freebsd-src/usr.sbin/bhyve/Makefile

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

135 lines
2.3 KiB
Makefile
Raw Normal View History

#
#
.include <src.opts.mk>
PROG= bhyve
2015-03-05 07:30:48 +00:00
PACKAGE= bhyve
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
MAN= bhyve.8 bhyve_config.5
BHYVE_SYSDIR?=${SRCTOP}
.PATH: ${.CURDIR}/${MACHINE_CPUARCH} \
${SRCTOP}/sys/libkern \
${SRCTOP}/sys/cam/ctl
SRCS= \
acpi.c \
acpi_device.c \
audio.c \
basl.c \
bhyvegc.c \
bhyverun.c \
bhyverun_machdep.c \
block_if.c \
bootrom.c \
Refactor configuration management in bhyve. Replace the existing ad-hoc configuration via various global variables with a small database of key-value pairs. The database supports heirarchical keys using a MIB-like syntax to name the path to a given key. Values are always stored as strings. The API used to manage configuation values does include wrappers to handling boolean values. Other values use non-string types require parsing by consumers. The configuration values are stored in a tree using nvlists. Leaf nodes hold string values. Configuration values are permitted to reference other configuration values using '%(name)'. This permits constructing template configurations. All existing command line arguments now set configuration values. For devices, the "-s" option parses its option argument to generate a list of key-value pairs for the given device. A new '-o' command line option permits setting an individual configuration variable. The key name is always given as a full path of dot-separated components. A new '-k' command line option parses a simple configuration file. This configuration file holds a flat list of 'key=value' lines where the 'key' is the full path of a configuration variable. Lines starting with a '#' are comments. In general, bhyve starts by parsing command line options in sequence and applying those settings to configuration values. Once this is complete, bhyve then begins initializing its state based on the configuration values. This means that subsequent configuration options or files may override or supplement previously given settings. A special 'config.dump' configuration value can be set to true to help debug configuration issues. When this value is set, bhyve will print out the configuration variables as a flat list of 'key=value' lines. Most command line argments map to a single configuration variable, e.g. '-w' sets the 'x86.strictmsr' value to false. A few command line arguments have less obvious effects: - Multiple '-p' options append their values (as a comma-seperated list) to "vcpu.N.cpuset" values (where N is a decimal vcpu number). - For '-s' options, a pci.<bus>.<slot>.<function> node is created. The first argument to '-s' (the device type) is used as the value of a "device" variable. Additional comma-separated arguments are then parsed into 'key=value' pairs and used to set additional variables under the device node. A PCI device emulation driver can provide its own hook to override the parsing of the additonal '-s' arguments after the device type. After the configuration phase as completed, the init_pci hook then walks the "pci.<bus>.<slot>.<func>" nodes. It uses the "device" value to find the device model to use. The device model's init routine is passed a reference to its nvlist node in the configuration tree which it can query for specific variables. The result is that a lot of the string parsing is removed from the device models and centralized. In addition, adding a new variable just requires teaching the model to look for the new variable. - For '-l' options, a similar model is used where the string is parsed into values that are later read during initialization. One key note here is that the serial ports use the commonly used lowercase names from existing documentation and examples (e.g. "lpc.com1") instead of the uppercase names previously used internally in bhyve. Reviewed by: grehan MFC after: 3 months Differential Revision: https://reviews.freebsd.org/D26035
2019-06-26 20:30:41 +00:00
config.c \
console.c \
crc16.c \
ctl_nvme_all.c \
ctl_scsi_all.c \
ctl_util.c \
hda_codec.c \
iov.c \
mem.c \
mevent.c \
net_backend_netmap.c \
net_backend_slirp.c \
net_backends.c \
net_utils.c \
pci_ahci.c \
pci_e82545.c \
pci_emul.c \
pci_hda.c \
pci_hostbridge.c \
pci_irq.c \
pci_nvme.c \
pci_uart.c \
pci_virtio_9p.c \
pci_virtio_block.c \
pci_virtio_console.c \
pci_virtio_input.c \
pci_virtio_net.c \
pci_virtio_rnd.c \
pci_virtio_scsi.c \
pci_xhci.c \
qemu_fwcfg.c \
qemu_loader.c \
smbiostbl.c \
sockstream.c \
tpm_device.c \
tpm_emul_passthru.c \
tpm_intf_crb.c \
tpm_ppi_qemu.c \
uart_backend.c \
uart_emul.c \
usb_emul.c \
usb_mouse.c \
virtio.c \
vmexit.c \
vmgenc.c
Initial support for bhyve save and restore. Save and restore (also known as suspend and resume) permits a snapshot to be taken of a guest's state that can later be resumed. In the current implementation, bhyve(8) creates a UNIX domain socket that is used by bhyvectl(8) to send a request to save a snapshot (and optionally exit after the snapshot has been taken). A snapshot currently consists of two files: the first holds a copy of guest RAM, and the second file holds other guest state such as vCPU register values and device model state. To resume a guest, bhyve(8) must be started with a matching pair of command line arguments to instantiate the same set of device models as well as a pointer to the saved snapshot. While the current implementation is useful for several uses cases, it has a few limitations. The file format for saving the guest state is tied to the ABI of internal bhyve structures and is not self-describing (in that it does not communicate the set of device models present in the system). In addition, the state saved for some device models closely matches the internal data structures which might prove a challenge for compatibility of snapshot files across a range of bhyve versions. The file format also does not currently support versioning of individual chunks of state. As a result, the current file format is not a fixed binary format and future revisions to save and restore will break binary compatiblity of snapshot files. The goal is to move to a more flexible format that adds versioning, etc. and at that point to commit to providing a reasonable level of compatibility. As a result, the current implementation is not enabled by default. It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option for userland builds, and the kernel option BHYVE_SHAPSHOT. Submitted by: Mihai Tiganus, Flavius Anton, Darius Mihai Submitted by: Elena Mihailescu, Mihai Carabas, Sergiu Weisz Relnotes: yes Sponsored by: University Politehnica of Bucharest Sponsored by: Matthew Grooms (student scholarships) Sponsored by: iXsystems Differential Revision: https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00
.if ${MK_BHYVE_SNAPSHOT} != "no"
SRCS+= snapshot.c
.endif
.include "${MACHINE_CPUARCH}/Makefile.inc"
.if defined(BHYVE_FDT_SUPPORT)
LIBADD+= fdt
CFLAGS+= -I${SRCTOP}/sys/contrib/libfdt
.endif
.if defined(BHYVE_GDB_SUPPORT)
SRCS+= gdb.c
CFLAGS+= -DBHYVE_GDB
.ifdef GDB_LOG
CFLAGS+=-DGDB_LOG
.endif
SUBDIR+= gdb
.endif
CFLAGS+=-I${.CURDIR} \
-I${.CURDIR}/../../contrib/lib9p \
-I${SRCTOP}/sys
LIBADD+= vmmapi md nv pthread z util sbuf cam 9p
Initial support for bhyve save and restore. Save and restore (also known as suspend and resume) permits a snapshot to be taken of a guest's state that can later be resumed. In the current implementation, bhyve(8) creates a UNIX domain socket that is used by bhyvectl(8) to send a request to save a snapshot (and optionally exit after the snapshot has been taken). A snapshot currently consists of two files: the first holds a copy of guest RAM, and the second file holds other guest state such as vCPU register values and device model state. To resume a guest, bhyve(8) must be started with a matching pair of command line arguments to instantiate the same set of device models as well as a pointer to the saved snapshot. While the current implementation is useful for several uses cases, it has a few limitations. The file format for saving the guest state is tied to the ABI of internal bhyve structures and is not self-describing (in that it does not communicate the set of device models present in the system). In addition, the state saved for some device models closely matches the internal data structures which might prove a challenge for compatibility of snapshot files across a range of bhyve versions. The file format also does not currently support versioning of individual chunks of state. As a result, the current file format is not a fixed binary format and future revisions to save and restore will break binary compatiblity of snapshot files. The goal is to move to a more flexible format that adds versioning, etc. and at that point to commit to providing a reasonable level of compatibility. As a result, the current implementation is not enabled by default. It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option for userland builds, and the kernel option BHYVE_SHAPSHOT. Submitted by: Mihai Tiganus, Flavius Anton, Darius Mihai Submitted by: Elena Mihailescu, Mihai Carabas, Sergiu Weisz Relnotes: yes Sponsored by: University Politehnica of Bucharest Sponsored by: Matthew Grooms (student scholarships) Sponsored by: iXsystems Differential Revision: https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00
.if ${MK_BHYVE_SNAPSHOT} != "no"
LIBADD+= ucl xo
.endif
.if ${MK_INET_SUPPORT} != "no"
CFLAGS+=-DINET
.endif
.if ${MK_INET6_SUPPORT} != "no"
CFLAGS+=-DINET6
.endif
.if ${MK_NETGRAPH_SUPPORT} != "no"
SRCS+= net_backend_netgraph.c
LIBADD+= netgraph
.endif
.if ${MK_OPENSSL} == "no"
CFLAGS+=-DNO_OPENSSL
.else
LIBADD+= crypto
CFLAGS+=-DOPENSSL_API_COMPAT=0x10100000L
.endif
CFLAGS+= -I${BHYVE_SYSDIR}/sys/dev/e1000
CFLAGS+= -I${BHYVE_SYSDIR}/sys/dev/mii
CFLAGS+= -I${BHYVE_SYSDIR}/sys/dev/usb/controller
Initial support for bhyve save and restore. Save and restore (also known as suspend and resume) permits a snapshot to be taken of a guest's state that can later be resumed. In the current implementation, bhyve(8) creates a UNIX domain socket that is used by bhyvectl(8) to send a request to save a snapshot (and optionally exit after the snapshot has been taken). A snapshot currently consists of two files: the first holds a copy of guest RAM, and the second file holds other guest state such as vCPU register values and device model state. To resume a guest, bhyve(8) must be started with a matching pair of command line arguments to instantiate the same set of device models as well as a pointer to the saved snapshot. While the current implementation is useful for several uses cases, it has a few limitations. The file format for saving the guest state is tied to the ABI of internal bhyve structures and is not self-describing (in that it does not communicate the set of device models present in the system). In addition, the state saved for some device models closely matches the internal data structures which might prove a challenge for compatibility of snapshot files across a range of bhyve versions. The file format also does not currently support versioning of individual chunks of state. As a result, the current file format is not a fixed binary format and future revisions to save and restore will break binary compatiblity of snapshot files. The goal is to move to a more flexible format that adds versioning, etc. and at that point to commit to providing a reasonable level of compatibility. As a result, the current implementation is not enabled by default. It can be enabled via the WITH_BHYVE_SNAPSHOT=yes option for userland builds, and the kernel option BHYVE_SHAPSHOT. Submitted by: Mihai Tiganus, Flavius Anton, Darius Mihai Submitted by: Elena Mihailescu, Mihai Carabas, Sergiu Weisz Relnotes: yes Sponsored by: University Politehnica of Bucharest Sponsored by: Matthew Grooms (student scholarships) Sponsored by: iXsystems Differential Revision: https://reviews.freebsd.org/D19495
2020-05-05 00:02:04 +00:00
.if ${MK_BHYVE_SNAPSHOT} != "no"
CFLAGS+= -I${SRCTOP}/contrib/libucl/include
CFLAGS+= -DBHYVE_SNAPSHOT
.endif
# Disable thread safety analysis since it only finds very simple bugs and
# yields many false positives.
NO_WTHREAD_SAFETY=
NO_WCAST_ALIGN=
.include <bsd.prog.mk>