freebsd-src/sys/dev/enic/vnic_dev.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1040 lines
24 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include "enic.h"
#include "vnic_dev.h"
#include "vnic_resource.h"
#include "vnic_devcmd.h"
#include "vnic_nic.h"
#include "vnic_stats.h"
#define VNIC_MAX_RES_HDR_SIZE \
(sizeof(struct vnic_resource_header) + \
sizeof(struct vnic_resource) * RES_TYPE_MAX)
#define VNIC_RES_STRIDE 128
#define VNIC_MAX_FLOW_COUNTERS 2048
void *vnic_dev_priv(struct vnic_dev *vdev)
{
return vdev->priv;
}
void vnic_register_cbacks(struct vnic_dev *vdev,
void *(*alloc_consistent)(void *priv, size_t size,
bus_addr_t *dma_handle, struct iflib_dma_info *res,u8 *name),
void (*free_consistent)(void *priv,
size_t size, void *vaddr,
bus_addr_t dma_handle,struct iflib_dma_info *res))
{
vdev->alloc_consistent = alloc_consistent;
vdev->free_consistent = free_consistent;
}
static int vnic_dev_discover_res(struct vnic_dev *vdev,
struct vnic_dev_bar *bar, unsigned int num_bars)
{
struct enic_softc *softc = vdev->softc;
struct vnic_resource_header __iomem *rh;
struct mgmt_barmap_hdr __iomem *mrh;
struct vnic_resource __iomem *r;
int r_offset;
u8 type;
if (num_bars == 0)
return -EINVAL;
rh = malloc(sizeof(*rh), M_DEVBUF, M_NOWAIT | M_ZERO);
mrh = malloc(sizeof(*mrh), M_DEVBUF, M_NOWAIT | M_ZERO);
if (!rh) {
pr_err("vNIC BAR0 res hdr not mem-mapped\n");
free(rh, M_DEVBUF);
free(mrh, M_DEVBUF);
return -EINVAL;
}
/* Check for mgmt vnic in addition to normal vnic */
ENIC_BUS_READ_REGION_4(softc, mem, 0, (void *)rh, sizeof(*rh) / 4);
ENIC_BUS_READ_REGION_4(softc, mem, 0, (void *)mrh, sizeof(*mrh) / 4);
if ((rh->magic != VNIC_RES_MAGIC) ||
(rh->version != VNIC_RES_VERSION)) {
if ((mrh->magic != MGMTVNIC_MAGIC) ||
mrh->version != MGMTVNIC_VERSION) {
pr_err("vNIC BAR0 res magic/version error " \
"exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
VNIC_RES_MAGIC, VNIC_RES_VERSION,
MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
rh->magic, rh->version);
free(rh, M_DEVBUF);
free(mrh, M_DEVBUF);
return -EINVAL;
}
}
if (mrh->magic == MGMTVNIC_MAGIC)
r_offset = sizeof(*mrh);
else
r_offset = sizeof(*rh);
r = malloc(sizeof(*r), M_DEVBUF, M_NOWAIT | M_ZERO);
ENIC_BUS_READ_REGION_4(softc, mem, r_offset, (void *)r, sizeof(*r) / 4);
while ((type = r->type) != RES_TYPE_EOL) {
u8 bar_num = r->bar;
u32 bar_offset =r->bar_offset;
u32 count = r->count;
r_offset += sizeof(*r);
if (bar_num >= num_bars)
continue;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
case RES_TYPE_INTR_PBA_LEGACY:
case RES_TYPE_DEVCMD:
break;
default:
ENIC_BUS_READ_REGION_4(softc, mem, r_offset, (void *)r, sizeof(*r) / 4);
continue;
}
vdev->res[type].count = count;
bcopy(&softc->mem, &vdev->res[type].bar, sizeof(softc->mem));
vdev->res[type].bar.offset = bar_offset;
ENIC_BUS_READ_REGION_4(softc, mem, r_offset, (void *)r, sizeof(*r) / 4);
}
free(rh, M_DEVBUF);
free(mrh, M_DEVBUF);
free(r, M_DEVBUF);
return 0;
}
unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
enum vnic_res_type type)
{
return vdev->res[type].count;
}
void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
unsigned int index)
{
struct vnic_res *res;
if (!vdev->res[type].bar.tag)
return NULL;
res = malloc(sizeof(*res), M_DEVBUF, M_NOWAIT | M_ZERO);
bcopy(&vdev->res[type], res, sizeof(*res));
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
res->bar.offset +=
index * VNIC_RES_STRIDE;
default:
res->bar.offset += 0;
}
return res;
}
unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
/* The base address of the desc rings must be 512 byte aligned.
* Descriptor count is aligned to groups of 32 descriptors. A
* count of 0 means the maximum 4096 descriptors. Descriptor
* size is aligned to 16 bytes.
*/
unsigned int count_align = 32;
unsigned int desc_align = 16;
ring->base_align = 512;
if (desc_count == 0)
desc_count = 4096;
ring->desc_count = VNIC_ALIGN(desc_count, count_align);
ring->desc_size = VNIC_ALIGN(desc_size, desc_align);
ring->size = ring->desc_count * ring->desc_size;
ring->size_unaligned = ring->size + ring->base_align;
return ring->size_unaligned;
}
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
{
memset(ring->descs, 0, ring->size);
}
static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int wait)
{
struct vnic_res __iomem *devcmd = vdev->devcmd;
int delay;
u32 status;
int err;
status = ENIC_BUS_READ_4(devcmd, DEVCMD_STATUS);
if (status == 0xFFFFFFFF) {
/* PCI-e target device is gone */
return -ENODEV;
}
if (status & STAT_BUSY) {
pr_err("Busy devcmd %d\n", _CMD_N(cmd));
return -EBUSY;
}
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
ENIC_BUS_WRITE_REGION_4(devcmd, DEVCMD_ARGS(0), (void *)&vdev->args[0], VNIC_DEVCMD_NARGS * 2);
}
ENIC_BUS_WRITE_4(devcmd, DEVCMD_CMD, cmd);
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT)) {
return 0;
}
for (delay = 0; delay < wait; delay++) {
udelay(100);
status = ENIC_BUS_READ_4(devcmd, DEVCMD_STATUS);
if (status == 0xFFFFFFFF) {
/* PCI-e target device is gone */
return -ENODEV;
}
if (!(status & STAT_BUSY)) {
if (status & STAT_ERROR) {
err = -(int)ENIC_BUS_READ_8(devcmd, DEVCMD_ARGS(0));
if (cmd != CMD_CAPABILITY)
pr_err("Devcmd %d failed " \
"with error code %d\n",
_CMD_N(cmd), err);
return err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
ENIC_BUS_READ_REGION_4(devcmd, bar, DEVCMD_ARGS(0), (void *)&vdev->args[0], VNIC_DEVCMD_NARGS * 2);
}
return 0;
}
}
pr_err("Timedout devcmd %d\n", _CMD_N(cmd));
return -ETIMEDOUT;
}
static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
u64 *args, int nargs, int wait)
{
u32 status;
int err;
/*
* Proxy command consumes 2 arguments. One for proxy index,
* the other is for command to be proxied
*/
if (nargs > VNIC_DEVCMD_NARGS - 2) {
pr_err("number of args %d exceeds the maximum\n", nargs);
return -EINVAL;
}
memset(vdev->args, 0, sizeof(vdev->args));
vdev->args[0] = vdev->proxy_index;
vdev->args[1] = cmd;
memcpy(&vdev->args[2], args, nargs * sizeof(args[0]));
err = _vnic_dev_cmd(vdev, proxy_cmd, wait);
if (err)
return err;
status = (u32)vdev->args[0];
if (status & STAT_ERROR) {
err = (int)vdev->args[1];
if (err != ERR_ECMDUNKNOWN ||
cmd != CMD_CAPABILITY)
pr_err("Error %d proxy devcmd %d\n", err, _CMD_N(cmd));
return err;
}
memcpy(args, &vdev->args[1], nargs * sizeof(args[0]));
return 0;
}
static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd cmd, u64 *args, int nargs, int wait)
{
int err;
if (nargs > VNIC_DEVCMD_NARGS) {
pr_err("number of args %d exceeds the maximum\n", nargs);
return -EINVAL;
}
memset(vdev->args, 0, sizeof(vdev->args));
memcpy(vdev->args, args, nargs * sizeof(args[0]));
err = _vnic_dev_cmd(vdev, cmd, wait);
memcpy(args, vdev->args, nargs * sizeof(args[0]));
return err;
}
int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
u64 *a0, u64 *a1, int wait)
{
u64 args[2];
int err;
args[0] = *a0;
args[1] = *a1;
memset(vdev->args, 0, sizeof(vdev->args));
switch (vdev->proxy) {
case PROXY_BY_INDEX:
err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
args, ARRAY_SIZE(args), wait);
break;
case PROXY_BY_BDF:
err = vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
args, ARRAY_SIZE(args), wait);
break;
case PROXY_NONE:
default:
err = vnic_dev_cmd_no_proxy(vdev, cmd, args, 2, wait);
break;
}
if (err == 0) {
*a0 = args[0];
*a1 = args[1];
}
return err;
}
int vnic_dev_cmd_args(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
u64 *args, int nargs, int wait)
{
switch (vdev->proxy) {
case PROXY_BY_INDEX:
return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
args, nargs, wait);
case PROXY_BY_BDF:
return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
args, nargs, wait);
case PROXY_NONE:
default:
return vnic_dev_cmd_no_proxy(vdev, cmd, args, nargs, wait);
}
}
static int vnic_dev_advanced_filters_cap(struct vnic_dev *vdev, u64 *args,
int nargs)
{
memset(args, 0, nargs * sizeof(*args));
args[0] = CMD_ADD_ADV_FILTER;
args[1] = FILTER_CAP_MODE_V1_FLAG;
return vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, nargs, 1000);
}
int vnic_dev_capable_adv_filters(struct vnic_dev *vdev)
{
u64 a0 = CMD_ADD_ADV_FILTER, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
if (err)
return 0;
return (a1 >= (u32)FILTER_DPDK_1);
}
/* Determine the "best" filtering mode VIC is capaible of. Returns one of 3
* value or 0 on error:
* FILTER_DPDK_1- advanced filters availabile
* FILTER_USNIC_IP_FLAG - advanced filters but with the restriction that
* the IP layer must explicitly specified. I.e. cannot have a UDP
* filter that matches both IPv4 and IPv6.
* FILTER_IPV4_5TUPLE - fallback if either of the 2 above aren't available.
* all other filter types are not available.
* Retrun true in filter_tags if supported
*/
int vnic_dev_capable_filter_mode(struct vnic_dev *vdev, u32 *mode,
u8 *filter_actions)
{
u64 args[4];
int err;
u32 max_level = 0;
err = vnic_dev_advanced_filters_cap(vdev, args, 4);
/* determine supported filter actions */
*filter_actions = FILTER_ACTION_RQ_STEERING_FLAG; /* always available */
if (args[2] == FILTER_CAP_MODE_V1)
*filter_actions = args[3];
if (err || ((args[0] == 1) && (args[1] == 0))) {
/* Adv filter Command not supported or adv filters available but
* not enabled. Try the normal filter capability command.
*/
args[0] = CMD_ADD_FILTER;
args[1] = 0;
err = vnic_dev_cmd_args(vdev, CMD_CAPABILITY, args, 2, 1000);
if (err)
return err;
max_level = args[1];
goto parse_max_level;
} else if (args[2] == FILTER_CAP_MODE_V1) {
/* parse filter capability mask in args[1] */
if (args[1] & FILTER_DPDK_1_FLAG)
*mode = FILTER_DPDK_1;
else if (args[1] & FILTER_USNIC_IP_FLAG)
*mode = FILTER_USNIC_IP;
else if (args[1] & FILTER_IPV4_5TUPLE_FLAG)
*mode = FILTER_IPV4_5TUPLE;
return 0;
}
max_level = args[1];
parse_max_level:
if (max_level >= (u32)FILTER_USNIC_IP)
*mode = FILTER_USNIC_IP;
else
*mode = FILTER_IPV4_5TUPLE;
return 0;
}
void vnic_dev_capable_udp_rss_weak(struct vnic_dev *vdev, bool *cfg_chk,
bool *weak)
{
u64 a0 = CMD_NIC_CFG, a1 = 0;
int wait = 1000;
int err;
*cfg_chk = false;
*weak = false;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
if (err == 0 && a0 != 0 && a1 != 0) {
*cfg_chk = true;
*weak = !!((a1 >> 32) & CMD_NIC_CFG_CAPF_UDP_WEAK);
}
}
int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
{
u64 a0 = (u32)cmd, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
return !(err || a0);
}
int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, size_t size,
void *value)
{
u64 a0, a1;
int wait = 1000;
int err;
a0 = offset;
a1 = size;
err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
switch (size) {
case 1:
*(u8 *)value = (u8)a0;
break;
case 2:
*(u16 *)value = (u16)a0;
break;
case 4:
*(u32 *)value = (u32)a0;
break;
case 8:
*(u64 *)value = a0;
break;
default:
BUG();
break;
}
return err;
}
int vnic_dev_stats_clear(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait);
}
int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
{
u64 a0, a1;
int wait = 1000;
int rc;
if (!vdev->stats)
return -ENOMEM;
*stats = vdev->stats;
a0 = vdev->stats_res.idi_paddr;
a1 = sizeof(struct vnic_stats);
bus_dmamap_sync(vdev->stats_res.idi_tag,
vdev->stats_res.idi_map,
BUS_DMASYNC_POSTREAD);
rc = vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
bus_dmamap_sync(vdev->stats_res.idi_tag,
vdev->stats_res.idi_map,
BUS_DMASYNC_PREREAD);
return (rc);
}
/*
* Configure counter DMA
*/
int vnic_dev_counter_dma_cfg(struct vnic_dev *vdev, u32 period,
u32 num_counters)
{
u64 args[3];
int wait = 1000;
int err;
if (num_counters > VNIC_MAX_FLOW_COUNTERS)
return -ENOMEM;
if (period > 0 && (period < VNIC_COUNTER_DMA_MIN_PERIOD ||
num_counters == 0))
return -EINVAL;
args[0] = num_counters;
args[1] = vdev->flow_counters_res.idi_paddr;
args[2] = period;
bus_dmamap_sync(vdev->flow_counters_res.idi_tag,
vdev->flow_counters_res.idi_map,
BUS_DMASYNC_POSTREAD);
err = vnic_dev_cmd_args(vdev, CMD_COUNTER_DMA_CONFIG, args, 3, wait);
bus_dmamap_sync(vdev->flow_counters_res.idi_tag,
vdev->flow_counters_res.idi_map,
BUS_DMASYNC_PREREAD);
/* record if DMAs need to be stopped on close */
if (!err)
vdev->flow_counters_dma_active = (num_counters != 0 &&
period != 0);
return err;
}
int vnic_dev_close(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
}
int vnic_dev_enable_wait(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
else
return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
}
int vnic_dev_disable(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
}
int vnic_dev_open(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
}
int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_get_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err, i;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = 0;
err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
if (err)
return err;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = ((u8 *)&a0)[i];
return 0;
}
int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
int broadcast, int promisc, int allmulti)
{
u64 a0, a1 = 0;
int wait = 1000;
int err;
a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
(multicast ? CMD_PFILTER_MULTICAST : 0) |
(broadcast ? CMD_PFILTER_BROADCAST : 0) |
(promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
(allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
if (err)
pr_err("Can't set packet filter\n");
return err;
}
int vnic_dev_add_addr(struct vnic_dev *vdev, u8 *addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
if (err)
pr_err("Can't add addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
err);
return err;
}
int vnic_dev_del_addr(struct vnic_dev *vdev, u8 *addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
if (err)
pr_err("Can't del addr [%02x:%02x:%02x:%02x:%02x:%02x], %d\n",
addr[0], addr[1], addr[2], addr[3], addr[4], addr[5],
err);
return err;
}
int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
u8 ig_vlan_rewrite_mode)
{
u64 a0 = ig_vlan_rewrite_mode, a1 = 0;
int wait = 1000;
if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
&a0, &a1, wait);
else
return 0;
}
void vnic_dev_set_reset_flag(struct vnic_dev *vdev, int state)
{
vdev->in_reset = state;
}
static inline int vnic_dev_in_reset(struct vnic_dev *vdev)
{
return vdev->in_reset;
}
int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
void *notify_addr, bus_addr_t notify_pa, u16 intr)
{
u64 a0, a1;
int wait = 1000;
int r;
bus_dmamap_sync(vdev->notify_res.idi_tag,
vdev->notify_res.idi_map,
BUS_DMASYNC_PREWRITE);
memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
bus_dmamap_sync(vdev->notify_res.idi_tag,
vdev->notify_res.idi_map,
BUS_DMASYNC_POSTWRITE);
if (!vnic_dev_in_reset(vdev)) {
vdev->notify = notify_addr;
vdev->notify_pa = notify_pa;
}
a0 = (u64)notify_pa;
a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL;
a1 += sizeof(struct vnic_devcmd_notify);
r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
if (!vnic_dev_in_reset(vdev))
vdev->notify_sz = (r == 0) ? (u32)a1 : 0;
return r;
}
int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr)
{
void *notify_addr = NULL;
bus_addr_t notify_pa = 0;
char name[NAME_MAX];
static u32 instance;
if (vdev->notify || vdev->notify_pa) {
return vnic_dev_notify_setcmd(vdev, vdev->notify,
vdev->notify_pa, intr);
}
if (!vnic_dev_in_reset(vdev)) {
snprintf((char *)name, sizeof(name),
"vnic_notify-%u", instance++);
iflib_dma_alloc(vdev->softc->ctx,
sizeof(struct vnic_devcmd_notify),
&vdev->notify_res, BUS_DMA_NOWAIT);
notify_pa = vdev->notify_res.idi_paddr;
notify_addr = vdev->notify_res.idi_vaddr;
}
return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
}
int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
{
u64 a0, a1;
int wait = 1000;
int err;
a0 = 0; /* paddr = 0 to unset notify buffer */
a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
a1 += sizeof(struct vnic_devcmd_notify);
err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
if (!vnic_dev_in_reset(vdev)) {
vdev->notify = NULL;
vdev->notify_pa = 0;
vdev->notify_sz = 0;
}
return err;
}
int vnic_dev_notify_unset(struct vnic_dev *vdev)
{
if (vdev->notify && !vnic_dev_in_reset(vdev)) {
iflib_dma_free(&vdev->notify_res);
}
return vnic_dev_notify_unsetcmd(vdev);
}
static int vnic_dev_notify_ready(struct vnic_dev *vdev)
{
u32 *words;
unsigned int nwords = vdev->notify_sz / 4;
unsigned int i;
u32 csum;
if (!vdev->notify || !vdev->notify_sz)
return 0;
do {
csum = 0;
bus_dmamap_sync(vdev->notify_res.idi_tag,
vdev->notify_res.idi_map,
BUS_DMASYNC_PREREAD);
memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
bus_dmamap_sync(vdev->notify_res.idi_tag,
vdev->notify_res.idi_map,
BUS_DMASYNC_POSTREAD);
words = (u32 *)&vdev->notify_copy;
for (i = 1; i < nwords; i++)
csum += words[i];
} while (csum != words[0]);
return 1;
}
int vnic_dev_init(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
int r = 0;
if (vnic_dev_capable(vdev, CMD_INIT))
r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
else {
vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
if (a0 & CMD_INITF_DEFAULT_MAC) {
/* Emulate these for old CMD_INIT_v1 which
* didn't pass a0 so no CMD_INITF_*.
*/
vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
}
}
return r;
}
void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
{
/* Default: hardware intr coal timer is in units of 1.5 usecs */
vdev->intr_coal_timer_info.mul = 2;
vdev->intr_coal_timer_info.div = 3;
vdev->intr_coal_timer_info.max_usec =
vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
}
int vnic_dev_link_status(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.link_state;
}
u32 vnic_dev_port_speed(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.port_speed;
}
u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, u32 usec)
{
return (usec * vdev->intr_coal_timer_info.mul) /
vdev->intr_coal_timer_info.div;
}
u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, u32 hw_cycles)
{
return (hw_cycles * vdev->intr_coal_timer_info.div) /
vdev->intr_coal_timer_info.mul;
}
u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
{
return vdev->intr_coal_timer_info.max_usec;
}
u32 vnic_dev_mtu(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.mtu;
}
void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
enum vnic_dev_intr_mode intr_mode)
{
vdev->intr_mode = intr_mode;
}
enum vnic_dev_intr_mode vnic_dev_get_intr_mode(
struct vnic_dev *vdev)
{
return vdev->intr_mode;
}
int vnic_dev_alloc_stats_mem(struct vnic_dev *vdev)
{
char name[NAME_MAX];
static u32 instance;
struct enic_softc *softc;
softc = vdev->softc;
snprintf((char *)name, sizeof(name), "vnic_stats-%u", instance++);
iflib_dma_alloc(softc->ctx, sizeof(struct vnic_stats), &vdev->stats_res, 0);
vdev->stats = (struct vnic_stats *)vdev->stats_res.idi_vaddr;
return vdev->stats == NULL ? -ENOMEM : 0;
}
/*
* Initialize for up to VNIC_MAX_FLOW_COUNTERS
*/
int vnic_dev_alloc_counter_mem(struct vnic_dev *vdev)
{
char name[NAME_MAX];
static u32 instance;
struct enic_softc *softc;
softc = vdev->softc;
snprintf((char *)name, sizeof(name), "vnic_flow_ctrs-%u", instance++);
iflib_dma_alloc(softc->ctx, sizeof(struct vnic_counter_counts) * VNIC_MAX_FLOW_COUNTERS, &vdev->flow_counters_res, 0);
vdev->flow_counters = (struct vnic_counter_counts *)vdev->flow_counters_res.idi_vaddr;
vdev->flow_counters_dma_active = 0;
return vdev->flow_counters == NULL ? -ENOMEM : 0;
}
struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
struct enic_bar_info *mem, unsigned int num_bars)
{
if (vnic_dev_discover_res(vdev, NULL, num_bars))
goto err_out;
vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
if (!vdev->devcmd)
goto err_out;
return vdev;
err_out:
return NULL;
}
/*
* vnic_dev_classifier: Add/Delete classifier entries
* @vdev: vdev of the device
* @cmd: CLSF_ADD for Add filter
* CLSF_DEL for Delete filter
* @entry: In case of ADD filter, the caller passes the RQ number in this
* variable.
* This function stores the filter_id returned by the
* firmware in the same variable before return;
*
* In case of DEL filter, the caller passes the RQ number. Return
* value is irrelevant.
* @data: filter data
* @action: action data
*/
int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, u8 overlay, u8 config)
{
u64 a0 = overlay;
u64 a1 = config;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
}
int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, u8 overlay,
u16 vxlan_udp_port_number)
{
u64 a1 = vxlan_udp_port_number;
u64 a0 = overlay;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
}
int vnic_dev_capable_vxlan(struct vnic_dev *vdev)
{
u64 a0 = VIC_FEATURE_VXLAN;
u64 a1 = 0;
int wait = 1000;
int ret;
ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, &a1, wait);
/* 1 if the NIC can do VXLAN for both IPv4 and IPv6 with multiple WQs */
return ret == 0 &&
(a1 & (FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ)) ==
(FEATURE_VXLAN_IPV6 | FEATURE_VXLAN_MULTI_WQ);
}
bool vnic_dev_counter_alloc(struct vnic_dev *vdev, uint32_t *idx)
{
u64 a0 = 0;
u64 a1 = 0;
int wait = 1000;
if (vnic_dev_cmd(vdev, CMD_COUNTER_ALLOC, &a0, &a1, wait))
return false;
*idx = (uint32_t)a0;
return true;
}
bool vnic_dev_counter_free(struct vnic_dev *vdev, uint32_t idx)
{
u64 a0 = idx;
u64 a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_COUNTER_FREE, &a0, &a1,
wait) == 0;
}
bool vnic_dev_counter_query(struct vnic_dev *vdev, uint32_t idx,
bool reset, uint64_t *packets, uint64_t *bytes)
{
u64 a0 = idx;
u64 a1 = reset ? 1 : 0;
int wait = 1000;
if (reset) {
/* query/reset returns updated counters */
if (vnic_dev_cmd(vdev, CMD_COUNTER_QUERY, &a0, &a1, wait))
return false;
*packets = a0;
*bytes = a1;
} else {
/* Get values DMA'd from the adapter */
*packets = vdev->flow_counters[idx].vcc_packets;
*bytes = vdev->flow_counters[idx].vcc_bytes;
}
return true;
}
device_t dev_from_vnic_dev(struct vnic_dev *vdev) {
return (vdev->softc->dev);
}