, in_code)
rtx x;
enum rtx_code in_code;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
int mode_width = GET_MODE_BITSIZE (mode);
rtx rhs, lhs;
enum rtx_code next_code;
int i;
rtx new = 0;
rtx tem;
char *fmt;
/* Select the code to be used in recursive calls. Once we are inside an
address, we stay there. If we have a comparison, set to COMPARE,
but once inside, go back to our default of SET. */
next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
: ((code == COMPARE || GET_RTX_CLASS (code) == '<')
&& XEXP (x, 1) == const0_rtx) ? COMPARE
: in_code == COMPARE ? SET : in_code);
/* Process depending on the code of this operation. If NEW is set
non-zero, it will be returned. */
switch (code)
{
case ASHIFT:
/* Convert shifts by constants into multiplications if inside
an address. */
if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
&& INTVAL (XEXP (x, 1)) >= 0)
{
new = make_compound_operation (XEXP (x, 0), next_code);
new = gen_rtx_combine (MULT, mode, new,
GEN_INT ((HOST_WIDE_INT) 1
<< INTVAL (XEXP (x, 1))));
}
break;
case AND:
/* If the second operand is not a constant, we can't do anything
with it. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
break;
/* If the constant is a power of two minus one and the first operand
is a logical right shift, make an extraction. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
{
new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
0, in_code == COMPARE);
}
/* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
else if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
{
new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
next_code);
new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
0, in_code == COMPARE);
}
/* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
else if ((GET_CODE (XEXP (x, 0)) == XOR
|| GET_CODE (XEXP (x, 0)) == IOR)
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
{
/* Apply the distributive law, and then try to make extractions. */
new = gen_rtx_combine (GET_CODE (XEXP (x, 0)), mode,
gen_rtx (AND, mode, XEXP (XEXP (x, 0), 0),
XEXP (x, 1)),
gen_rtx (AND, mode, XEXP (XEXP (x, 0), 1),
XEXP (x, 1)));
new = make_compound_operation (new, in_code);
}
/* If we are have (and (rotate X C) M) and C is larger than the number
of bits in M, this is an extraction. */
else if (GET_CODE (XEXP (x, 0)) == ROTATE
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
&& i <= INTVAL (XEXP (XEXP (x, 0), 1)))
{
new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
new = make_extraction (mode, new,
(GET_MODE_BITSIZE (mode)
- INTVAL (XEXP (XEXP (x, 0), 1))),
NULL_RTX, i, 1, 0, in_code == COMPARE);
}
/* On machines without logical shifts, if the operand of the AND is
a logical shift and our mask turns off all the propagated sign
bits, we can replace the logical shift with an arithmetic shift. */
else if (ashr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
&& (lshr_optab->handlers[(int) mode].insn_code
== CODE_FOR_nothing)
&& GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
{
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
SUBST (XEXP (x, 0),
gen_rtx_combine (ASHIFTRT, mode,
make_compound_operation (XEXP (XEXP (x, 0), 0),
next_code),
XEXP (XEXP (x, 0), 1)));
}
/* If the constant is one less than a power of two, this might be
representable by an extraction even if no shift is present.
If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
we are in a COMPARE. */
else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
new = make_extraction (mode,
make_compound_operation (XEXP (x, 0),
next_code),
0, NULL_RTX, i, 1, 0, in_code == COMPARE);
/* If we are in a comparison and this is an AND with a power of two,
convert this into the appropriate bit extract. */
else if (in_code == COMPARE
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
new = make_extraction (mode,
make_compound_operation (XEXP (x, 0),
next_code),
i, NULL_RTX, 1, 1, 0, 1);
break;
case LSHIFTRT:
/* If the sign bit is known to be zero, replace this with an
arithmetic shift. */
if (ashr_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing
&& lshr_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
{
new = gen_rtx_combine (ASHIFTRT, mode,
make_compound_operation (XEXP (x, 0),
next_code),
XEXP (x, 1));
break;
}
/* ... fall through ... */
case ASHIFTRT:
lhs = XEXP (x, 0);
rhs = XEXP (x, 1);
/* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
this is a SIGN_EXTRACT. */
if (GET_CODE (rhs) == CONST_INT
&& GET_CODE (lhs) == ASHIFT
&& GET_CODE (XEXP (lhs, 1)) == CONST_INT
&& INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
{
new = make_compound_operation (XEXP (lhs, 0), next_code);
new = make_extraction (mode, new,
INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
NULL_RTX, mode_width - INTVAL (rhs),
code == LSHIFTRT, 0, in_code == COMPARE);
}
/* See if we have operations between an ASHIFTRT and an ASHIFT.
If so, try to merge the shifts into a SIGN_EXTEND. We could
also do this for some cases of SIGN_EXTRACT, but it doesn't
seem worth the effort; the case checked for occurs on Alpha. */
if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
&& ! (GET_CODE (lhs) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
&& GET_CODE (rhs) == CONST_INT
&& INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
&& (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
new = make_extraction (mode, make_compound_operation (new, next_code),
0, NULL_RTX, mode_width - INTVAL (rhs),
code == LSHIFTRT, 0, in_code == COMPARE);
break;
case SUBREG:
/* Call ourselves recursively on the inner expression. If we are
narrowing the object and it has a different RTL code from
what it originally did, do this SUBREG as a force_to_mode. */
tem = make_compound_operation (SUBREG_REG (x), in_code);
if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
&& subreg_lowpart_p (x))
{
rtx newer = force_to_mode (tem, mode,
GET_MODE_MASK (mode), NULL_RTX, 0);
/* If we have something other than a SUBREG, we might have
done an expansion, so rerun outselves. */
if (GET_CODE (newer) != SUBREG)
newer = make_compound_operation (newer, in_code);
return newer;
}
}
if (new)
{
x = gen_lowpart_for_combine (mode, new);
code = GET_CODE (x);
}
/* Now recursively process each operand of this operation. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
if (fmt[i] == 'e')
{
new = make_compound_operation (XEXP (x, i), next_code);
SUBST (XEXP (x, i), new);
}
return x;
}
/* Given M see if it is a value that would select a field of bits
within an item, but not the entire word. Return -1 if not.
Otherwise, return the starting position of the field, where 0 is the
low-order bit.
*PLEN is set to the length of the field. */
static int
get_pos_from_mask (m, plen)
unsigned HOST_WIDE_INT m;
int *plen;
{
/* Get the bit number of the first 1 bit from the right, -1 if none. */
int pos = exact_log2 (m & - m);
if (pos < 0)
return -1;
/* Now shift off the low-order zero bits and see if we have a power of
two minus 1. */
*plen = exact_log2 ((m >> pos) + 1);
if (*plen <= 0)
return -1;
return pos;
}
/* See if X can be simplified knowing that we will only refer to it in
MODE and will only refer to those bits that are nonzero in MASK.
If other bits are being computed or if masking operations are done
that select a superset of the bits in MASK, they can sometimes be
ignored.
Return a possibly simplified expression, but always convert X to
MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
Also, if REG is non-zero and X is a register equal in value to REG,
replace X with REG.
If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
are all off in X. This is used when X will be complemented, by either
NOT, NEG, or XOR. */
static rtx
force_to_mode (x, mode, mask, reg, just_select)
rtx x;
enum machine_mode mode;
unsigned HOST_WIDE_INT mask;
rtx reg;
int just_select;
{
enum rtx_code code = GET_CODE (x);
int next_select = just_select || code == XOR || code == NOT || code == NEG;
enum machine_mode op_mode;
unsigned HOST_WIDE_INT fuller_mask, nonzero;
rtx op0, op1, temp;
/* If this is a CALL, don't do anything. Some of the code below
will do the wrong thing since the mode of a CALL is VOIDmode. */
if (code == CALL)
return x;
/* We want to perform the operation is its present mode unless we know
that the operation is valid in MODE, in which case we do the operation
in MODE. */
op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
&& code_to_optab[(int) code] != 0
&& (code_to_optab[(int) code]->handlers[(int) mode].insn_code
!= CODE_FOR_nothing))
? mode : GET_MODE (x));
/* It is not valid to do a right-shift in a narrower mode
than the one it came in with. */
if ((code == LSHIFTRT || code == ASHIFTRT)
&& GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
op_mode = GET_MODE (x);
/* Truncate MASK to fit OP_MODE. */
if (op_mode)
mask &= GET_MODE_MASK (op_mode);
/* When we have an arithmetic operation, or a shift whose count we
do not know, we need to assume that all bit the up to the highest-order
bit in MASK will be needed. This is how we form such a mask. */
if (op_mode)
fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
? GET_MODE_MASK (op_mode)
: ((HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1)) - 1);
else
fuller_mask = ~ (HOST_WIDE_INT) 0;
/* Determine what bits of X are guaranteed to be (non)zero. */
nonzero = nonzero_bits (x, mode);
/* If none of the bits in X are needed, return a zero. */
if (! just_select && (nonzero & mask) == 0)
return const0_rtx;
/* If X is a CONST_INT, return a new one. Do this here since the
test below will fail. */
if (GET_CODE (x) == CONST_INT)
{
HOST_WIDE_INT cval = INTVAL (x) & mask;
int width = GET_MODE_BITSIZE (mode);
/* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
number, sign extend it. */
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
cval |= (HOST_WIDE_INT) -1 << width;
return GEN_INT (cval);
}
/* If X is narrower than MODE and we want all the bits in X's mode, just
get X in the proper mode. */
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
&& (GET_MODE_MASK (GET_MODE (x)) & ~ mask) == 0)
return gen_lowpart_for_combine (mode, x);
/* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
MASK are already known to be zero in X, we need not do anything. */
if (GET_MODE (x) == mode && code != SUBREG && (~ mask & nonzero) == 0)
return x;
switch (code)
{
case CLOBBER:
/* If X is a (clobber (const_int)), return it since we know we are
generating something that won't match. */
return x;
case USE:
/* X is a (use (mem ..)) that was made from a bit-field extraction that
spanned the boundary of the MEM. If we are now masking so it is
within that boundary, we don't need the USE any more. */
if (! BITS_BIG_ENDIAN
&& (mask & ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
break;
case SIGN_EXTEND:
case ZERO_EXTEND:
case ZERO_EXTRACT:
case SIGN_EXTRACT:
x = expand_compound_operation (x);
if (GET_CODE (x) != code)
return force_to_mode (x, mode, mask, reg, next_select);
break;
case REG:
if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
|| rtx_equal_p (reg, get_last_value (x))))
x = reg;
break;
case SUBREG:
if (subreg_lowpart_p (x)
/* We can ignore the effect of this SUBREG if it narrows the mode or
if the constant masks to zero all the bits the mode doesn't
have. */
&& ((GET_MODE_SIZE (GET_MODE (x))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|| (0 == (mask
& GET_MODE_MASK (GET_MODE (x))
& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
break;
case AND:
/* If this is an AND with a constant, convert it into an AND
whose constant is the AND of that constant with MASK. If it
remains an AND of MASK, delete it since it is redundant. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
mask & INTVAL (XEXP (x, 1)));
/* If X is still an AND, see if it is an AND with a mask that
is just some low-order bits. If so, and it is MASK, we don't
need it. */
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == mask)
x = XEXP (x, 0);
/* If it remains an AND, try making another AND with the bits
in the mode mask that aren't in MASK turned on. If the
constant in the AND is wide enough, this might make a
cheaper constant. */
if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_MODE_MASK (GET_MODE (x)) != mask
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
{
HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
| (GET_MODE_MASK (GET_MODE (x)) & ~ mask));
int width = GET_MODE_BITSIZE (GET_MODE (x));
rtx y;
/* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
number, sign extend it. */
if (width > 0 && width < HOST_BITS_PER_WIDE_INT
&& (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
cval |= (HOST_WIDE_INT) -1 << width;
y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
if (rtx_cost (y, SET) < rtx_cost (x, SET))
x = y;
}
break;
}
goto binop;
case PLUS:
/* In (and (plus FOO C1) M), if M is a mask that just turns off
low-order bits (as in an alignment operation) and FOO is already
aligned to that boundary, mask C1 to that boundary as well.
This may eliminate that PLUS and, later, the AND. */
{
int width = GET_MODE_BITSIZE (mode);
unsigned HOST_WIDE_INT smask = mask;
/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
number, sign extend it. */
if (width < HOST_BITS_PER_WIDE_INT
&& (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
smask |= (HOST_WIDE_INT) -1 << width;
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& exact_log2 (- smask) >= 0
&& (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0
&& (INTVAL (XEXP (x, 1)) & ~ mask) != 0)
return force_to_mode (plus_constant (XEXP (x, 0),
INTVAL (XEXP (x, 1)) & mask),
mode, mask, reg, next_select);
}
/* ... fall through ... */
case MINUS:
case MULT:
/* For PLUS, MINUS and MULT, we need any bits less significant than the
most significant bit in MASK since carries from those bits will
affect the bits we are interested in. */
mask = fuller_mask;
goto binop;
case IOR:
case XOR:
/* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
operation which may be a bitfield extraction. Ensure that the
constant we form is not wider than the mode of X. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& ((INTVAL (XEXP (XEXP (x, 0), 1))
+ floor_log2 (INTVAL (XEXP (x, 1))))
< GET_MODE_BITSIZE (GET_MODE (x)))
&& (INTVAL (XEXP (x, 1))
& ~ nonzero_bits (XEXP (x, 0), GET_MODE (x)) == 0))
{
temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
<< INTVAL (XEXP (XEXP (x, 0), 1)));
temp = gen_binary (GET_CODE (x), GET_MODE (x),
XEXP (XEXP (x, 0), 0), temp);
x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (x, 1));
return force_to_mode (x, mode, mask, reg, next_select);
}
binop:
/* For most binary operations, just propagate into the operation and
change the mode if we have an operation of that mode. */
op0 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 0), mode, mask,
reg, next_select));
op1 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 1), mode, mask,
reg, next_select));
/* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
MASK since OP1 might have been sign-extended but we never want
to turn on extra bits, since combine might have previously relied
on them being off. */
if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
&& (INTVAL (op1) & mask) != 0)
op1 = GEN_INT (INTVAL (op1) & mask);
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
x = gen_binary (code, op_mode, op0, op1);
break;
case ASHIFT:
/* For left shifts, do the same, but just for the first operand.
However, we cannot do anything with shifts where we cannot
guarantee that the counts are smaller than the size of the mode
because such a count will have a different meaning in a
wider mode. */
if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
&& ! (GET_MODE (XEXP (x, 1)) != VOIDmode
&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
< (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
break;
/* If the shift count is a constant and we can do arithmetic in
the mode of the shift, refine which bits we need. Otherwise, use the
conservative form of the mask. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
&& GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
mask >>= INTVAL (XEXP (x, 1));
else
mask = fuller_mask;
op0 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 0), op_mode,
mask, reg, next_select));
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
x = gen_binary (code, op_mode, op0, XEXP (x, 1));
break;
case LSHIFTRT:
/* Here we can only do something if the shift count is a constant,
this shift constant is valid for the host, and we can do arithmetic
in OP_MODE. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
{
rtx inner = XEXP (x, 0);
/* Select the mask of the bits we need for the shift operand. */
mask <<= INTVAL (XEXP (x, 1));
/* We can only change the mode of the shift if we can do arithmetic
in the mode of the shift and MASK is no wider than the width of
OP_MODE. */
if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
|| (mask & ~ GET_MODE_MASK (op_mode)) != 0)
op_mode = GET_MODE (x);
inner = force_to_mode (inner, op_mode, mask, reg, next_select);
if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
}
/* If we have (and (lshiftrt FOO C1) C2) where the combination of the
shift and AND produces only copies of the sign bit (C2 is one less
than a power of two), we can do this with just a shift. */
if (GET_CODE (x) == LSHIFTRT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& ((INTVAL (XEXP (x, 1))
+ num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
>= GET_MODE_BITSIZE (GET_MODE (x)))
&& exact_log2 (mask + 1) >= 0
&& (num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
>= exact_log2 (mask + 1)))
x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
- exact_log2 (mask + 1)));
break;
case ASHIFTRT:
/* If we are just looking for the sign bit, we don't need this shift at
all, even if it has a variable count. */
if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& (mask == ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
/* If this is a shift by a constant, get a mask that contains those bits
that are not copies of the sign bit. We then have two cases: If
MASK only includes those bits, this can be a logical shift, which may
allow simplifications. If MASK is a single-bit field not within
those bits, we are requesting a copy of the sign bit and hence can
shift the sign bit to the appropriate location. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
{
int i = -1;
/* If the considered data is wider then HOST_WIDE_INT, we can't
represent a mask for all its bits in a single scalar.
But we only care about the lower bits, so calculate these. */
if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
{
nonzero = ~(HOST_WIDE_INT)0;
/* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
is the number of bits a full-width mask would have set.
We need only shift if these are fewer than nonzero can
hold. If not, we must keep all bits set in nonzero. */
if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
< HOST_BITS_PER_WIDE_INT)
nonzero >>= INTVAL (XEXP (x, 1))
+ HOST_BITS_PER_WIDE_INT
- GET_MODE_BITSIZE (GET_MODE (x)) ;
}
else
{
nonzero = GET_MODE_MASK (GET_MODE (x));
nonzero >>= INTVAL (XEXP (x, 1));
}
if ((mask & ~ nonzero) == 0
|| (i = exact_log2 (mask)) >= 0)
{
x = simplify_shift_const
(x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
i < 0 ? INTVAL (XEXP (x, 1))
: GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
if (GET_CODE (x) != ASHIFTRT)
return force_to_mode (x, mode, mask, reg, next_select);
}
}
/* If MASK is 1, convert this to a LSHIFTRT. This can be done
even if the shift count isn't a constant. */
if (mask == 1)
x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
/* If this is a sign-extension operation that just affects bits
we don't care about, remove it. Be sure the call above returned
something that is still a shift. */
if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& (INTVAL (XEXP (x, 1))
<= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
&& GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
reg, next_select);
break;
case ROTATE:
case ROTATERT:
/* If the shift count is constant and we can do computations
in the mode of X, compute where the bits we care about are.
Otherwise, we can't do anything. Don't change the mode of
the shift or propagate MODE into the shift, though. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0)
{
temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
GET_MODE (x), GEN_INT (mask),
XEXP (x, 1));
if (temp && GET_CODE(temp) == CONST_INT)
SUBST (XEXP (x, 0),
force_to_mode (XEXP (x, 0), GET_MODE (x),
INTVAL (temp), reg, next_select));
}
break;
case NEG:
/* If we just want the low-order bit, the NEG isn't needed since it
won't change the low-order bit. */
if (mask == 1)
return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
/* We need any bits less significant than the most significant bit in
MASK since carries from those bits will affect the bits we are
interested in. */
mask = fuller_mask;
goto unop;
case NOT:
/* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
same as the XOR case above. Ensure that the constant we form is not
wider than the mode of X. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
< GET_MODE_BITSIZE (GET_MODE (x)))
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
{
temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
return force_to_mode (x, mode, mask, reg, next_select);
}
unop:
op0 = gen_lowpart_for_combine (op_mode,
force_to_mode (XEXP (x, 0), mode, mask,
reg, next_select));
if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
x = gen_unary (code, op_mode, op_mode, op0);
break;
case NE:
/* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
in STORE_FLAG_VALUE and FOO has no bits that might be nonzero not
in CONST. */
if ((mask & ~ STORE_FLAG_VALUE) == 0 && XEXP (x, 0) == const0_rtx
&& (nonzero_bits (XEXP (x, 0), mode) & ~ mask) == 0)
return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
break;
case IF_THEN_ELSE:
/* We have no way of knowing if the IF_THEN_ELSE can itself be
written in a narrower mode. We play it safe and do not do so. */
SUBST (XEXP (x, 1),
gen_lowpart_for_combine (GET_MODE (x),
force_to_mode (XEXP (x, 1), mode,
mask, reg, next_select)));
SUBST (XEXP (x, 2),
gen_lowpart_for_combine (GET_MODE (x),
force_to_mode (XEXP (x, 2), mode,
mask, reg,next_select)));
break;
}
/* Ensure we return a value of the proper mode. */
return gen_lowpart_for_combine (mode, x);
}
/* Return nonzero if X is an expression that has one of two values depending on
whether some other value is zero or nonzero. In that case, we return the
value that is being tested, *PTRUE is set to the value if the rtx being
returned has a nonzero value, and *PFALSE is set to the other alternative.
If we return zero, we set *PTRUE and *PFALSE to X. */
static rtx
if_then_else_cond (x, ptrue, pfalse)
rtx x;
rtx *ptrue, *pfalse;
{
enum machine_mode mode = GET_MODE (x);
enum rtx_code code = GET_CODE (x);
int size = GET_MODE_BITSIZE (mode);
rtx cond0, cond1, true0, true1, false0, false1;
unsigned HOST_WIDE_INT nz;
/* If this is a unary operation whose operand has one of two values, apply
our opcode to compute those values. */
if (GET_RTX_CLASS (code) == '1'
&& (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
{
*ptrue = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), true0);
*pfalse = gen_unary (code, mode, GET_MODE (XEXP (x, 0)), false0);
return cond0;
}
/* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
make can't possibly match and would suppress other optimizations. */
else if (code == COMPARE)
;
/* If this is a binary operation, see if either side has only one of two
values. If either one does or if both do and they are conditional on
the same value, compute the new true and false values. */
else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
|| GET_RTX_CLASS (code) == '<')
{
cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
if ((cond0 != 0 || cond1 != 0)
&& ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
{
*ptrue = gen_binary (code, mode, true0, true1);
*pfalse = gen_binary (code, mode, false0, false1);
return cond0 ? cond0 : cond1;
}
#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
/* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
operands is zero when the other is non-zero, and vice-versa. */
if ((code == PLUS || code == IOR || code == XOR || code == MINUS
|| code == UMAX)
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
{
rtx op0 = XEXP (XEXP (x, 0), 1);
rtx op1 = XEXP (XEXP (x, 1), 1);
cond0 = XEXP (XEXP (x, 0), 0);
cond1 = XEXP (XEXP (x, 1), 0);
if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
&& GET_RTX_CLASS (GET_CODE (cond1)) == '<'
&& reversible_comparison_p (cond1)
&& ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|| ((swap_condition (GET_CODE (cond0))
== reverse_condition (GET_CODE (cond1)))
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
&& ! side_effects_p (x))
{
*ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
*pfalse = gen_binary (MULT, mode,
(code == MINUS
? gen_unary (NEG, mode, mode, op1) : op1),
const_true_rtx);
return cond0;
}
}
/* Similarly for MULT, AND and UMIN, execpt that for these the result
is always zero. */
if ((code == MULT || code == AND || code == UMIN)
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
{
cond0 = XEXP (XEXP (x, 0), 0);
cond1 = XEXP (XEXP (x, 1), 0);
if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
&& GET_RTX_CLASS (GET_CODE (cond1)) == '<'
&& reversible_comparison_p (cond1)
&& ((GET_CODE (cond0) == reverse_condition (GET_CODE (cond1))
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|| ((swap_condition (GET_CODE (cond0))
== reverse_condition (GET_CODE (cond1)))
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
&& ! side_effects_p (x))
{
*ptrue = *pfalse = const0_rtx;
return cond0;
}
}
#endif
}
else if (code == IF_THEN_ELSE)
{
/* If we have IF_THEN_ELSE already, extract the condition and
canonicalize it if it is NE or EQ. */
cond0 = XEXP (x, 0);
*ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
return XEXP (cond0, 0);
else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
{
*ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
return XEXP (cond0, 0);
}
else
return cond0;
}
/* If X is a normal SUBREG with both inner and outer modes integral,
we can narrow both the true and false values of the inner expression,
if there is a condition. */
else if (code == SUBREG && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
&& GET_MODE_SIZE (mode) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
&& 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
&true0, &false0)))
{
*ptrue = force_to_mode (true0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
*pfalse
= force_to_mode (false0, mode, GET_MODE_MASK (mode), NULL_RTX, 0);
return cond0;
}
/* If X is a constant, this isn't special and will cause confusions
if we treat it as such. Likewise if it is equivalent to a constant. */
else if (CONSTANT_P (x)
|| ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
;
/* If X is known to be either 0 or -1, those are the true and
false values when testing X. */
else if (num_sign_bit_copies (x, mode) == size)
{
*ptrue = constm1_rtx, *pfalse = const0_rtx;
return x;
}
/* Likewise for 0 or a single bit. */
else if (exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
{
*ptrue = GEN_INT (nz), *pfalse = const0_rtx;
return x;
}
/* Otherwise fail; show no condition with true and false values the same. */
*ptrue = *pfalse = x;
return 0;
}
/* Return the value of expression X given the fact that condition COND
is known to be true when applied to REG as its first operand and VAL
as its second. X is known to not be shared and so can be modified in
place.
We only handle the simplest cases, and specifically those cases that
arise with IF_THEN_ELSE expressions. */
static rtx
known_cond (x, cond, reg, val)
rtx x;
enum rtx_code cond;
rtx reg, val;
{
enum rtx_code code = GET_CODE (x);
rtx temp;
char *fmt;
int i, j;
if (side_effects_p (x))
return x;
if (cond == EQ && rtx_equal_p (x, reg))
return val;
/* If X is (abs REG) and we know something about REG's relationship
with zero, we may be able to simplify this. */
if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
switch (cond)
{
case GE: case GT: case EQ:
return XEXP (x, 0);
case LT: case LE:
return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
XEXP (x, 0));
}
/* The only other cases we handle are MIN, MAX, and comparisons if the
operands are the same as REG and VAL. */
else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
{
if (rtx_equal_p (XEXP (x, 0), val))
cond = swap_condition (cond), temp = val, val = reg, reg = temp;
if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
{
if (GET_RTX_CLASS (code) == '<')
return (comparison_dominates_p (cond, code) ? const_true_rtx
: (comparison_dominates_p (cond,
reverse_condition (code))
? const0_rtx : x));
else if (code == SMAX || code == SMIN
|| code == UMIN || code == UMAX)
{
int unsignedp = (code == UMIN || code == UMAX);
if (code == SMAX || code == UMAX)
cond = reverse_condition (cond);
switch (cond)
{
case GE: case GT:
return unsignedp ? x : XEXP (x, 1);
case LE: case LT:
return unsignedp ? x : XEXP (x, 0);
case GEU: case GTU:
return unsignedp ? XEXP (x, 1) : x;
case LEU: case LTU:
return unsignedp ? XEXP (x, 0) : x;
}
}
}
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
cond, reg, val));
}
return x;
}
/* See if X, a SET operation, can be rewritten as a bit-field assignment.
Return that assignment if so.
We only handle the most common cases. */
static rtx
make_field_assignment (x)
rtx x;
{
rtx dest = SET_DEST (x);
rtx src = SET_SRC (x);
rtx assign;
HOST_WIDE_INT c1;
int pos, len;
rtx other;
enum machine_mode mode;
/* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
a clear of a one-bit field. We will have changed it to
(and (rotate (const_int -2) POS) DEST), so check for that. Also check
for a SUBREG. */
if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
&& INTVAL (XEXP (XEXP (src, 0), 0)) == -2
&& (rtx_equal_p (dest, XEXP (src, 1))
|| rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
|| rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
{
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
1, 1, 1, 0);
return gen_rtx (SET, VOIDmode, assign, const0_rtx);
}
else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (src, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
&& INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
&& (rtx_equal_p (dest, XEXP (src, 1))
|| rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
|| rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
{
assign = make_extraction (VOIDmode, dest, 0,
XEXP (SUBREG_REG (XEXP (src, 0)), 1),
1, 1, 1, 0);
return gen_rtx (SET, VOIDmode, assign, const0_rtx);
}
/* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
one-bit field. */
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
&& XEXP (XEXP (src, 0), 0) == const1_rtx
&& (rtx_equal_p (dest, XEXP (src, 1))
|| rtx_equal_p (dest, get_last_value (XEXP (src, 1)))
|| rtx_equal_p (get_last_value (dest), XEXP (src, 1))))
{
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
1, 1, 1, 0);
return gen_rtx (SET, VOIDmode, assign, const1_rtx);
}
/* The other case we handle is assignments into a constant-position
field. They look like (ior (and DEST C1) OTHER). If C1 represents
a mask that has all one bits except for a group of zero bits and
OTHER is known to have zeros where C1 has ones, this is such an
assignment. Compute the position and length from C1. Shift OTHER
to the appropriate position, force it to the required mode, and
make the extraction. Check for the AND in both operands. */
if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
&& GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
&& (rtx_equal_p (XEXP (XEXP (src, 0), 0), dest)
|| rtx_equal_p (XEXP (XEXP (src, 0), 0), get_last_value (dest))
|| rtx_equal_p (get_last_value (XEXP (XEXP (src, 0), 1)), dest)))
c1 = INTVAL (XEXP (XEXP (src, 0), 1)), other = XEXP (src, 1);
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == AND
&& GET_CODE (XEXP (XEXP (src, 1), 1)) == CONST_INT
&& (rtx_equal_p (XEXP (XEXP (src, 1), 0), dest)
|| rtx_equal_p (XEXP (XEXP (src, 1), 0), get_last_value (dest))
|| rtx_equal_p (get_last_value (XEXP (XEXP (src, 1), 0)),
dest)))
c1 = INTVAL (XEXP (XEXP (src, 1), 1)), other = XEXP (src, 0);
else
return x;
pos = get_pos_from_mask (c1 ^ GET_MODE_MASK (GET_MODE (dest)), &len);
if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
|| (GET_MODE_BITSIZE (GET_MODE (other)) <= HOST_BITS_PER_WIDE_INT
&& (c1 & nonzero_bits (other, GET_MODE (other))) != 0))
return x;
assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
/* The mode to use for the source is the mode of the assignment, or of
what is inside a possible STRICT_LOW_PART. */
mode = (GET_CODE (assign) == STRICT_LOW_PART
? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
/* Shift OTHER right POS places and make it the source, restricting it
to the proper length and mode. */
src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
GET_MODE (src), other, pos),
mode,
GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
? GET_MODE_MASK (mode)
: ((HOST_WIDE_INT) 1 << len) - 1,
dest, 0);
return gen_rtx_combine (SET, VOIDmode, assign, src);
}
/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
if so. */
static rtx
apply_distributive_law (x)
rtx x;
{
enum rtx_code code = GET_CODE (x);
rtx lhs, rhs, other;
rtx tem;
enum rtx_code inner_code;
/* Distributivity is not true for floating point.
It can change the value. So don't do it.
-- rms and moshier@world.std.com. */
if (FLOAT_MODE_P (GET_MODE (x)))
return x;
/* The outer operation can only be one of the following: */
if (code != IOR && code != AND && code != XOR
&& code != PLUS && code != MINUS)
return x;
lhs = XEXP (x, 0), rhs = XEXP (x, 1);
/* If either operand is a primitive we can't do anything, so get out fast. */
if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
|| GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
return x;
lhs = expand_compound_operation (lhs);
rhs = expand_compound_operation (rhs);
inner_code = GET_CODE (lhs);
if (inner_code != GET_CODE (rhs))
return x;
/* See if the inner and outer operations distribute. */
switch (inner_code)
{
case LSHIFTRT:
case ASHIFTRT:
case AND:
case IOR:
/* These all distribute except over PLUS. */
if (code == PLUS || code == MINUS)
return x;
break;
case MULT:
if (code != PLUS && code != MINUS)
return x;
break;
case ASHIFT:
/* This is also a multiply, so it distributes over everything. */
break;
case SUBREG:
/* Non-paradoxical SUBREGs distributes over all operations, provided
the inner modes and word numbers are the same, this is an extraction
of a low-order part, we don't convert an fp operation to int or
vice versa, and we would not be converting a single-word
operation into a multi-word operation. The latter test is not
required, but it prevents generating unneeded multi-word operations.
Some of the previous tests are redundant given the latter test, but
are retained because they are required for correctness.
We produce the result slightly differently in this case. */
if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
|| SUBREG_WORD (lhs) != SUBREG_WORD (rhs)
|| ! subreg_lowpart_p (lhs)
|| (GET_MODE_CLASS (GET_MODE (lhs))
!= GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
|| (GET_MODE_SIZE (GET_MODE (lhs))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
|| GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
return x;
tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
SUBREG_REG (lhs), SUBREG_REG (rhs));
return gen_lowpart_for_combine (GET_MODE (x), tem);
default:
return x;
}
/* Set LHS and RHS to the inner operands (A and B in the example
above) and set OTHER to the common operand (C in the example).
These is only one way to do this unless the inner operation is
commutative. */
if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
else if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
else if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
else
return x;
/* Form the new inner operation, seeing if it simplifies first. */
tem = gen_binary (code, GET_MODE (x), lhs, rhs);
/* There is one exception to the general way of distributing:
(a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
if (code == XOR && inner_code == IOR)
{
inner_code = AND;
other = gen_unary (NOT, GET_MODE (x), GET_MODE (x), other);
}
/* We may be able to continuing distributing the result, so call
ourselves recursively on the inner operation before forming the
outer operation, which we return. */
return gen_binary (inner_code, GET_MODE (x),
apply_distributive_law (tem), other);
}
/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
in MODE.
Return an equivalent form, if different from X. Otherwise, return X. If
X is zero, we are to always construct the equivalent form. */
static rtx
simplify_and_const_int (x, mode, varop, constop)
rtx x;
enum machine_mode mode;
rtx varop;
unsigned HOST_WIDE_INT constop;
{
unsigned HOST_WIDE_INT nonzero;
int width = GET_MODE_BITSIZE (mode);
int i;
/* Simplify VAROP knowing that we will be only looking at some of the
bits in it. */
varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
/* If VAROP is a CLOBBER, we will fail so return it; if it is a
CONST_INT, we are done. */
if (GET_CODE (varop) == CLOBBER || GET_CODE (varop) == CONST_INT)
return varop;
/* See what bits may be nonzero in VAROP. Unlike the general case of
a call to nonzero_bits, here we don't care about bits outside
MODE. */
nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
/* If this would be an entire word for the target, but is not for
the host, then sign-extend on the host so that the number will look
the same way on the host that it would on the target.
For example, when building a 64 bit alpha hosted 32 bit sparc
targeted compiler, then we want the 32 bit unsigned value -1 to be
represented as a 64 bit value -1, and not as 0x00000000ffffffff.
The later confuses the sparc backend. */
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
&& (nonzero & ((HOST_WIDE_INT) 1 << (width - 1))))
nonzero |= ((HOST_WIDE_INT) (-1) << width);
/* Turn off all bits in the constant that are known to already be zero.
Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
which is tested below. */
constop &= nonzero;
/* If we don't have any bits left, return zero. */
if (constop == 0)
return const0_rtx;
/* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
a power of two, we can replace this with a ASHIFT. */
if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
&& (i = exact_log2 (constop)) >= 0)
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
/* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
or XOR, then try to apply the distributive law. This may eliminate
operations if either branch can be simplified because of the AND.
It may also make some cases more complex, but those cases probably
won't match a pattern either with or without this. */
if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
return
gen_lowpart_for_combine
(mode,
apply_distributive_law
(gen_binary (GET_CODE (varop), GET_MODE (varop),
simplify_and_const_int (NULL_RTX, GET_MODE (varop),
XEXP (varop, 0), constop),
simplify_and_const_int (NULL_RTX, GET_MODE (varop),
XEXP (varop, 1), constop))));
/* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
if we already had one (just check for the simplest cases). */
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (XEXP (x, 0)) == mode
&& SUBREG_REG (XEXP (x, 0)) == varop)
varop = XEXP (x, 0);
else
varop = gen_lowpart_for_combine (mode, varop);
/* If we can't make the SUBREG, try to return what we were given. */
if (GET_CODE (varop) == CLOBBER)
return x ? x : varop;
/* If we are only masking insignificant bits, return VAROP. */
if (constop == nonzero)
x = varop;
/* Otherwise, return an AND. See how much, if any, of X we can use. */
else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
x = gen_binary (AND, mode, varop, GEN_INT (constop));
else
{
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) != constop)
SUBST (XEXP (x, 1), GEN_INT (constop));
SUBST (XEXP (x, 0), varop);
}
return x;
}
/* Given an expression, X, compute which bits in X can be non-zero.
We don't care about bits outside of those defined in MODE.
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
a shift, AND, or zero_extract, we can do better. */
static unsigned HOST_WIDE_INT
nonzero_bits (x, mode)
rtx x;
enum machine_mode mode;
{
unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
unsigned HOST_WIDE_INT inner_nz;
enum rtx_code code;
int mode_width = GET_MODE_BITSIZE (mode);
rtx tem;
/* For floating-point values, assume all bits are needed. */
if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
return nonzero;
/* If X is wider than MODE, use its mode instead. */
if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
{
mode = GET_MODE (x);
nonzero = GET_MODE_MASK (mode);
mode_width = GET_MODE_BITSIZE (mode);
}
if (mode_width > HOST_BITS_PER_WIDE_INT)
/* Our only callers in this case look for single bit values. So
just return the mode mask. Those tests will then be false. */
return nonzero;
#ifndef WORD_REGISTER_OPERATIONS
/* If MODE is wider than X, but both are a single word for both the host
and target machines, we can compute this from which bits of the
object might be nonzero in its own mode, taking into account the fact
that on many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
&& GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
{
nonzero &= nonzero_bits (x, GET_MODE (x));
nonzero |= GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x));
return nonzero;
}
#endif
code = GET_CODE (x);
switch (code)
{
case REG:
#ifdef POINTERS_EXTEND_UNSIGNED
/* If pointers extend unsigned and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be zero. */
if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
&& REGNO_POINTER_FLAG (REGNO (x)))
nonzero &= GET_MODE_MASK (ptr_mode);
#endif
#ifdef STACK_BOUNDARY
/* If this is the stack pointer, we may know something about its
alignment. If PUSH_ROUNDING is defined, it is possible for the
stack to be momentarily aligned only to that amount, so we pick
the least alignment. */
if (x == stack_pointer_rtx)
{
int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
#ifdef PUSH_ROUNDING
sp_alignment = MIN (PUSH_ROUNDING (1), sp_alignment);
#endif
/* We must return here, otherwise we may get a worse result from
one of the choices below. There is nothing useful below as
far as the stack pointer is concerned. */
return nonzero &= ~ (sp_alignment - 1);
}
#endif
/* If X is a register whose nonzero bits value is current, use it.
Otherwise, if X is a register whose value we can find, use that
value. Otherwise, use the previously-computed global nonzero bits
for this register. */
if (reg_last_set_value[REGNO (x)] != 0
&& reg_last_set_mode[REGNO (x)] == mode
&& (reg_n_sets[REGNO (x)] == 1
|| reg_last_set_label[REGNO (x)] == label_tick)
&& INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
return reg_last_set_nonzero_bits[REGNO (x)];
tem = get_last_value (x);
if (tem)
{
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is narrower than MODE and TEM is a non-negative
constant that would appear negative in the mode of X,
sign-extend it for use in reg_nonzero_bits because some
machines (maybe most) will actually do the sign-extension
and this is the conservative approach.
??? For 2.5, try to tighten up the MD files in this regard
instead of this kludge. */
if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
&& GET_CODE (tem) == CONST_INT
&& INTVAL (tem) > 0
&& 0 != (INTVAL (tem)
& ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
tem = GEN_INT (INTVAL (tem)
| ((HOST_WIDE_INT) (-1)
<< GET_MODE_BITSIZE (GET_MODE (x))));
#endif
return nonzero_bits (tem, mode);
}
else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
return reg_nonzero_bits[REGNO (x)] & nonzero;
else
return nonzero;
case CONST_INT:
#ifdef SHORT_IMMEDIATES_SIGN_EXTEND
/* If X is negative in MODE, sign-extend the value. */
if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
&& 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
#endif
return INTVAL (x);
case MEM:
#ifdef LOAD_EXTEND_OP
/* In many, if not most, RISC machines, reading a byte from memory
zeros the rest of the register. Noticing that fact saves a lot
of extra zero-extends. */
if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
nonzero &= GET_MODE_MASK (GET_MODE (x));
#endif
break;
case EQ: case NE:
case GT: case GTU:
case LT: case LTU:
case GE: case GEU:
case LE: case LEU:
/* If this produces an integer result, we know which bits are set.
Code here used to clear bits outside the mode of X, but that is
now done above. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
nonzero = STORE_FLAG_VALUE;
break;
case NEG:
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
== GET_MODE_BITSIZE (GET_MODE (x)))
nonzero = 1;
if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
nonzero |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
break;
case ABS:
if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
== GET_MODE_BITSIZE (GET_MODE (x)))
nonzero = 1;
break;
case TRUNCATE:
nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
break;
case ZERO_EXTEND:
nonzero &= nonzero_bits (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
break;
case SIGN_EXTEND:
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
Otherwise, show all the bits in the outer mode but not the inner
may be non-zero. */
inner_nz = nonzero_bits (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
{
inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
if (inner_nz &
(((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
inner_nz |= (GET_MODE_MASK (mode)
& ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
}
nonzero &= inner_nz;
break;
case AND:
nonzero &= (nonzero_bits (XEXP (x, 0), mode)
& nonzero_bits (XEXP (x, 1), mode));
break;
case XOR: case IOR:
case UMIN: case UMAX: case SMIN: case SMAX:
nonzero &= (nonzero_bits (XEXP (x, 0), mode)
| nonzero_bits (XEXP (x, 1), mode));
break;
case PLUS: case MINUS:
case MULT:
case DIV: case UDIV:
case MOD: case UMOD:
/* We can apply the rules of arithmetic to compute the number of
high- and low-order zero bits of these operations. We start by
computing the width (position of the highest-order non-zero bit)
and the number of low-order zero bits for each value. */
{
unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
int width0 = floor_log2 (nz0) + 1;
int width1 = floor_log2 (nz1) + 1;
int low0 = floor_log2 (nz0 & -nz0);
int low1 = floor_log2 (nz1 & -nz1);
HOST_WIDE_INT op0_maybe_minusp
= (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
HOST_WIDE_INT op1_maybe_minusp
= (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
int result_width = mode_width;
int result_low = 0;
switch (code)
{
case PLUS:
result_width = MAX (width0, width1) + 1;
result_low = MIN (low0, low1);
break;
case MINUS:
result_low = MIN (low0, low1);
break;
case MULT:
result_width = width0 + width1;
result_low = low0 + low1;
break;
case DIV:
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = width0;
break;
case UDIV:
result_width = width0;
break;
case MOD:
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
case UMOD:
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
}
if (result_width < mode_width)
nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
if (result_low > 0)
nonzero &= ~ (((HOST_WIDE_INT) 1 << result_low) - 1);
}
break;
case ZERO_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
break;
case SUBREG:
/* If this is a SUBREG formed for a promoted variable that has
been zero-extended, we know that at least the high-order bits
are zero, though others might be too. */
if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
nonzero = (GET_MODE_MASK (GET_MODE (x))
& nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
/* If the inner mode is a single word for both the host and target
machines, we can compute this from which bits of the inner
object might be nonzero. */
if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
<= HOST_BITS_PER_WIDE_INT))
{
nonzero &= nonzero_bits (SUBREG_REG (x), mode);
#ifndef WORD_REGISTER_OPERATIONS
/* On many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
nonzero |= (GET_MODE_MASK (GET_MODE (x))
& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
#endif
}
break;
case ASHIFTRT:
case LSHIFTRT:
case ASHIFT:
case ROTATE:
/* The nonzero bits are in two classes: any bits within MODE
that aren't in GET_MODE (x) are always significant. The rest of the
nonzero bits are those that are significant in the operand of
the shift when shifted the appropriate number of bits. This
shows that high-order bits are cleared by the right shift and
low-order bits by left shifts. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
{
enum machine_mode inner_mode = GET_MODE (x);
int width = GET_MODE_BITSIZE (inner_mode);
int count = INTVAL (XEXP (x, 1));
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
unsigned HOST_WIDE_INT outer = 0;
if (mode_width > width)
outer = (op_nonzero & nonzero & ~ mode_mask);
if (code == LSHIFTRT)
inner >>= count;
else if (code == ASHIFTRT)
{
inner >>= count;
/* If the sign bit may have been nonzero before the shift, we
need to mark all the places it could have been copied to
by the shift as possibly nonzero. */
if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
}
else if (code == ASHIFT)
inner <<= count;
else
inner = ((inner << (count % width)
| (inner >> (width - (count % width)))) & mode_mask);
nonzero &= (outer | inner);
}
break;
case FFS:
/* This is at most the number of bits in the mode. */
nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
break;
case IF_THEN_ELSE:
nonzero &= (nonzero_bits (XEXP (x, 1), mode)
| nonzero_bits (XEXP (x, 2), mode));
break;
}
return nonzero;
}
/* Return the number of bits at the high-order end of X that are known to
be equal to the sign bit. X will be used in mode MODE; if MODE is
VOIDmode, X will be used in its own mode. The returned value will always
be between 1 and the number of bits in MODE. */
static int
num_sign_bit_copies (x, mode)
rtx x;
enum machine_mode mode;
{
enum rtx_code code = GET_CODE (x);
int bitwidth;
int num0, num1, result;
unsigned HOST_WIDE_INT nonzero;
rtx tem;
/* If we weren't given a mode, use the mode of X. If the mode is still
VOIDmode, we don't know anything. Likewise if one of the modes is
floating-point. */
if (mode == VOIDmode)
mode = GET_MODE (x);
if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
return 1;
bitwidth = GET_MODE_BITSIZE (mode);
/* For a smaller object, just ignore the high bits. */
if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
- (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
#ifndef WORD_REGISTER_OPERATIONS
/* If this machine does not do all register operations on the entire
register and MODE is wider than the mode of X, we can say nothing
at all about the high-order bits. */
if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
return 1;
#endif
switch (code)
{
case REG:
#ifdef POINTERS_EXTEND_UNSIGNED
/* If pointers extend signed and this is a pointer in Pmode, say that
all the bits above ptr_mode are known to be sign bit copies. */
if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
&& REGNO_POINTER_FLAG (REGNO (x)))
return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
#endif
if (reg_last_set_value[REGNO (x)] != 0
&& reg_last_set_mode[REGNO (x)] == mode
&& (reg_n_sets[REGNO (x)] == 1
|| reg_last_set_label[REGNO (x)] == label_tick)
&& INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
return reg_last_set_sign_bit_copies[REGNO (x)];
tem = get_last_value (x);
if (tem != 0)
return num_sign_bit_copies (tem, mode);
if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0)
return reg_sign_bit_copies[REGNO (x)];
break;
case MEM:
#ifdef LOAD_EXTEND_OP
/* Some RISC machines sign-extend all loads of smaller than a word. */
if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
return MAX (1, bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1);
#endif
break;
case CONST_INT:
/* If the constant is negative, take its 1's complement and remask.
Then see how many zero bits we have. */
nonzero = INTVAL (x) & GET_MODE_MASK (mode);
if (bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
nonzero = (~ nonzero) & GET_MODE_MASK (mode);
return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
case SUBREG:
/* If this is a SUBREG for a promoted object that is sign-extended
and we are looking at it in a wider mode, we know that at least the
high-order bits are known to be sign bit copies. */
if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
return MAX (bitwidth - GET_MODE_BITSIZE (GET_MODE (x)) + 1,
num_sign_bit_copies (SUBREG_REG (x), mode));
/* For a smaller object, just ignore the high bits. */
if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
{
num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
return MAX (1, (num0
- (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
- bitwidth)));
}
#ifdef WORD_REGISTER_OPERATIONS
#ifdef LOAD_EXTEND_OP
/* For paradoxical SUBREGs on machines where all register operations
affect the entire register, just look inside. Note that we are
passing MODE to the recursive call, so the number of sign bit copies
will remain relative to that mode, not the inner mode. */
/* This works only if loads sign extend. Otherwise, if we get a
reload for the inner part, it may be loaded from the stack, and
then we lose all sign bit copies that existed before the store
to the stack. */
if ((GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
return num_sign_bit_copies (SUBREG_REG (x), mode);
#endif
#endif
break;
case SIGN_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
return MAX (1, bitwidth - INTVAL (XEXP (x, 1)));
break;
case SIGN_EXTEND:
return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
+ num_sign_bit_copies (XEXP (x, 0), VOIDmode));
case TRUNCATE:
/* For a smaller object, just ignore the high bits. */
num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
return MAX (1, (num0 - (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
- bitwidth)));
case NOT:
return num_sign_bit_copies (XEXP (x, 0), mode);
case ROTATE: case ROTATERT:
/* If we are rotating left by a number of bits less than the number
of sign bit copies, we can just subtract that amount from the
number. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0 && INTVAL (XEXP (x, 1)) < bitwidth)
{
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
: bitwidth - INTVAL (XEXP (x, 1))));
}
break;
case NEG:
/* In general, this subtracts one sign bit copy. But if the value
is known to be positive, the number of sign bit copies is the
same as that of the input. Finally, if the input has just one bit
that might be nonzero, all the bits are copies of the sign bit. */
nonzero = nonzero_bits (XEXP (x, 0), mode);
if (nonzero == 1)
return bitwidth;
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
if (num0 > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
num0--;
return num0;
case IOR: case AND: case XOR:
case SMIN: case SMAX: case UMIN: case UMAX:
/* Logical operations will preserve the number of sign-bit copies.
MIN and MAX operations always return one of the operands. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
return MIN (num0, num1);
case PLUS: case MINUS:
/* For addition and subtraction, we can have a 1-bit carry. However,
if we are subtracting 1 from a positive number, there will not
be such a carry. Furthermore, if the positive number is known to
be 0 or 1, we know the result is either -1 or 0. */
if (code == PLUS && XEXP (x, 1) == constm1_rtx
&& bitwidth <= HOST_BITS_PER_WIDE_INT)
{
nonzero = nonzero_bits (XEXP (x, 0), mode);
if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
return (nonzero == 1 || nonzero == 0 ? bitwidth
: bitwidth - floor_log2 (nonzero) - 1);
}
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
return MAX (1, MIN (num0, num1) - 1);
case MULT:
/* The number of bits of the product is the sum of the number of
bits of both terms. However, unless one of the terms if known
to be positive, we must allow for an additional bit since negating
a negative number can remove one sign bit copy. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
num1 = num_sign_bit_copies (XEXP (x, 1), mode);
result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
if (result > 0
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& ((nonzero_bits (XEXP (x, 0), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
&& (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1)) != 0))
result--;
return MAX (1, result);
case UDIV:
/* The result must be <= the first operand. */
return num_sign_bit_copies (XEXP (x, 0), mode);
case UMOD:
/* The result must be <= the scond operand. */
return num_sign_bit_copies (XEXP (x, 1), mode);
case DIV:
/* Similar to unsigned division, except that we have to worry about
the case where the divisor is negative, in which case we have
to add 1. */
result = num_sign_bit_copies (XEXP (x, 0), mode);
if (result > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
result --;
return result;
case MOD:
result = num_sign_bit_copies (XEXP (x, 1), mode);
if (result > 1
&& bitwidth <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (x, 1), mode)
& ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
result --;
return result;
case ASHIFTRT:
/* Shifts by a constant add to the number of bits equal to the
sign bit. */
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) > 0)
num0 = MIN (bitwidth, num0 + INTVAL (XEXP (x, 1)));
return num0;
case ASHIFT:
/* Left shifts destroy copies. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) < 0
|| INTVAL (XEXP (x, 1)) >= bitwidth)
return 1;
num0 = num_sign_bit_copies (XEXP (x, 0), mode);
return MAX (1, num0 - INTVAL (XEXP (x, 1)));
case IF_THEN_ELSE:
num0 = num_sign_bit_copies (XEXP (x, 1), mode);
num1 = num_sign_bit_copies (XEXP (x, 2), mode);
return MIN (num0, num1);
#if STORE_FLAG_VALUE == -1
case EQ: case NE: case GE: case GT: case LE: case LT:
case GEU: case GTU: case LEU: case LTU:
return bitwidth;
#endif
}
/* If we haven't been able to figure it out by one of the above rules,
see if some of the high-order bits are known to be zero. If so,
count those bits and return one less than that amount. If we can't
safely compute the mask for this mode, always return BITWIDTH. */
if (bitwidth > HOST_BITS_PER_WIDE_INT)
return 1;
nonzero = nonzero_bits (x, mode);
return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
? 1 : bitwidth - floor_log2 (nonzero) - 1);
}
/* Return the number of "extended" bits there are in X, when interpreted
as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
unsigned quantities, this is the number of high-order zero bits.
For signed quantities, this is the number of copies of the sign bit
minus 1. In both case, this function returns the number of "spare"
bits. For example, if two quantities for which this function returns
at least 1 are added, the addition is known not to overflow.
This function will always return 0 unless called during combine, which
implies that it must be called from a define_split. */
int
extended_count (x, mode, unsignedp)
rtx x;
enum machine_mode mode;
int unsignedp;
{
if (nonzero_sign_valid == 0)
return 0;
return (unsignedp
? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
&& (GET_MODE_BITSIZE (mode) - 1
- floor_log2 (nonzero_bits (x, mode))))
: num_sign_bit_copies (x, mode) - 1);
}
/* This function is called from `simplify_shift_const' to merge two
outer operations. Specifically, we have already found that we need
to perform operation *POP0 with constant *PCONST0 at the outermost
position. We would now like to also perform OP1 with constant CONST1
(with *POP0 being done last).
Return 1 if we can do the operation and update *POP0 and *PCONST0 with
the resulting operation. *PCOMP_P is set to 1 if we would need to
complement the innermost operand, otherwise it is unchanged.
MODE is the mode in which the operation will be done. No bits outside
the width of this mode matter. It is assumed that the width of this mode
is smaller than or equal to HOST_BITS_PER_WIDE_INT.
If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
result is simply *PCONST0.
If the resulting operation cannot be expressed as one operation, we
return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
static int
merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
enum rtx_code *pop0;
HOST_WIDE_INT *pconst0;
enum rtx_code op1;
HOST_WIDE_INT const1;
enum machine_mode mode;
int *pcomp_p;
{
enum rtx_code op0 = *pop0;
HOST_WIDE_INT const0 = *pconst0;
int width = GET_MODE_BITSIZE (mode);
const0 &= GET_MODE_MASK (mode);
const1 &= GET_MODE_MASK (mode);
/* If OP0 is an AND, clear unimportant bits in CONST1. */
if (op0 == AND)
const1 &= const0;
/* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
if OP0 is SET. */
if (op1 == NIL || op0 == SET)
return 1;
else if (op0 == NIL)
op0 = op1, const0 = const1;
else if (op0 == op1)
{
switch (op0)
{
case AND:
const0 &= const1;
break;
case IOR:
const0 |= const1;
break;
case XOR:
const0 ^= const1;
break;
case PLUS:
const0 += const1;
break;
case NEG:
op0 = NIL;
break;
}
}
/* Otherwise, if either is a PLUS or NEG, we can't do anything. */
else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
return 0;
/* If the two constants aren't the same, we can't do anything. The
remaining six cases can all be done. */
else if (const0 != const1)
return 0;
else
switch (op0)
{
case IOR:
if (op1 == AND)
/* (a & b) | b == b */
op0 = SET;
else /* op1 == XOR */
/* (a ^ b) | b == a | b */
;
break;
case XOR:
if (op1 == AND)
/* (a & b) ^ b == (~a) & b */
op0 = AND, *pcomp_p = 1;
else /* op1 == IOR */
/* (a | b) ^ b == a & ~b */
op0 = AND, *pconst0 = ~ const0;
break;
case AND:
if (op1 == IOR)
/* (a | b) & b == b */
op0 = SET;
else /* op1 == XOR */
/* (a ^ b) & b) == (~a) & b */
*pcomp_p = 1;
break;
}
/* Check for NO-OP cases. */
const0 &= GET_MODE_MASK (mode);
if (const0 == 0
&& (op0 == IOR || op0 == XOR || op0 == PLUS))
op0 = NIL;
else if (const0 == 0 && op0 == AND)
op0 = SET;
else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
op0 = NIL;
/* If this would be an entire word for the target, but is not for
the host, then sign-extend on the host so that the number will look
the same way on the host that it would on the target.
For example, when building a 64 bit alpha hosted 32 bit sparc
targeted compiler, then we want the 32 bit unsigned value -1 to be
represented as a 64 bit value -1, and not as 0x00000000ffffffff.
The later confuses the sparc backend. */
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
&& (const0 & ((HOST_WIDE_INT) 1 << (width - 1))))
const0 |= ((HOST_WIDE_INT) (-1) << width);
*pop0 = op0;
*pconst0 = const0;
return 1;
}
/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
The result of the shift is RESULT_MODE. X, if non-zero, is an expression
that we started with.
The shift is normally computed in the widest mode we find in VAROP, as
long as it isn't a different number of words than RESULT_MODE. Exceptions
are ASHIFTRT and ROTATE, which are always done in their original mode, */
static rtx
simplify_shift_const (x, code, result_mode, varop, count)
rtx x;
enum rtx_code code;
enum machine_mode result_mode;
rtx varop;
int count;
{
enum rtx_code orig_code = code;
int orig_count = count;
enum machine_mode mode = result_mode;
enum machine_mode shift_mode, tmode;
int mode_words
= (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
/* We form (outer_op (code varop count) (outer_const)). */
enum rtx_code outer_op = NIL;
HOST_WIDE_INT outer_const = 0;
rtx const_rtx;
int complement_p = 0;
rtx new;
/* If we were given an invalid count, don't do anything except exactly
what was requested. */
if (count < 0 || count > GET_MODE_BITSIZE (mode))
{
if (x)
return x;
return gen_rtx (code, mode, varop, GEN_INT (count));
}
/* Unless one of the branches of the `if' in this loop does a `continue',
we will `break' the loop after the `if'. */
while (count != 0)
{
/* If we have an operand of (clobber (const_int 0)), just return that
value. */
if (GET_CODE (varop) == CLOBBER)
return varop;
/* If we discovered we had to complement VAROP, leave. Making a NOT
here would cause an infinite loop. */
if (complement_p)
break;
/* Convert ROTATERT to ROTATE. */
if (code == ROTATERT)
code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
/* We need to determine what mode we will do the shift in. If the
shift is a right shift or a ROTATE, we must always do it in the mode
it was originally done in. Otherwise, we can do it in MODE, the
widest mode encountered. */
shift_mode
= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
? result_mode : mode);
/* Handle cases where the count is greater than the size of the mode
minus 1. For ASHIFT, use the size minus one as the count (this can
occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
take the count modulo the size. For other shifts, the result is
zero.
Since these shifts are being produced by the compiler by combining
multiple operations, each of which are defined, we know what the
result is supposed to be. */
if (count > GET_MODE_BITSIZE (shift_mode) - 1)
{
if (code == ASHIFTRT)
count = GET_MODE_BITSIZE (shift_mode) - 1;
else if (code == ROTATE || code == ROTATERT)
count %= GET_MODE_BITSIZE (shift_mode);
else
{
/* We can't simply return zero because there may be an
outer op. */
varop = const0_rtx;
count = 0;
break;
}
}
/* Negative counts are invalid and should not have been made (a
programmer-specified negative count should have been handled
above). */
else if (count < 0)
abort ();
/* An arithmetic right shift of a quantity known to be -1 or 0
is a no-op. */
if (code == ASHIFTRT
&& (num_sign_bit_copies (varop, shift_mode)
== GET_MODE_BITSIZE (shift_mode)))
{
count = 0;
break;
}
/* If we are doing an arithmetic right shift and discarding all but
the sign bit copies, this is equivalent to doing a shift by the
bitsize minus one. Convert it into that shift because it will often
allow other simplifications. */
if (code == ASHIFTRT
&& (count + num_sign_bit_copies (varop, shift_mode)
>= GET_MODE_BITSIZE (shift_mode)))
count = GET_MODE_BITSIZE (shift_mode) - 1;
/* We simplify the tests below and elsewhere by converting
ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
`make_compound_operation' will convert it to a ASHIFTRT for
those machines (such as Vax) that don't have a LSHIFTRT. */
if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
&& code == ASHIFTRT
&& ((nonzero_bits (varop, shift_mode)
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
== 0))
code = LSHIFTRT;
switch (GET_CODE (varop))
{
case SIGN_EXTEND:
case ZERO_EXTEND:
case SIGN_EXTRACT:
case ZERO_EXTRACT:
new = expand_compound_operation (varop);
if (new != varop)
{
varop = new;
continue;
}
break;
case MEM:
/* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
minus the width of a smaller mode, we can do this with a
SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& ! mode_dependent_address_p (XEXP (varop, 0))
&& ! MEM_VOLATILE_P (varop)
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
MODE_INT, 1)) != BLKmode)
{
if (BYTES_BIG_ENDIAN)
new = gen_rtx (MEM, tmode, XEXP (varop, 0));
else
new = gen_rtx (MEM, tmode,
plus_constant (XEXP (varop, 0),
count / BITS_PER_UNIT));
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
: ZERO_EXTEND, mode, new);
count = 0;
continue;
}
break;
case USE:
/* Similar to the case above, except that we can only do this if
the resulting mode is the same as that of the underlying
MEM and adjust the address depending on the *bits* endianness
because of the way that bit-field extract insns are defined. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
MODE_INT, 1)) != BLKmode
&& tmode == GET_MODE (XEXP (varop, 0)))
{
if (BITS_BIG_ENDIAN)
new = XEXP (varop, 0);
else
{
new = copy_rtx (XEXP (varop, 0));
SUBST (XEXP (new, 0),
plus_constant (XEXP (new, 0),
count / BITS_PER_UNIT));
}
varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
: ZERO_EXTEND, mode, new);
count = 0;
continue;
}
break;
case SUBREG:
/* If VAROP is a SUBREG, strip it as long as the inner operand has
the same number of words as what we've seen so far. Then store
the widest mode in MODE. */
if (subreg_lowpart_p (varop)
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
> GET_MODE_SIZE (GET_MODE (varop)))
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== mode_words))
{
varop = SUBREG_REG (varop);
if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
mode = GET_MODE (varop);
continue;
}
break;
case MULT:
/* Some machines use MULT instead of ASHIFT because MULT
is cheaper. But it is still better on those machines to
merge two shifts into one. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
{
varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));;
continue;
}
break;
case UDIV:
/* Similar, for when divides are cheaper. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
{
varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
continue;
}
break;
case ASHIFTRT:
/* If we are extracting just the sign bit of an arithmetic right
shift, that shift is not needed. */
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
{
varop = XEXP (varop, 0);
continue;
}
/* ... fall through ... */
case LSHIFTRT:
case ASHIFT:
case ROTATE:
/* Here we have two nested shifts. The result is usually the
AND of a new shift with a mask. We compute the result below. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& INTVAL (XEXP (varop, 1)) >= 0
&& INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
enum rtx_code first_code = GET_CODE (varop);
int first_count = INTVAL (XEXP (varop, 1));
unsigned HOST_WIDE_INT mask;
rtx mask_rtx;
/* We have one common special case. We can't do any merging if
the inner code is an ASHIFTRT of a smaller mode. However, if
we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
we can convert it to
(ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
This simplifies certain SIGN_EXTEND operations. */
if (code == ASHIFT && first_code == ASHIFTRT
&& (GET_MODE_BITSIZE (result_mode)
- GET_MODE_BITSIZE (GET_MODE (varop))) == count)
{
/* C3 has the low-order C1 bits zero. */
mask = (GET_MODE_MASK (mode)
& ~ (((HOST_WIDE_INT) 1 << first_count) - 1));
varop = simplify_and_const_int (NULL_RTX, result_mode,
XEXP (varop, 0), mask);
varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
varop, count);
count = first_count;
code = ASHIFTRT;
continue;
}
/* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
than C1 high-order bits equal to the sign bit, we can convert
this to either an ASHIFT or a ASHIFTRT depending on the
two counts.
We cannot do this if VAROP's mode is not SHIFT_MODE. */
if (code == ASHIFTRT && first_code == ASHIFT
&& GET_MODE (varop) == shift_mode
&& (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
> first_count))
{
count -= first_count;
if (count < 0)
count = - count, code = ASHIFT;
varop = XEXP (varop, 0);
continue;
}
/* There are some cases we can't do. If CODE is ASHIFTRT,
we can only do this if FIRST_CODE is also ASHIFTRT.
We can't do the case when CODE is ROTATE and FIRST_CODE is
ASHIFTRT.
If the mode of this shift is not the mode of the outer shift,
we can't do this if either shift is a right shift or ROTATE.
Finally, we can't do any of these if the mode is too wide
unless the codes are the same.
Handle the case where the shift codes are the same
first. */
if (code == first_code)
{
if (GET_MODE (varop) != result_mode
&& (code == ASHIFTRT || code == LSHIFTRT
|| code == ROTATE))
break;
count += first_count;
varop = XEXP (varop, 0);
continue;
}
if (code == ASHIFTRT
|| (code == ROTATE && first_code == ASHIFTRT)
|| GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
|| (GET_MODE (varop) != result_mode
&& (first_code == ASHIFTRT || first_code == LSHIFTRT
|| first_code == ROTATE
|| code == ROTATE)))
break;
/* To compute the mask to apply after the shift, shift the
nonzero bits of the inner shift the same way the
outer shift will. */
mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
mask_rtx
= simplify_binary_operation (code, result_mode, mask_rtx,
GEN_INT (count));
/* Give up if we can't compute an outer operation to use. */
if (mask_rtx == 0
|| GET_CODE (mask_rtx) != CONST_INT
|| ! merge_outer_ops (&outer_op, &outer_const, AND,
INTVAL (mask_rtx),
result_mode, &complement_p))
break;
/* If the shifts are in the same direction, we add the
counts. Otherwise, we subtract them. */
if ((code == ASHIFTRT || code == LSHIFTRT)
== (first_code == ASHIFTRT || first_code == LSHIFTRT))
count += first_count;
else
count -= first_count;
/* If COUNT is positive, the new shift is usually CODE,
except for the two exceptions below, in which case it is
FIRST_CODE. If the count is negative, FIRST_CODE should
always be used */
if (count > 0
&& ((first_code == ROTATE && code == ASHIFT)
|| (first_code == ASHIFTRT && code == LSHIFTRT)))
code = first_code;
else if (count < 0)
code = first_code, count = - count;
varop = XEXP (varop, 0);
continue;
}
/* If we have (A << B << C) for any shift, we can convert this to
(A << C << B). This wins if A is a constant. Only try this if
B is not a constant. */
else if (GET_CODE (varop) == code
&& GET_CODE (XEXP (varop, 1)) != CONST_INT
&& 0 != (new
= simplify_binary_operation (code, mode,
XEXP (varop, 0),
GEN_INT (count))))
{
varop = gen_rtx_combine (code, mode, new, XEXP (varop, 1));
count = 0;
continue;
}
break;
case NOT:
/* Make this fit the case below. */
varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
GEN_INT (GET_MODE_MASK (mode)));
continue;
case IOR:
case AND:
case XOR:
/* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
with C the size of VAROP - 1 and the shift is logical if
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
we have an (le X 0) operation. If we have an arithmetic shift
and STORE_FLAG_VALUE is 1 or we have a logical shift with
STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
&& XEXP (XEXP (varop, 0), 1) == constm1_rtx
&& (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& (code == LSHIFTRT || code == ASHIFTRT)
&& count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
{
count = 0;
varop = gen_rtx_combine (LE, GET_MODE (varop), XEXP (varop, 1),
const0_rtx);
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
continue;
}
/* If we have (shift (logical)), move the logical to the outside
to allow it to possibly combine with another logical and the
shift to combine with another shift. This also canonicalizes to
what a ZERO_EXTRACT looks like. Also, some machines have
(and (shift)) insns. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (new = simplify_binary_operation (code, result_mode,
XEXP (varop, 1),
GEN_INT (count))) != 0
&& GET_CODE(new) == CONST_INT
&& merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
INTVAL (new), result_mode, &complement_p))
{
varop = XEXP (varop, 0);
continue;
}
/* If we can't do that, try to simplify the shift in each arm of the
logical expression, make a new logical expression, and apply
the inverse distributive law. */
{
rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
XEXP (varop, 0), count);
rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
XEXP (varop, 1), count);
varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
varop = apply_distributive_law (varop);
count = 0;
}
break;
case EQ:
/* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
says that the sign bit can be tested, FOO has mode MODE, C is
GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
that may be nonzero. */
if (code == LSHIFTRT
&& XEXP (varop, 1) == const0_rtx
&& GET_MODE (XEXP (varop, 0)) == result_mode
&& count == GET_MODE_BITSIZE (result_mode) - 1
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
&& ((STORE_FLAG_VALUE
& ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1
&& merge_outer_ops (&outer_op, &outer_const, XOR,
(HOST_WIDE_INT) 1, result_mode,
&complement_p))
{
varop = XEXP (varop, 0);
count = 0;
continue;
}
break;
case NEG:
/* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
than the number of bits in the mode is equivalent to A. */
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1)
{
varop = XEXP (varop, 0);
count = 0;
continue;
}
/* NEG commutes with ASHIFT since it is multiplication. Move the
NEG outside to allow shifts to combine. */
if (code == ASHIFT
&& merge_outer_ops (&outer_op, &outer_const, NEG,
(HOST_WIDE_INT) 0, result_mode,
&complement_p))
{
varop = XEXP (varop, 0);
continue;
}
break;
case PLUS:
/* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
is one less than the number of bits in the mode is
equivalent to (xor A 1). */
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
&& XEXP (varop, 1) == constm1_rtx
&& nonzero_bits (XEXP (varop, 0), result_mode) == 1
&& merge_outer_ops (&outer_op, &outer_const, XOR,
(HOST_WIDE_INT) 1, result_mode,
&complement_p))
{
count = 0;
varop = XEXP (varop, 0);
continue;
}
/* If we have (xshiftrt (plus FOO BAR) C), and the only bits
that might be nonzero in BAR are those being shifted out and those
bits are known zero in FOO, we can replace the PLUS with FOO.
Similarly in the other operand order. This code occurs when
we are computing the size of a variable-size array. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& count < HOST_BITS_PER_WIDE_INT
&& nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
&& (nonzero_bits (XEXP (varop, 1), result_mode)
& nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
{
varop = XEXP (varop, 0);
continue;
}
else if ((code == ASHIFTRT || code == LSHIFTRT)
&& count < HOST_BITS_PER_WIDE_INT
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
&& 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
>> count)
&& 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
& nonzero_bits (XEXP (varop, 1),
result_mode)))
{
varop = XEXP (varop, 1);
continue;
}
/* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
if (code == ASHIFT
&& GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (new = simplify_binary_operation (ASHIFT, result_mode,
XEXP (varop, 1),
GEN_INT (count))) != 0
&& GET_CODE(new) == CONST_INT
&& merge_outer_ops (&outer_op, &outer_const, PLUS,
INTVAL (new), result_mode, &complement_p))
{
varop = XEXP (varop, 0);
continue;
}
break;
case MINUS:
/* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
with C the size of VAROP - 1 and the shift is logical if
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
we have a (gt X 0) operation. If the shift is arithmetic with
STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
we have a (neg (gt X 0)) operation. */
if (GET_CODE (XEXP (varop, 0)) == ASHIFTRT
&& count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
&& (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
&& (code == LSHIFTRT || code == ASHIFTRT)
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (varop, 0), 1)) == count
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
{
count = 0;
varop = gen_rtx_combine (GT, GET_MODE (varop), XEXP (varop, 1),
const0_rtx);
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
varop = gen_rtx_combine (NEG, GET_MODE (varop), varop);
continue;
}
break;
}
break;
}
/* We need to determine what mode to do the shift in. If the shift is
a right shift or ROTATE, we must always do it in the mode it was
originally done in. Otherwise, we can do it in MODE, the widest mode
encountered. The code we care about is that of the shift that will
actually be done, not the shift that was originally requested. */
shift_mode
= (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
? result_mode : mode);
/* We have now finished analyzing the shift. The result should be
a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
OUTER_OP is non-NIL, it is an operation that needs to be applied
to the result of the shift. OUTER_CONST is the relevant constant,
but we must turn off all bits turned off in the shift.
If we were passed a value for X, see if we can use any pieces of
it. If not, make new rtx. */
if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == count)
const_rtx = XEXP (x, 1);
else
const_rtx = GEN_INT (count);
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (XEXP (x, 0)) == shift_mode
&& SUBREG_REG (XEXP (x, 0)) == varop)
varop = XEXP (x, 0);
else if (GET_MODE (varop) != shift_mode)
varop = gen_lowpart_for_combine (shift_mode, varop);
/* If we can't make the SUBREG, try to return what we were given. */
if (GET_CODE (varop) == CLOBBER)
return x ? x : varop;
new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
if (new != 0)
x = new;
else
{
if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
SUBST (XEXP (x, 0), varop);
SUBST (XEXP (x, 1), const_rtx);
}
/* If we have an outer operation and we just made a shift, it is
possible that we could have simplified the shift were it not
for the outer operation. So try to do the simplification
recursively. */
if (outer_op != NIL && GET_CODE (x) == code
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)));
/* If we were doing a LSHIFTRT in a wider mode than it was originally,
turn off all the bits that the shift would have turned off. */
if (orig_code == LSHIFTRT && result_mode != shift_mode)
x = simplify_and_const_int (NULL_RTX, shift_mode, x,
GET_MODE_MASK (result_mode) >> orig_count);
/* Do the remainder of the processing in RESULT_MODE. */
x = gen_lowpart_for_combine (result_mode, x);
/* If COMPLEMENT_P is set, we have to complement X before doing the outer
operation. */
if (complement_p)
x = gen_unary (NOT, result_mode, result_mode, x);
if (outer_op != NIL)
{
if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
{
int width = GET_MODE_BITSIZE (result_mode);
outer_const &= GET_MODE_MASK (result_mode);
/* If this would be an entire word for the target, but is not for
the host, then sign-extend on the host so that the number will
look the same way on the host that it would on the target.
For example, when building a 64 bit alpha hosted 32 bit sparc
targeted compiler, then we want the 32 bit unsigned value -1 to be
represented as a 64 bit value -1, and not as 0x00000000ffffffff.
The later confuses the sparc backend. */
if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
&& (outer_const & ((HOST_WIDE_INT) 1 << (width - 1))))
outer_const |= ((HOST_WIDE_INT) (-1) << width);
}
if (outer_op == AND)
x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
else if (outer_op == SET)
/* This means that we have determined that the result is
equivalent to a constant. This should be rare. */
x = GEN_INT (outer_const);
else if (GET_RTX_CLASS (outer_op) == '1')
x = gen_unary (outer_op, result_mode, result_mode, x);
else
x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
}
return x;
}
/* Like recog, but we receive the address of a pointer to a new pattern.
We try to match the rtx that the pointer points to.
If that fails, we may try to modify or replace the pattern,
storing the replacement into the same pointer object.
Modifications include deletion or addition of CLOBBERs.
PNOTES is a pointer to a location where any REG_UNUSED notes added for
the CLOBBERs are placed.
PADDED_SCRATCHES is set to the number of (clobber (scratch)) patterns
we had to add.
The value is the final insn code from the pattern ultimately matched,
or -1. */
static int
recog_for_combine (pnewpat, insn, pnotes, padded_scratches)
rtx *pnewpat;
rtx insn;
rtx *pnotes;
int *padded_scratches;
{
register rtx pat = *pnewpat;
int insn_code_number;
int num_clobbers_to_add = 0;
int i;
rtx notes = 0;
*padded_scratches = 0;
/* If PAT is a PARALLEL, check to see if it contains the CLOBBER
we use to indicate that something didn't match. If we find such a
thing, force rejection. */
if (GET_CODE (pat) == PARALLEL)
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
&& XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
return -1;
/* Is the result of combination a valid instruction? */
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
/* If it isn't, there is the possibility that we previously had an insn
that clobbered some register as a side effect, but the combined
insn doesn't need to do that. So try once more without the clobbers
unless this represents an ASM insn. */
if (insn_code_number < 0 && ! check_asm_operands (pat)
&& GET_CODE (pat) == PARALLEL)
{
int pos;
for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
{
if (i != pos)
SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
pos++;
}
SUBST_INT (XVECLEN (pat, 0), pos);
if (pos == 1)
pat = XVECEXP (pat, 0, 0);
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
}
/* If we had any clobbers to add, make a new pattern than contains
them. Then check to make sure that all of them are dead. */
if (num_clobbers_to_add)
{
rtx newpat = gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (GET_CODE (pat) == PARALLEL
? XVECLEN (pat, 0) + num_clobbers_to_add
: num_clobbers_to_add + 1));
if (GET_CODE (pat) == PARALLEL)
for (i = 0; i < XVECLEN (pat, 0); i++)
XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
else
XVECEXP (newpat, 0, 0) = pat;
add_clobbers (newpat, insn_code_number);
for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
i < XVECLEN (newpat, 0); i++)
{
if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
&& ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
return -1;
else if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == SCRATCH)
(*padded_scratches)++;
notes = gen_rtx (EXPR_LIST, REG_UNUSED,
XEXP (XVECEXP (newpat, 0, i), 0), notes);
}
pat = newpat;
}
*pnewpat = pat;
*pnotes = notes;
return insn_code_number;
}
/* Like gen_lowpart but for use by combine. In combine it is not possible
to create any new pseudoregs. However, it is safe to create
invalid memory addresses, because combine will try to recognize
them and all they will do is make the combine attempt fail.
If for some reason this cannot do its job, an rtx
(clobber (const_int 0)) is returned.
An insn containing that will not be recognized. */
#undef gen_lowpart
static rtx
gen_lowpart_for_combine (mode, x)
enum machine_mode mode;
register rtx x;
{
rtx result;
if (GET_MODE (x) == mode)
return x;
/* We can only support MODE being wider than a word if X is a
constant integer or has a mode the same size. */
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
&& ! ((GET_MODE (x) == VOIDmode
&& (GET_CODE (x) == CONST_INT
|| GET_CODE (x) == CONST_DOUBLE))
|| GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
/* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
won't know what to do. So we will strip off the SUBREG here and
process normally. */
if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
{
x = SUBREG_REG (x);
if (GET_MODE (x) == mode)
return x;
}
result = gen_lowpart_common (mode, x);
if (result != 0
&& GET_CODE (result) == SUBREG
&& GET_CODE (SUBREG_REG (result)) == REG
&& REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
&& (GET_MODE_SIZE (GET_MODE (result))
!= GET_MODE_SIZE (GET_MODE (SUBREG_REG (result)))))
reg_changes_size[REGNO (SUBREG_REG (result))] = 1;
if (result)
return result;
if (GET_CODE (x) == MEM)
{
register int offset = 0;
rtx new;
/* Refuse to work on a volatile memory ref or one with a mode-dependent
address. */
if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
/* If we want to refer to something bigger than the original memref,
generate a perverse subreg instead. That will force a reload
of the original memref X. */
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
return gen_rtx (SUBREG, mode, x, 0);
if (WORDS_BIG_ENDIAN)
offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
if (BYTES_BIG_ENDIAN)
{
/* Adjust the address so that the address-after-the-data is
unchanged. */
offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
}
new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
return new;
}
/* If X is a comparison operator, rewrite it in a new mode. This
probably won't match, but may allow further simplifications. */
else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
/* If we couldn't simplify X any other way, just enclose it in a
SUBREG. Normally, this SUBREG won't match, but some patterns may
include an explicit SUBREG or we may simplify it further in combine. */
else
{
int word = 0;
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
word = ((GET_MODE_SIZE (GET_MODE (x))
- MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
/ UNITS_PER_WORD);
return gen_rtx (SUBREG, mode, x, word);
}
}
/* Make an rtx expression. This is a subset of gen_rtx and only supports
expressions of 1, 2, or 3 operands, each of which are rtx expressions.
If the identical expression was previously in the insn (in the undobuf),
it will be returned. Only if it is not found will a new expression
be made. */
/*VARARGS2*/
static rtx
gen_rtx_combine VPROTO((enum rtx_code code, enum machine_mode mode, ...))
{
#ifndef __STDC__
enum rtx_code code;
enum machine_mode mode;
#endif
va_list p;
int n_args;
rtx args[3];
int i, j;
char *fmt;
rtx rt;
VA_START (p, mode);
#ifndef __STDC__
code = va_arg (p, enum rtx_code);
mode = va_arg (p, enum machine_mode);
#endif
n_args = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
if (n_args == 0 || n_args > 3)
abort ();
/* Get each arg and verify that it is supposed to be an expression. */
for (j = 0; j < n_args; j++)
{
if (*fmt++ != 'e')
abort ();
args[j] = va_arg (p, rtx);
}
/* See if this is in undobuf. Be sure we don't use objects that came
from another insn; this could produce circular rtl structures. */
for (i = previous_num_undos; i < undobuf.num_undo; i++)
if (!undobuf.undo[i].is_int
&& GET_CODE (undobuf.undo[i].old_contents.r) == code
&& GET_MODE (undobuf.undo[i].old_contents.r) == mode)
{
for (j = 0; j < n_args; j++)
if (XEXP (undobuf.undo[i].old_contents.r, j) != args[j])
break;
if (j == n_args)
return undobuf.undo[i].old_contents.r;
}
/* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
rt = rtx_alloc (code);
PUT_MODE (rt, mode);
XEXP (rt, 0) = args[0];
if (n_args > 1)
{
XEXP (rt, 1) = args[1];
if (n_args > 2)
XEXP (rt, 2) = args[2];
}
return rt;
}
/* These routines make binary and unary operations by first seeing if they
fold; if not, a new expression is allocated. */
static rtx
gen_binary (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
rtx result;
rtx tem;
if (GET_RTX_CLASS (code) == 'c'
&& (GET_CODE (op0) == CONST_INT
|| (CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)))
tem = op0, op0 = op1, op1 = tem;
if (GET_RTX_CLASS (code) == '<')
{
enum machine_mode op_mode = GET_MODE (op0);
/* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
just (REL_OP X Y). */
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
{
op1 = XEXP (op0, 1);
op0 = XEXP (op0, 0);
op_mode = GET_MODE (op0);
}
if (op_mode == VOIDmode)
op_mode = GET_MODE (op1);
result = simplify_relational_operation (code, op_mode, op0, op1);
}
else
result = simplify_binary_operation (code, mode, op0, op1);
if (result)
return result;
/* Put complex operands first and constants second. */
if (GET_RTX_CLASS (code) == 'c'
&& ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
|| (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
&& GET_RTX_CLASS (GET_CODE (op1)) != 'o')
|| (GET_CODE (op0) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
&& GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
return gen_rtx_combine (code, mode, op1, op0);
return gen_rtx_combine (code, mode, op0, op1);
}
static rtx
gen_unary (code, mode, op0_mode, op0)
enum rtx_code code;
enum machine_mode mode, op0_mode;
rtx op0;
{
rtx result = simplify_unary_operation (code, mode, op0, op0_mode);
if (result)
return result;
return gen_rtx_combine (code, mode, op0);
}
/* Simplify a comparison between *POP0 and *POP1 where CODE is the
comparison code that will be tested.
The result is a possibly different comparison code to use. *POP0 and
*POP1 may be updated.
It is possible that we might detect that a comparison is either always
true or always false. However, we do not perform general constant
folding in combine, so this knowledge isn't useful. Such tautologies
should have been detected earlier. Hence we ignore all such cases. */
static enum rtx_code
simplify_comparison (code, pop0, pop1)
enum rtx_code code;
rtx *pop0;
rtx *pop1;
{
rtx op0 = *pop0;
rtx op1 = *pop1;
rtx tem, tem1;
int i;
enum machine_mode mode, tmode;
/* Try a few ways of applying the same transformation to both operands. */
while (1)
{
#ifndef WORD_REGISTER_OPERATIONS
/* The test below this one won't handle SIGN_EXTENDs on these machines,
so check specially. */
if (code != GTU && code != GEU && code != LTU && code != LEU
&& GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& GET_CODE (XEXP (op1, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
&& GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
&& (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
&& INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
&& (INTVAL (XEXP (op0, 1))
== (GET_MODE_BITSIZE (GET_MODE (op0))
- (GET_MODE_BITSIZE
(GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
{
op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
}
#endif
/* If both operands are the same constant shift, see if we can ignore the
shift. We can if the shift is a rotate or if the bits shifted out of
this shift are known to be zero for both inputs and if the type of
comparison is compatible with the shift. */
if (GET_CODE (op0) == GET_CODE (op1)
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
&& ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
|| ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
&& (code != GT && code != LT && code != GE && code != LE))
|| (GET_CODE (op0) == ASHIFTRT
&& (code != GTU && code != LTU
&& code != GEU && code != GEU)))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
&& XEXP (op0, 1) == XEXP (op1, 1))
{
enum machine_mode mode = GET_MODE (op0);
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
int shift_count = INTVAL (XEXP (op0, 1));
if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
mask &= (mask >> shift_count) << shift_count;
else if (GET_CODE (op0) == ASHIFT)
mask = (mask & (mask << shift_count)) >> shift_count;
if ((nonzero_bits (XEXP (op0, 0), mode) & ~ mask) == 0
&& (nonzero_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
else
break;
}
/* If both operands are AND's of a paradoxical SUBREG by constant, the
SUBREGs are of the same mode, and, in both cases, the AND would
be redundant if the comparison was done in the narrower mode,
do the comparison in the narrower mode (e.g., we are AND'ing with 1
and the operand's possibly nonzero bits are 0xffffff01; in that case
if we only care about QImode, we don't need the AND). This case
occurs if the output mode of an scc insn is not SImode and
STORE_FLAG_VALUE == 1 (e.g., the 386).
Similarly, check for a case where the AND's are ZERO_EXTEND
operations from some narrower mode even though a SUBREG is not
present. */
else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT)
{
rtx inner_op0 = XEXP (op0, 0);
rtx inner_op1 = XEXP (op1, 0);
HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
int changed = 0;
if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (inner_op0))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
&& (GET_MODE (SUBREG_REG (inner_op0))
== GET_MODE (SUBREG_REG (inner_op1)))
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
<= HOST_BITS_PER_WIDE_INT)
&& (0 == (~c0) & nonzero_bits (SUBREG_REG (inner_op0),
GET_MODE (SUBREG_REG (op0))))
&& (0 == (~c1) & nonzero_bits (SUBREG_REG (inner_op1),
GET_MODE (SUBREG_REG (inner_op1)))))
{
op0 = SUBREG_REG (inner_op0);
op1 = SUBREG_REG (inner_op1);
/* The resulting comparison is always unsigned since we masked
off the original sign bit. */
code = unsigned_condition (code);
changed = 1;
}
else if (c0 == c1)
for (tmode = GET_CLASS_NARROWEST_MODE
(GET_MODE_CLASS (GET_MODE (op0)));
tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
if (c0 == GET_MODE_MASK (tmode))
{
op0 = gen_lowpart_for_combine (tmode, inner_op0);
op1 = gen_lowpart_for_combine (tmode, inner_op1);
code = unsigned_condition (code);
changed = 1;
break;
}
if (! changed)
break;
}
/* If both operands are NOT, we can strip off the outer operation
and adjust the comparison code for swapped operands; similarly for
NEG, except that this must be an equality comparison. */
else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
|| (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
&& (code == EQ || code == NE)))
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
else
break;
}
/* If the first operand is a constant, swap the operands and adjust the
comparison code appropriately. */
if (CONSTANT_P (op0))
{
tem = op0, op0 = op1, op1 = tem;
code = swap_condition (code);
}
/* We now enter a loop during which we will try to simplify the comparison.
For the most part, we only are concerned with comparisons with zero,
but some things may really be comparisons with zero but not start
out looking that way. */
while (GET_CODE (op1) == CONST_INT)
{
enum machine_mode mode = GET_MODE (op0);
int mode_width = GET_MODE_BITSIZE (mode);
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
int equality_comparison_p;
int sign_bit_comparison_p;
int unsigned_comparison_p;
HOST_WIDE_INT const_op;
/* We only want to handle integral modes. This catches VOIDmode,
CCmode, and the floating-point modes. An exception is that we
can handle VOIDmode if OP0 is a COMPARE or a comparison
operation. */
if (GET_MODE_CLASS (mode) != MODE_INT
&& ! (mode == VOIDmode
&& (GET_CODE (op0) == COMPARE
|| GET_RTX_CLASS (GET_CODE (op0)) == '<')))
break;
/* Get the constant we are comparing against and turn off all bits
not on in our mode. */
const_op = INTVAL (op1);
if (mode_width <= HOST_BITS_PER_WIDE_INT)
const_op &= mask;
/* If we are comparing against a constant power of two and the value
being compared can only have that single bit nonzero (e.g., it was
`and'ed with that bit), we can replace this with a comparison
with zero. */
if (const_op
&& (code == EQ || code == NE || code == GE || code == GEU
|| code == LT || code == LTU)
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& exact_log2 (const_op) >= 0
&& nonzero_bits (op0, mode) == const_op)
{
code = (code == EQ || code == GE || code == GEU ? NE : EQ);
op1 = const0_rtx, const_op = 0;
}
/* Similarly, if we are comparing a value known to be either -1 or
0 with -1, change it to the opposite comparison against zero. */
if (const_op == -1
&& (code == EQ || code == NE || code == GT || code == LE
|| code == GEU || code == LTU)
&& num_sign_bit_copies (op0, mode) == mode_width)
{
code = (code == EQ || code == LE || code == GEU ? NE : EQ);
op1 = const0_rtx, const_op = 0;
}
/* Do some canonicalizations based on the comparison code. We prefer
comparisons against zero and then prefer equality comparisons.
If we can reduce the size of a constant, we will do that too. */
switch (code)
{
case LT:
/* < C is equivalent to <= (C - 1) */
if (const_op > 0)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = LE;
/* ... fall through to LE case below. */
}
else
break;
case LE:
/* <= C is equivalent to < (C + 1); we do this for C < 0 */
if (const_op < 0)
{
const_op += 1;
op1 = GEN_INT (const_op);
code = LT;
}
/* If we are doing a <= 0 comparison on a value known to have
a zero sign bit, we can replace this with == 0. */
else if (const_op == 0
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode)
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
code = EQ;
break;
case GE:
/* >= C is equivalent to > (C - 1). */
if (const_op > 0)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = GT;
/* ... fall through to GT below. */
}
else
break;
case GT:
/* > C is equivalent to >= (C + 1); we do this for C < 0*/
if (const_op < 0)
{
const_op += 1;
op1 = GEN_INT (const_op);
code = GE;
}
/* If we are doing a > 0 comparison on a value known to have
a zero sign bit, we can replace this with != 0. */
else if (const_op == 0
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (op0, mode)
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
code = NE;
break;
case LTU:
/* < C is equivalent to <= (C - 1). */
if (const_op > 0)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = LEU;
/* ... fall through ... */
}
/* (unsigned) < 0x80000000 is equivalent to >= 0. */
else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
{
const_op = 0, op1 = const0_rtx;
code = GE;
break;
}
else
break;
case LEU:
/* unsigned <= 0 is equivalent to == 0 */
if (const_op == 0)
code = EQ;
/* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
{
const_op = 0, op1 = const0_rtx;
code = GE;
}
break;
case GEU:
/* >= C is equivalent to < (C - 1). */
if (const_op > 1)
{
const_op -= 1;
op1 = GEN_INT (const_op);
code = GTU;
/* ... fall through ... */
}
/* (unsigned) >= 0x80000000 is equivalent to < 0. */
else if (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1))
{
const_op = 0, op1 = const0_rtx;
code = LT;
break;
}
else
break;
case GTU:
/* unsigned > 0 is equivalent to != 0 */
if (const_op == 0)
code = NE;
/* (unsigned) > 0x7fffffff is equivalent to < 0. */
else if (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
{
const_op = 0, op1 = const0_rtx;
code = LT;
}
break;
}
/* Compute some predicates to simplify code below. */
equality_comparison_p = (code == EQ || code == NE);
sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
|| code == LEU);
/* If this is a sign bit comparison and we can do arithmetic in
MODE, say that we will only be needing the sign bit of OP0. */
if (sign_bit_comparison_p
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
op0 = force_to_mode (op0, mode,
((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (mode) - 1)),
NULL_RTX, 0);
/* Now try cases based on the opcode of OP0. If none of the cases
does a "continue", we exit this loop immediately after the
switch. */
switch (GET_CODE (op0))
{
case ZERO_EXTRACT:
/* If we are extracting a single bit from a variable position in
a constant that has only a single bit set and are comparing it
with zero, we can convert this into an equality comparison
between the position and the location of the single bit. We can't
do this if bit endian and we don't have an extzv since we then
can't know what mode to use for the endianness adjustment. */
if (GET_CODE (XEXP (op0, 0)) == CONST_INT
&& XEXP (op0, 1) == const1_rtx
&& equality_comparison_p && const_op == 0
&& (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0
&& (! BITS_BIG_ENDIAN
#ifdef HAVE_extzv
|| HAVE_extzv
#endif
))
{
#ifdef HAVE_extzv
if (BITS_BIG_ENDIAN)
i = (GET_MODE_BITSIZE
(insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
#endif
op0 = XEXP (op0, 2);
op1 = GEN_INT (i);
const_op = i;
/* Result is nonzero iff shift count is equal to I. */
code = reverse_condition (code);
continue;
}
/* ... fall through ... */
case SIGN_EXTRACT:
tem = expand_compound_operation (op0);
if (tem != op0)
{
op0 = tem;
continue;
}
break;
case NOT:
/* If testing for equality, we can take the NOT of the constant. */
if (equality_comparison_p
&& (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* If just looking at the sign bit, reverse the sense of the
comparison. */
if (sign_bit_comparison_p)
{
op0 = XEXP (op0, 0);
code = (code == GE ? LT : GE);
continue;
}
break;
case NEG:
/* If testing for equality, we can take the NEG of the constant. */
if (equality_comparison_p
&& (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* The remaining cases only apply to comparisons with zero. */
if (const_op != 0)
break;
/* When X is ABS or is known positive,
(neg X) is < 0 if and only if X != 0. */
if (sign_bit_comparison_p
&& (GET_CODE (XEXP (op0, 0)) == ABS
|| (mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (op0, 0), mode)
& ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
{
op0 = XEXP (op0, 0);
code = (code == LT ? NE : EQ);
continue;
}
/* If we have NEG of something whose two high-order bits are the
same, we know that "(-a) < 0" is equivalent to "a > 0". */
if (num_sign_bit_copies (op0, mode) >= 2)
{
op0 = XEXP (op0, 0);
code = swap_condition (code);
continue;
}
break;
case ROTATE:
/* If we are testing equality and our count is a constant, we
can perform the inverse operation on our RHS. */
if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (tem = simplify_binary_operation (ROTATERT, mode,
op1, XEXP (op0, 1))) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* If we are doing a < 0 or >= 0 comparison, it means we are testing
a particular bit. Convert it to an AND of a constant of that
bit. This will be converted into a ZERO_EXTRACT. */
if (const_op == 0 && sign_bit_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
{
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
((HOST_WIDE_INT) 1
<< (mode_width - 1
- INTVAL (XEXP (op0, 1)))));
code = (code == LT ? NE : EQ);
continue;
}
/* ... fall through ... */
case ABS:
/* ABS is ignorable inside an equality comparison with zero. */
if (const_op == 0 && equality_comparison_p)
{
op0 = XEXP (op0, 0);
continue;
}
break;
case SIGN_EXTEND:
/* Can simplify (compare (zero/sign_extend FOO) CONST)
to (compare FOO CONST) if CONST fits in FOO's mode and we
are either testing inequality or have an unsigned comparison
with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
if (! unsigned_comparison_p
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((unsigned HOST_WIDE_INT) const_op
< (((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
{
op0 = XEXP (op0, 0);
continue;
}
break;
case SUBREG:
/* Check for the case where we are comparing A - C1 with C2,
both constants are smaller than 1/2 the maximum positive
value in MODE, and the comparison is equality or unsigned.
In that case, if A is either zero-extended to MODE or has
sufficient sign bits so that the high-order bit in MODE
is a copy of the sign in the inner mode, we can prove that it is
safe to do the operation in the wider mode. This simplifies
many range checks. */
if (mode_width <= HOST_BITS_PER_WIDE_INT
&& subreg_lowpart_p (op0)
&& GET_CODE (SUBREG_REG (op0)) == PLUS
&& GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
&& INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
&& (- INTVAL (XEXP (SUBREG_REG (op0), 1))
< GET_MODE_MASK (mode) / 2)
&& (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
&& (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
GET_MODE (SUBREG_REG (op0)))
& ~ GET_MODE_MASK (mode))
|| (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
GET_MODE (SUBREG_REG (op0)))
> (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
- GET_MODE_BITSIZE (mode)))))
{
op0 = SUBREG_REG (op0);
continue;
}
/* If the inner mode is narrower and we are extracting the low part,
we can treat the SUBREG as if it were a ZERO_EXTEND. */
if (subreg_lowpart_p (op0)
&& GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
/* Fall through */ ;
else
break;
/* ... fall through ... */
case ZERO_EXTEND:
if ((unsigned_comparison_p || equality_comparison_p)
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
<= HOST_BITS_PER_WIDE_INT)
&& ((unsigned HOST_WIDE_INT) const_op
< GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
{
op0 = XEXP (op0, 0);
continue;
}
break;
case PLUS:
/* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
this for equality comparisons due to pathological cases involving
overflows. */
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (MINUS, mode,
op1, XEXP (op0, 1))))
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
&& GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
{
op0 = XEXP (XEXP (op0, 0), 0);
code = (code == LT ? EQ : NE);
continue;
}
break;
case MINUS:
/* (eq (minus A B) C) -> (eq A (plus B C)) or
(eq B (minus A C)), whichever simplifies. We can only do
this for equality comparisons due to pathological cases involving
overflows. */
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (PLUS, mode,
XEXP (op0, 1), op1)))
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (MINUS, mode,
XEXP (op0, 0), op1)))
{
op0 = XEXP (op0, 1);
op1 = tem;
continue;
}
/* The sign bit of (minus (ashiftrt X C) X), where C is the number
of bits in X minus 1, is one iff X > 0. */
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
{
op0 = XEXP (op0, 1);
code = (code == GE ? LE : GT);
continue;
}
break;
case XOR:
/* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
if C is zero or B is a constant. */
if (equality_comparison_p
&& 0 != (tem = simplify_binary_operation (XOR, mode,
XEXP (op0, 1), op1)))
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
break;
case EQ: case NE:
case LT: case LTU: case LE: case LEU:
case GT: case GTU: case GE: case GEU:
/* We can't do anything if OP0 is a condition code value, rather
than an actual data value. */
if (const_op != 0
#ifdef HAVE_cc0
|| XEXP (op0, 0) == cc0_rtx
#endif
|| GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
break;
/* Get the two operands being compared. */
if (GET_CODE (XEXP (op0, 0)) == COMPARE)
tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
else
tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
/* Check for the cases where we simply want the result of the
earlier test or the opposite of that result. */
if (code == NE
|| (code == EQ && reversible_comparison_p (op0))
|| (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& (STORE_FLAG_VALUE
& (((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
&& (code == LT
|| (code == GE && reversible_comparison_p (op0)))))
{
code = (code == LT || code == NE
? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
op0 = tem, op1 = tem1;
continue;
}
break;
case IOR:
/* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
iff X <= 0. */
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
&& XEXP (XEXP (op0, 0), 1) == constm1_rtx
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
{
op0 = XEXP (op0, 1);
code = (code == GE ? GT : LE);
continue;
}
break;
case AND:
/* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
will be converted to a ZERO_EXTRACT later. */
if (const_op == 0 && equality_comparison_p
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& XEXP (XEXP (op0, 0), 0) == const1_rtx)
{
op0 = simplify_and_const_int
(op0, mode, gen_rtx_combine (LSHIFTRT, mode,
XEXP (op0, 1),
XEXP (XEXP (op0, 0), 1)),
(HOST_WIDE_INT) 1);
continue;
}
/* If we are comparing (and (lshiftrt X C1) C2) for equality with
zero and X is a comparison and C1 and C2 describe only bits set
in STORE_FLAG_VALUE, we can compare with X. */
if (const_op == 0 && equality_comparison_p
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
{
mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
<< INTVAL (XEXP (XEXP (op0, 0), 1)));
if ((~ STORE_FLAG_VALUE & mask) == 0
&& (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
|| ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
&& GET_RTX_CLASS (GET_CODE (tem)) == '<')))
{
op0 = XEXP (XEXP (op0, 0), 0);
continue;
}
}
/* If we are doing an equality comparison of an AND of a bit equal
to the sign bit, replace this with a LT or GE comparison of
the underlying value. */
if (equality_comparison_p
&& const_op == 0
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
== (HOST_WIDE_INT) 1 << (mode_width - 1)))
{
op0 = XEXP (op0, 0);
code = (code == EQ ? GE : LT);
continue;
}
/* If this AND operation is really a ZERO_EXTEND from a narrower
mode, the constant fits within that mode, and this is either an
equality or unsigned comparison, try to do this comparison in
the narrower mode. */
if ((equality_comparison_p || unsigned_comparison_p)
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (i = exact_log2 ((INTVAL (XEXP (op0, 1))
& GET_MODE_MASK (mode))
+ 1)) >= 0
&& const_op >> i == 0
&& (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
{
op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
continue;
}
break;
case ASHIFT:
/* If we have (compare (ashift FOO N) (const_int C)) and
the high order N bits of FOO (N+1 if an inequality comparison)
are known to be zero, we can do this by comparing FOO with C
shifted right N bits so long as the low-order N bits of C are
zero. */
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
< HOST_BITS_PER_WIDE_INT)
&& ((const_op
& (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (op0, 0), mode)
& ~ (mask >> (INTVAL (XEXP (op0, 1))
+ ! equality_comparison_p))) == 0)
{
const_op >>= INTVAL (XEXP (op0, 1));
op1 = GEN_INT (const_op);
op0 = XEXP (op0, 0);
continue;
}
/* If we are doing a sign bit comparison, it means we are testing
a particular bit. Convert it to the appropriate AND. */
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT)
{
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
((HOST_WIDE_INT) 1
<< (mode_width - 1
- INTVAL (XEXP (op0, 1)))));
code = (code == LT ? NE : EQ);
continue;
}
/* If this an equality comparison with zero and we are shifting
the low bit to the sign bit, we can convert this to an AND of the
low-order bit. */
if (const_op == 0 && equality_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == mode_width - 1)
{
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
(HOST_WIDE_INT) 1);
continue;
}
break;
case ASHIFTRT:
/* If this is an equality comparison with zero, we can do this
as a logical shift, which might be much simpler. */
if (equality_comparison_p && const_op == 0
&& GET_CODE (XEXP (op0, 1)) == CONST_INT)
{
op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
XEXP (op0, 0),
INTVAL (XEXP (op0, 1)));
continue;
}
/* If OP0 is a sign extension and CODE is not an unsigned comparison,
do the comparison in a narrower mode. */
if (! unsigned_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
&& (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
MODE_INT, 1)) != BLKmode
&& ((unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (tmode)
|| ((unsigned HOST_WIDE_INT) - const_op
<= GET_MODE_MASK (tmode))))
{
op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
continue;
}
/* ... fall through ... */
case LSHIFTRT:
/* If we have (compare (xshiftrt FOO N) (const_int C)) and
the low order N bits of FOO are known to be zero, we can do this
by comparing FOO with C shifted left N bits so long as no
overflow occurs. */
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
&& mode_width <= HOST_BITS_PER_WIDE_INT
&& (nonzero_bits (XEXP (op0, 0), mode)
& (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
&& (const_op == 0
|| (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
< mode_width)))
{
const_op <<= INTVAL (XEXP (op0, 1));
op1 = GEN_INT (const_op);
op0 = XEXP (op0, 0);
continue;
}
/* If we are using this shift to extract just the sign bit, we
can replace this with an LT or GE comparison. */
if (const_op == 0
&& (equality_comparison_p || sign_bit_comparison_p)
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == mode_width - 1)
{
op0 = XEXP (op0, 0);
code = (code == NE || code == GT ? LT : GE);
continue;
}
break;
}
break;
}
/* Now make any compound operations involved in this comparison. Then,
check for an outmost SUBREG on OP0 that isn't doing anything or is
paradoxical. The latter case can only occur when it is known that the
"extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
We can never remove a SUBREG for a non-equality comparison because the
sign bit is in a different place in the underlying object. */
op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
op1 = make_compound_operation (op1, SET);
if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& (code == NE || code == EQ)
&& ((GET_MODE_SIZE (GET_MODE (op0))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))))
{
op0 = SUBREG_REG (op0);
op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
}
else if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& (code == NE || code == EQ)
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
<= HOST_BITS_PER_WIDE_INT)
&& (nonzero_bits (SUBREG_REG (op0), GET_MODE (SUBREG_REG (op0)))
& ~ GET_MODE_MASK (GET_MODE (op0))) == 0
&& (tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)),
op1),
(nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
& ~ GET_MODE_MASK (GET_MODE (op0))) == 0))
op0 = SUBREG_REG (op0), op1 = tem;
/* We now do the opposite procedure: Some machines don't have compare
insns in all modes. If OP0's mode is an integer mode smaller than a
word and we can't do a compare in that mode, see if there is a larger
mode for which we can do the compare. There are a number of cases in
which we can use the wider mode. */
mode = GET_MODE (op0);
if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
&& cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
for (tmode = GET_MODE_WIDER_MODE (mode);
(tmode != VOIDmode
&& GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
tmode = GET_MODE_WIDER_MODE (tmode))
if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
{
/* If the only nonzero bits in OP0 and OP1 are those in the
narrower mode and this is an equality or unsigned comparison,
we can use the wider mode. Similarly for sign-extended
values, in which case it is true for all comparisons. */
if (((code == EQ || code == NE
|| code == GEU || code == GTU || code == LEU || code == LTU)
&& (nonzero_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
&& (nonzero_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0)
|| ((num_sign_bit_copies (op0, tmode)
> GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
&& (num_sign_bit_copies (op1, tmode)
> GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
{
op0 = gen_lowpart_for_combine (tmode, op0);
op1 = gen_lowpart_for_combine (tmode, op1);
break;
}
/* If this is a test for negative, we can make an explicit
test of the sign bit. */
if (op1 == const0_rtx && (code == LT || code == GE)
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
{
op0 = gen_binary (AND, tmode,
gen_lowpart_for_combine (tmode, op0),
GEN_INT ((HOST_WIDE_INT) 1
<< (GET_MODE_BITSIZE (mode) - 1)));
code = (code == LT) ? NE : EQ;
break;
}
}
#ifdef CANONICALIZE_COMPARISON
/* If this machine only supports a subset of valid comparisons, see if we
can convert an unsupported one into a supported one. */
CANONICALIZE_COMPARISON (code, op0, op1);
#endif
*pop0 = op0;
*pop1 = op1;
return code;
}
/* Return 1 if we know that X, a comparison operation, is not operating
on a floating-point value or is EQ or NE, meaning that we can safely
reverse it. */
static int
reversible_comparison_p (x)
rtx x;
{
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| flag_fast_math
|| GET_CODE (x) == NE || GET_CODE (x) == EQ)
return 1;
switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
return 1;
case MODE_CC:
/* If the mode of the condition codes tells us that this is safe,
we need look no further. */
if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x, 0))))
return 1;
/* Otherwise try and find where the condition codes were last set and
use that. */
x = get_last_value (XEXP (x, 0));
return (x && GET_CODE (x) == COMPARE
&& ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
}
return 0;
}
/* Utility function for following routine. Called when X is part of a value
being stored into reg_last_set_value. Sets reg_last_set_table_tick
for each register mentioned. Similar to mention_regs in cse.c */
static void
update_table_tick (x)
rtx x;
{
register enum rtx_code code = GET_CODE (x);
register char *fmt = GET_RTX_FORMAT (code);
register int i;
if (code == REG)
{
int regno = REGNO (x);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
for (i = regno; i < endregno; i++)
reg_last_set_table_tick[i] = label_tick;
return;
}
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
/* Note that we can't have an "E" in values stored; see
get_last_value_validate. */
if (fmt[i] == 'e')
update_table_tick (XEXP (x, i));
}
/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
are saying that the register is clobbered and we no longer know its
value. If INSN is zero, don't update reg_last_set; this is only permitted
with VALUE also zero and is used to invalidate the register. */
static void
record_value_for_reg (reg, insn, value)
rtx reg;
rtx insn;
rtx value;
{
int regno = REGNO (reg);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
int i;
/* If VALUE contains REG and we have a previous value for REG, substitute
the previous value. */
if (value && insn && reg_overlap_mentioned_p (reg, value))
{
rtx tem;
/* Set things up so get_last_value is allowed to see anything set up to
our insn. */
subst_low_cuid = INSN_CUID (insn);
tem = get_last_value (reg);
if (tem)
value = replace_rtx (copy_rtx (value), reg, tem);
}
/* For each register modified, show we don't know its value, that
we don't know about its bitwise content, that its value has been
updated, and that we don't know the location of the death of the
register. */
for (i = regno; i < endregno; i ++)
{
if (insn)
reg_last_set[i] = insn;
reg_last_set_value[i] = 0;
reg_last_set_mode[i] = 0;
reg_last_set_nonzero_bits[i] = 0;
reg_last_set_sign_bit_copies[i] = 0;
reg_last_death[i] = 0;
}
/* Mark registers that are being referenced in this value. */
if (value)
update_table_tick (value);
/* Now update the status of each register being set.
If someone is using this register in this block, set this register
to invalid since we will get confused between the two lives in this
basic block. This makes using this register always invalid. In cse, we
scan the table to invalidate all entries using this register, but this
is too much work for us. */
for (i = regno; i < endregno; i++)
{
reg_last_set_label[i] = label_tick;
if (value && reg_last_set_table_tick[i] == label_tick)
reg_last_set_invalid[i] = 1;
else
reg_last_set_invalid[i] = 0;
}
/* The value being assigned might refer to X (like in "x++;"). In that
case, we must replace it with (clobber (const_int 0)) to prevent
infinite loops. */
if (value && ! get_last_value_validate (&value,
reg_last_set_label[regno], 0))
{
value = copy_rtx (value);
if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
value = 0;
}
/* For the main register being modified, update the value, the mode, the
nonzero bits, and the number of sign bit copies. */
reg_last_set_value[regno] = value;
if (value)
{
subst_low_cuid = INSN_CUID (insn);
reg_last_set_mode[regno] = GET_MODE (reg);
reg_last_set_nonzero_bits[regno] = nonzero_bits (value, GET_MODE (reg));
reg_last_set_sign_bit_copies[regno]
= num_sign_bit_copies (value, GET_MODE (reg));
}
}
/* Used for communication between the following two routines. */
static rtx record_dead_insn;
/* Called via note_stores from record_dead_and_set_regs to handle one
SET or CLOBBER in an insn. */
static void
record_dead_and_set_regs_1 (dest, setter)
rtx dest, setter;
{
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
if (GET_CODE (dest) == REG)
{
/* If we are setting the whole register, we know its value. Otherwise
show that we don't know the value. We can handle SUBREG in
some cases. */
if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
else if (GET_CODE (setter) == SET
&& GET_CODE (SET_DEST (setter)) == SUBREG
&& SUBREG_REG (SET_DEST (setter)) == dest
&& GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
&& subreg_lowpart_p (SET_DEST (setter)))
record_value_for_reg (dest, record_dead_insn,
gen_lowpart_for_combine (GET_MODE (dest),
SET_SRC (setter)));
else
record_value_for_reg (dest, record_dead_insn, NULL_RTX);
}
else if (GET_CODE (dest) == MEM
/* Ignore pushes, they clobber nothing. */
&& ! push_operand (dest, GET_MODE (dest)))
mem_last_set = INSN_CUID (record_dead_insn);
}
/* Update the records of when each REG was most recently set or killed
for the things done by INSN. This is the last thing done in processing
INSN in the combiner loop.
We update reg_last_set, reg_last_set_value, reg_last_set_mode,
reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
and also the similar information mem_last_set (which insn most recently
modified memory) and last_call_cuid (which insn was the most recent
subroutine call). */
static void
record_dead_and_set_regs (insn)
rtx insn;
{
register rtx link;
int i;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if (REG_NOTE_KIND (link) == REG_DEAD
&& GET_CODE (XEXP (link, 0)) == REG)
{
int regno = REGNO (XEXP (link, 0));
int endregno
= regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
: 1);
for (i = regno; i < endregno; i++)
reg_last_death[i] = insn;
}
else if (REG_NOTE_KIND (link) == REG_INC)
record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
}
if (GET_CODE (insn) == CALL_INSN)
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (call_used_regs[i])
{
reg_last_set_value[i] = 0;
reg_last_set_mode[i] = 0;
reg_last_set_nonzero_bits[i] = 0;
reg_last_set_sign_bit_copies[i] = 0;
reg_last_death[i] = 0;
}
last_call_cuid = mem_last_set = INSN_CUID (insn);
}
record_dead_insn = insn;
note_stores (PATTERN (insn), record_dead_and_set_regs_1);
}
/* Utility routine for the following function. Verify that all the registers
mentioned in *LOC are valid when *LOC was part of a value set when
label_tick == TICK. Return 0 if some are not.
If REPLACE is non-zero, replace the invalid reference with
(clobber (const_int 0)) and return 1. This replacement is useful because
we often can get useful information about the form of a value (e.g., if
it was produced by a shift that always produces -1 or 0) even though
we don't know exactly what registers it was produced from. */
static int
get_last_value_validate (loc, tick, replace)
rtx *loc;
int tick;
int replace;
{
rtx x = *loc;
char *fmt = GET_RTX_FORMAT (GET_CODE (x));
int len = GET_RTX_LENGTH (GET_CODE (x));
int i;
if (GET_CODE (x) == REG)
{
int regno = REGNO (x);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
int j;
for (j = regno; j < endregno; j++)
if (reg_last_set_invalid[j]
/* If this is a pseudo-register that was only set once, it is
always valid. */
|| (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
&& reg_last_set_label[j] > tick))
{
if (replace)
*loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
return replace;
}
return 1;
}
for (i = 0; i < len; i++)
if ((fmt[i] == 'e'
&& get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
/* Don't bother with these. They shouldn't occur anyway. */
|| fmt[i] == 'E')
return 0;
/* If we haven't found a reason for it to be invalid, it is valid. */
return 1;
}
/* Get the last value assigned to X, if known. Some registers
in the value may be replaced with (clobber (const_int 0)) if their value
is known longer known reliably. */
static rtx
get_last_value (x)
rtx x;
{
int regno;
rtx value;
/* If this is a non-paradoxical SUBREG, get the value of its operand and
then convert it to the desired mode. If this is a paradoxical SUBREG,
we cannot predict what values the "extra" bits might have. */
if (GET_CODE (x) == SUBREG
&& subreg_lowpart_p (x)
&& (GET_MODE_SIZE (GET_MODE (x))
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
&& (value = get_last_value (SUBREG_REG (x))) != 0)
return gen_lowpart_for_combine (GET_MODE (x), value);
if (GET_CODE (x) != REG)
return 0;
regno = REGNO (x);
value = reg_last_set_value[regno];
/* If we don't have a value or if it isn't for this basic block, return 0. */
if (value == 0
|| (reg_n_sets[regno] != 1
&& reg_last_set_label[regno] != label_tick))
return 0;
/* If the value was set in a later insn than the ones we are processing,
we can't use it even if the register was only set once, but make a quick
check to see if the previous insn set it to something. This is commonly
the case when the same pseudo is used by repeated insns.
This does not work if there exists an instruction which is temporarily
not on the insn chain. */
if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
{
rtx insn, set;
/* We can not do anything useful in this case, because there is
an instruction which is not on the insn chain. */
if (subst_prev_insn)
return 0;
/* Skip over USE insns. They are not useful here, and they may have
been made by combine, in which case they do not have a INSN_CUID
value. We can't use prev_real_insn, because that would incorrectly
take us backwards across labels. Skip over BARRIERs also, since
they could have been made by combine. If we see one, we must be
optimizing dead code, so it doesn't matter what we do. */
for (insn = prev_nonnote_insn (subst_insn);
insn && ((GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == USE)
|| GET_CODE (insn) == BARRIER
|| INSN_CUID (insn) >= subst_low_cuid);
insn = prev_nonnote_insn (insn))
;
if (insn
&& (set = single_set (insn)) != 0
&& rtx_equal_p (SET_DEST (set), x))
{
value = SET_SRC (set);
/* Make sure that VALUE doesn't reference X. Replace any
explicit references with a CLOBBER. If there are any remaining
references (rare), don't use the value. */
if (reg_mentioned_p (x, value))
value = replace_rtx (copy_rtx (value), x,
gen_rtx (CLOBBER, GET_MODE (x), const0_rtx));
if (reg_overlap_mentioned_p (x, value))
return 0;
}
else
return 0;
}
/* If the value has all its registers valid, return it. */
if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
return value;
/* Otherwise, make a copy and replace any invalid register with
(clobber (const_int 0)). If that fails for some reason, return 0. */
value = copy_rtx (value);
if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
return value;
return 0;
}
/* Return nonzero if expression X refers to a REG or to memory
that is set in an instruction more recent than FROM_CUID. */
static int
use_crosses_set_p (x, from_cuid)
register rtx x;
int from_cuid;
{
register char *fmt;
register int i;
register enum rtx_code code = GET_CODE (x);
if (code == REG)
{
register int regno = REGNO (x);
int endreg = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
#ifdef PUSH_ROUNDING
/* Don't allow uses of the stack pointer to be moved,
because we don't know whether the move crosses a push insn. */
if (regno == STACK_POINTER_REGNUM)
return 1;
#endif
for (;regno < endreg; regno++)
if (reg_last_set[regno]
&& INSN_CUID (reg_last_set[regno]) > from_cuid)
return 1;
return 0;
}
if (code == MEM && mem_last_set > from_cuid)
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
return 1;
}
else if (fmt[i] == 'e'
&& use_crosses_set_p (XEXP (x, i), from_cuid))
return 1;
}
return 0;
}
/* Define three variables used for communication between the following
routines. */
static int reg_dead_regno, reg_dead_endregno;
static int reg_dead_flag;
/* Function called via note_stores from reg_dead_at_p.
If DEST is within [reg_dead_regno, reg_dead_endregno), set
reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
static void
reg_dead_at_p_1 (dest, x)
rtx dest;
rtx x;
{
int regno, endregno;
if (GET_CODE (dest) != REG)
return;
regno = REGNO (dest);
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
if (reg_dead_endregno > regno && reg_dead_regno < endregno)
reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
}
/* Return non-zero if REG is known to be dead at INSN.
We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
referencing REG, it is dead. If we hit a SET referencing REG, it is
live. Otherwise, see if it is live or dead at the start of the basic
block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
must be assumed to be always live. */
static int
reg_dead_at_p (reg, insn)
rtx reg;
rtx insn;
{
int block, i;
/* Set variables for reg_dead_at_p_1. */
reg_dead_regno = REGNO (reg);
reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (reg_dead_regno,
GET_MODE (reg))
: 1);
reg_dead_flag = 0;
/* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
{
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
if (TEST_HARD_REG_BIT (newpat_used_regs, i))
return 0;
}
/* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
beginning of function. */
for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
insn = prev_nonnote_insn (insn))
{
note_stores (PATTERN (insn), reg_dead_at_p_1);
if (reg_dead_flag)
return reg_dead_flag == 1 ? 1 : 0;
if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
return 1;
}
/* Get the basic block number that we were in. */
if (insn == 0)
block = 0;
else
{
for (block = 0; block < n_basic_blocks; block++)
if (insn == basic_block_head[block])
break;
if (block == n_basic_blocks)
return 0;
}
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
if (basic_block_live_at_start[block][i / REGSET_ELT_BITS]
& ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
return 0;
return 1;
}
/* Note hard registers in X that are used. This code is similar to
that in flow.c, but much simpler since we don't care about pseudos. */
static void
mark_used_regs_combine (x)
rtx x;
{
register RTX_CODE code = GET_CODE (x);
register int regno;
int i;
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST_INT:
case CONST:
case CONST_DOUBLE:
case PC:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case ASM_INPUT:
#ifdef HAVE_cc0
/* CC0 must die in the insn after it is set, so we don't need to take
special note of it here. */
case CC0:
#endif
return;
case CLOBBER:
/* If we are clobbering a MEM, mark any hard registers inside the
address as used. */
if (GET_CODE (XEXP (x, 0)) == MEM)
mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
return;
case REG:
regno = REGNO (x);
/* A hard reg in a wide mode may really be multiple registers.
If so, mark all of them just like the first. */
if (regno < FIRST_PSEUDO_REGISTER)
{
/* None of this applies to the stack, frame or arg pointers */
if (regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|| regno == HARD_FRAME_POINTER_REGNUM
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
|| regno == FRAME_POINTER_REGNUM)
return;
i = HARD_REGNO_NREGS (regno, GET_MODE (x));
while (i-- > 0)
SET_HARD_REG_BIT (newpat_used_regs, regno + i);
}
return;
case SET:
{
/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
the address. */
register rtx testreg = SET_DEST (x);
while (GET_CODE (testreg) == SUBREG
|| GET_CODE (testreg) == ZERO_EXTRACT
|| GET_CODE (testreg) == SIGN_EXTRACT
|| GET_CODE (testreg) == STRICT_LOW_PART)
testreg = XEXP (testreg, 0);
if (GET_CODE (testreg) == MEM)
mark_used_regs_combine (XEXP (testreg, 0));
mark_used_regs_combine (SET_SRC (x));
return;
}
}
/* Recursively scan the operands of this expression. */
{
register char *fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
mark_used_regs_combine (XEXP (x, i));
else if (fmt[i] == 'E')
{
register int j;
for (j = 0; j < XVECLEN (x, i); j++)
mark_used_regs_combine (XVECEXP (x, i, j));
}
}
}
}
/* Remove register number REGNO from the dead registers list of INSN.
Return the note used to record the death, if there was one. */
rtx
remove_death (regno, insn)
int regno;
rtx insn;
{
register rtx note = find_regno_note (insn, REG_DEAD, regno);
if (note)
{
reg_n_deaths[regno]--;
remove_note (insn, note);
}
return note;
}
/* For each register (hardware or pseudo) used within expression X, if its
death is in an instruction with cuid between FROM_CUID (inclusive) and
TO_INSN (exclusive), put a REG_DEAD note for that register in the
list headed by PNOTES.
This is done when X is being merged by combination into TO_INSN. These
notes will then be distributed as needed. */
static void
move_deaths (x, from_cuid, to_insn, pnotes)
rtx x;
int from_cuid;
rtx to_insn;
rtx *pnotes;
{
register char *fmt;
register int len, i;
register enum rtx_code code = GET_CODE (x);
if (code == REG)
{
register int regno = REGNO (x);
register rtx where_dead = reg_last_death[regno];
register rtx before_dead, after_dead;
/* WHERE_DEAD could be a USE insn made by combine, so first we
make sure that we have insns with valid INSN_CUID values. */
before_dead = where_dead;
while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
before_dead = PREV_INSN (before_dead);
after_dead = where_dead;
while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
after_dead = NEXT_INSN (after_dead);
if (before_dead && after_dead
&& INSN_CUID (before_dead) >= from_cuid
&& (INSN_CUID (after_dead) < INSN_CUID (to_insn)
|| (where_dead != after_dead
&& INSN_CUID (after_dead) == INSN_CUID (to_insn))))
{
rtx note = remove_death (regno, where_dead);
/* It is possible for the call above to return 0. This can occur
when reg_last_death points to I2 or I1 that we combined with.
In that case make a new note.
We must also check for the case where X is a hard register
and NOTE is a death note for a range of hard registers
including X. In that case, we must put REG_DEAD notes for
the remaining registers in place of NOTE. */
if (note != 0 && regno < FIRST_PSEUDO_REGISTER
&& (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
!= GET_MODE_SIZE (GET_MODE (x))))
{
int deadregno = REGNO (XEXP (note, 0));
int deadend
= (deadregno + HARD_REGNO_NREGS (deadregno,
GET_MODE (XEXP (note, 0))));
int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
int i;
for (i = deadregno; i < deadend; i++)
if (i < regno || i >= ourend)
REG_NOTES (where_dead)
= gen_rtx (EXPR_LIST, REG_DEAD,
gen_rtx (REG, reg_raw_mode[i], i),
REG_NOTES (where_dead));
}
/* If we didn't find any note, and we have a multi-reg hard
register, then to be safe we must check for REG_DEAD notes
for each register other than the first. They could have
their own REG_DEAD notes lying around. */
else if (note == 0 && regno < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
{
int ourend = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
int i;
rtx oldnotes = 0;
for (i = regno + 1; i < ourend; i++)
move_deaths (gen_rtx (REG, reg_raw_mode[i], i),
from_cuid, to_insn, &oldnotes);
}
if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
{
XEXP (note, 1) = *pnotes;
*pnotes = note;
}
else
*pnotes = gen_rtx (EXPR_LIST, REG_DEAD, x, *pnotes);
reg_n_deaths[regno]++;
}
return;
}
else if (GET_CODE (x) == SET)
{
rtx dest = SET_DEST (x);
move_deaths (SET_SRC (x), from_cuid, to_insn, pnotes);
/* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
that accesses one word of a multi-word item, some
piece of everything register in the expression is used by
this insn, so remove any old death. */
if (GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART
|| (GET_CODE (dest) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (dest))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
+ UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
{
move_deaths (dest, from_cuid, to_insn, pnotes);
return;
}
/* If this is some other SUBREG, we know it replaces the entire
value, so use that as the destination. */
if (GET_CODE (dest) == SUBREG)
dest = SUBREG_REG (dest);
/* If this is a MEM, adjust deaths of anything used in the address.
For a REG (the only other possibility), the entire value is
being replaced so the old value is not used in this insn. */
if (GET_CODE (dest) == MEM)
move_deaths (XEXP (dest, 0), from_cuid, to_insn, pnotes);
return;
}
else if (GET_CODE (x) == CLOBBER)
return;
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < len; i++)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
move_deaths (XVECEXP (x, i, j), from_cuid, to_insn, pnotes);
}
else if (fmt[i] == 'e')
move_deaths (XEXP (x, i), from_cuid, to_insn, pnotes);
}
}
/* Return 1 if X is the target of a bit-field assignment in BODY, the
pattern of an insn. X must be a REG. */
static int
reg_bitfield_target_p (x, body)
rtx x;
rtx body;
{
int i;
if (GET_CODE (body) == SET)
{
rtx dest = SET_DEST (body);
rtx target;
int regno, tregno, endregno, endtregno;
if (GET_CODE (dest) == ZERO_EXTRACT)
target = XEXP (dest, 0);
else if (GET_CODE (dest) == STRICT_LOW_PART)
target = SUBREG_REG (XEXP (dest, 0));
else
return 0;
if (GET_CODE (target) == SUBREG)
target = SUBREG_REG (target);
if (GET_CODE (target) != REG)
return 0;
tregno = REGNO (target), regno = REGNO (x);
if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
return target == x;
endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
return endregno > tregno && regno < endtregno;
}
else if (GET_CODE (body) == PARALLEL)
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
return 1;
return 0;
}
/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
as appropriate. I3 and I2 are the insns resulting from the combination
insns including FROM (I2 may be zero).
ELIM_I2 and ELIM_I1 are either zero or registers that we know will
not need REG_DEAD notes because they are being substituted for. This
saves searching in the most common cases.
Each note in the list is either ignored or placed on some insns, depending
on the type of note. */
static void
distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
rtx notes;
rtx from_insn;
rtx i3, i2;
rtx elim_i2, elim_i1;
{
rtx note, next_note;
rtx tem;
for (note = notes; note; note = next_note)
{
rtx place = 0, place2 = 0;
/* If this NOTE references a pseudo register, ensure it references
the latest copy of that register. */
if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
&& REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
next_note = XEXP (note, 1);
switch (REG_NOTE_KIND (note))
{
case REG_UNUSED:
/* Any clobbers for i3 may still exist, and so we must process
REG_UNUSED notes from that insn.
Any clobbers from i2 or i1 can only exist if they were added by
recog_for_combine. In that case, recog_for_combine created the
necessary REG_UNUSED notes. Trying to keep any original
REG_UNUSED notes from these insns can cause incorrect output
if it is for the same register as the original i3 dest.
In that case, we will notice that the register is set in i3,
and then add a REG_UNUSED note for the destination of i3, which
is wrong. However, it is possible to have REG_UNUSED notes from
i2 or i1 for register which were both used and clobbered, so
we keep notes from i2 or i1 if they will turn into REG_DEAD
notes. */
/* If this register is set or clobbered in I3, put the note there
unless there is one already. */
if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
{
if (from_insn != i3)
break;
if (! (GET_CODE (XEXP (note, 0)) == REG
? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
: find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
place = i3;
}
/* Otherwise, if this register is used by I3, then this register
now dies here, so we must put a REG_DEAD note here unless there
is one already. */
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
&& ! (GET_CODE (XEXP (note, 0)) == REG
? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
: find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
{
PUT_REG_NOTE_KIND (note, REG_DEAD);
place = i3;
}
break;
case REG_EQUAL:
case REG_EQUIV:
case REG_NONNEG:
/* These notes say something about results of an insn. We can
only support them if they used to be on I3 in which case they
remain on I3. Otherwise they are ignored.
If the note refers to an expression that is not a constant, we
must also ignore the note since we cannot tell whether the
equivalence is still true. It might be possible to do
slightly better than this (we only have a problem if I2DEST
or I1DEST is present in the expression), but it doesn't
seem worth the trouble. */
if (from_insn == i3
&& (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
place = i3;
break;
case REG_INC:
case REG_NO_CONFLICT:
case REG_LABEL:
/* These notes say something about how a register is used. They must
be present on any use of the register in I2 or I3. */
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
place = i3;
if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
{
if (place)
place2 = i2;
else
place = i2;
}
break;
case REG_WAS_0:
/* It is too much trouble to try to see if this note is still
correct in all situations. It is better to simply delete it. */
break;
case REG_RETVAL:
/* If the insn previously containing this note still exists,
put it back where it was. Otherwise move it to the previous
insn. Adjust the corresponding REG_LIBCALL note. */
if (GET_CODE (from_insn) != NOTE)
place = from_insn;
else
{
tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
place = prev_real_insn (from_insn);
if (tem && place)
XEXP (tem, 0) = place;
}
break;
case REG_LIBCALL:
/* This is handled similarly to REG_RETVAL. */
if (GET_CODE (from_insn) != NOTE)
place = from_insn;
else
{
tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
place = next_real_insn (from_insn);
if (tem && place)
XEXP (tem, 0) = place;
}
break;
case REG_DEAD:
/* If the register is used as an input in I3, it dies there.
Similarly for I2, if it is non-zero and adjacent to I3.
If the register is not used as an input in either I3 or I2
and it is not one of the registers we were supposed to eliminate,
there are two possibilities. We might have a non-adjacent I2
or we might have somehow eliminated an additional register
from a computation. For example, we might have had A & B where
we discover that B will always be zero. In this case we will
eliminate the reference to A.
In both cases, we must search to see if we can find a previous
use of A and put the death note there. */
if (from_insn
&& GET_CODE (from_insn) == CALL_INSN
&& find_reg_fusage (from_insn, USE, XEXP (note, 0)))
place = from_insn;
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
place = i3;
else if (i2 != 0 && next_nonnote_insn (i2) == i3
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
place = i2;
if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
break;
/* If the register is used in both I2 and I3 and it dies in I3,
we might have added another reference to it. If reg_n_refs
was 2, bump it to 3. This has to be correct since the
register must have been set somewhere. The reason this is
done is because local-alloc.c treats 2 references as a
special case. */
if (place == i3 && i2 != 0 && GET_CODE (XEXP (note, 0)) == REG
&& reg_n_refs[REGNO (XEXP (note, 0))]== 2
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
reg_n_refs[REGNO (XEXP (note, 0))] = 3;
if (place == 0)
{
for (tem = prev_nonnote_insn (i3);
place == 0 && tem
&& (GET_CODE (tem) == INSN || GET_CODE (tem) == CALL_INSN);
tem = prev_nonnote_insn (tem))
{
/* If the register is being set at TEM, see if that is all
TEM is doing. If so, delete TEM. Otherwise, make this
into a REG_UNUSED note instead. */
if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
{
rtx set = single_set (tem);
/* Verify that it was the set, and not a clobber that
modified the register. */
if (set != 0 && ! side_effects_p (SET_SRC (set))
&& (rtx_equal_p (XEXP (note, 0), SET_DEST (set))
|| (GET_CODE (SET_DEST (set)) == SUBREG
&& rtx_equal_p (XEXP (note, 0),
XEXP (SET_DEST (set), 0)))))
{
/* Move the notes and links of TEM elsewhere.
This might delete other dead insns recursively.
First set the pattern to something that won't use
any register. */
PATTERN (tem) = pc_rtx;
distribute_notes (REG_NOTES (tem), tem, tem,
NULL_RTX, NULL_RTX, NULL_RTX);
distribute_links (LOG_LINKS (tem));
PUT_CODE (tem, NOTE);
NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (tem) = 0;
}
else
{
PUT_REG_NOTE_KIND (note, REG_UNUSED);
/* If there isn't already a REG_UNUSED note, put one
here. */
if (! find_regno_note (tem, REG_UNUSED,
REGNO (XEXP (note, 0))))
place = tem;
break;
}
}
else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
|| (GET_CODE (tem) == CALL_INSN
&& find_reg_fusage (tem, USE, XEXP (note, 0))))
{
place = tem;
/* If we are doing a 3->2 combination, and we have a
register which formerly died in i3 and was not used
by i2, which now no longer dies in i3 and is used in
i2 but does not die in i2, and place is between i2
and i3, then we may need to move a link from place to
i2. */
if (i2 && INSN_UID (place) <= max_uid_cuid
&& INSN_CUID (place) > INSN_CUID (i2)
&& from_insn && INSN_CUID (from_insn) > INSN_CUID (i2)
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
{
rtx links = LOG_LINKS (place);
LOG_LINKS (place) = 0;
distribute_links (links);
}
break;
}
}
/* If we haven't found an insn for the death note and it
is still a REG_DEAD note, but we have hit a CODE_LABEL,
insert a USE insn for the register at that label and
put the death node there. This prevents problems with
call-state tracking in caller-save.c. */
if (REG_NOTE_KIND (note) == REG_DEAD && place == 0 && tem != 0)
{
place
= emit_insn_after (gen_rtx (USE, VOIDmode, XEXP (note, 0)),
tem);
/* If this insn was emitted between blocks, then update
basic_block_head of the current block to include it. */
if (basic_block_end[this_basic_block - 1] == tem)
basic_block_head[this_basic_block] = place;
}
}
/* If the register is set or already dead at PLACE, we needn't do
anything with this note if it is still a REG_DEAD note.
Note that we cannot use just `dead_or_set_p' here since we can
convert an assignment to a register into a bit-field assignment.
Therefore, we must also omit the note if the register is the
target of a bitfield assignment. */
if (place && REG_NOTE_KIND (note) == REG_DEAD)
{
int regno = REGNO (XEXP (note, 0));
if (dead_or_set_p (place, XEXP (note, 0))
|| reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
{
/* Unless the register previously died in PLACE, clear
reg_last_death. [I no longer understand why this is
being done.] */
if (reg_last_death[regno] != place)
reg_last_death[regno] = 0;
place = 0;
}
else
reg_last_death[regno] = place;
/* If this is a death note for a hard reg that is occupying
multiple registers, ensure that we are still using all
parts of the object. If we find a piece of the object
that is unused, we must add a USE for that piece before
PLACE and put the appropriate REG_DEAD note on it.
An alternative would be to put a REG_UNUSED for the pieces
on the insn that set the register, but that can't be done if
it is not in the same block. It is simpler, though less
efficient, to add the USE insns. */
if (place && regno < FIRST_PSEUDO_REGISTER
&& HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
{
int endregno
= regno + HARD_REGNO_NREGS (regno,
GET_MODE (XEXP (note, 0)));
int all_used = 1;
int i;
for (i = regno; i < endregno; i++)
if (! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
&& ! find_regno_fusage (place, USE, i))
{
rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
rtx p;
/* See if we already placed a USE note for this
register in front of PLACE. */
for (p = place;
GET_CODE (PREV_INSN (p)) == INSN
&& GET_CODE (PATTERN (PREV_INSN (p))) == USE;
p = PREV_INSN (p))
if (rtx_equal_p (piece,
XEXP (PATTERN (PREV_INSN (p)), 0)))
{
p = 0;
break;
}
if (p)
{
rtx use_insn
= emit_insn_before (gen_rtx (USE, VOIDmode,
piece),
p);
REG_NOTES (use_insn)
= gen_rtx (EXPR_LIST, REG_DEAD, piece,
REG_NOTES (use_insn));
}
all_used = 0;
}
/* Check for the case where the register dying partially
overlaps the register set by this insn. */
if (all_used)
for (i = regno; i < endregno; i++)
if (dead_or_set_regno_p (place, i))
{
all_used = 0;
break;
}
if (! all_used)
{
/* Put only REG_DEAD notes for pieces that are
still used and that are not already dead or set. */
for (i = regno; i < endregno; i++)
{
rtx piece = gen_rtx (REG, reg_raw_mode[i], i);
if ((reg_referenced_p (piece, PATTERN (place))
|| (GET_CODE (place) == CALL_INSN
&& find_reg_fusage (place, USE, piece)))
&& ! dead_or_set_p (place, piece)
&& ! reg_bitfield_target_p (piece,
PATTERN (place)))
REG_NOTES (place) = gen_rtx (EXPR_LIST, REG_DEAD,
piece,
REG_NOTES (place));
}
place = 0;
}
}
}
break;
default:
/* Any other notes should not be present at this point in the
compilation. */
abort ();
}
if (place)
{
XEXP (note, 1) = REG_NOTES (place);
REG_NOTES (place) = note;
}
else if ((REG_NOTE_KIND (note) == REG_DEAD
|| REG_NOTE_KIND (note) == REG_UNUSED)
&& GET_CODE (XEXP (note, 0)) == REG)
reg_n_deaths[REGNO (XEXP (note, 0))]--;
if (place2)
{
if ((REG_NOTE_KIND (note) == REG_DEAD
|| REG_NOTE_KIND (note) == REG_UNUSED)
&& GET_CODE (XEXP (note, 0)) == REG)
reg_n_deaths[REGNO (XEXP (note, 0))]++;
REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
XEXP (note, 0), REG_NOTES (place2));
}
}
}
/* Similarly to above, distribute the LOG_LINKS that used to be present on
I3, I2, and I1 to new locations. This is also called in one case to
add a link pointing at I3 when I3's destination is changed. */
static void
distribute_links (links)
rtx links;
{
rtx link, next_link;
for (link = links; link; link = next_link)
{
rtx place = 0;
rtx insn;
rtx set, reg;
next_link = XEXP (link, 1);
/* If the insn that this link points to is a NOTE or isn't a single
set, ignore it. In the latter case, it isn't clear what we
can do other than ignore the link, since we can't tell which
register it was for. Such links wouldn't be used by combine
anyway.
It is not possible for the destination of the target of the link to
have been changed by combine. The only potential of this is if we
replace I3, I2, and I1 by I3 and I2. But in that case the
destination of I2 also remains unchanged. */
if (GET_CODE (XEXP (link, 0)) == NOTE
|| (set = single_set (XEXP (link, 0))) == 0)
continue;
reg = SET_DEST (set);
while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
|| GET_CODE (reg) == SIGN_EXTRACT
|| GET_CODE (reg) == STRICT_LOW_PART)
reg = XEXP (reg, 0);
/* A LOG_LINK is defined as being placed on the first insn that uses
a register and points to the insn that sets the register. Start
searching at the next insn after the target of the link and stop
when we reach a set of the register or the end of the basic block.
Note that this correctly handles the link that used to point from
I3 to I2. Also note that not much searching is typically done here
since most links don't point very far away. */
for (insn = NEXT_INSN (XEXP (link, 0));
(insn && (this_basic_block == n_basic_blocks - 1
|| basic_block_head[this_basic_block + 1] != insn));
insn = NEXT_INSN (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_overlap_mentioned_p (reg, PATTERN (insn)))
{
if (reg_referenced_p (reg, PATTERN (insn)))
place = insn;
break;
}
else if (GET_CODE (insn) == CALL_INSN
&& find_reg_fusage (insn, USE, reg))
{
place = insn;
break;
}
/* If we found a place to put the link, place it there unless there
is already a link to the same insn as LINK at that point. */
if (place)
{
rtx link2;
for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
if (XEXP (link2, 0) == XEXP (link, 0))
break;
if (link2 == 0)
{
XEXP (link, 1) = LOG_LINKS (place);
LOG_LINKS (place) = link;
/* Set added_links_insn to the earliest insn we added a
link to. */
if (added_links_insn == 0
|| INSN_CUID (added_links_insn) > INSN_CUID (place))
added_links_insn = place;
}
}
}
}
void
dump_combine_stats (file)
FILE *file;
{
fprintf
(file,
";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
combine_attempts, combine_merges, combine_extras, combine_successes);
}
void
dump_combine_total_stats (file)
FILE *file;
{
fprintf
(file,
"\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
total_attempts, total_merges, total_extras, total_successes);
}