NetworkManager/libnm-core/nm-utils.c
Beniamino Galvani e6acf64859 libnm-core: support 'clsact' qdisc
The 'clsact' qdisc is similar to 'ingress' but supports both ingress
and egress [1]. It uses the same handle as 'ingress' and has two child
classes :fff2 (ingress) and :fff3 (egress) on which filters can be
attached.

With clsact, for example, it becomes possible to do port mirroring
with a single qdisc:

  nmcli connection modify mirror +tc.qdisc "clsact"
  nmcli connection modify mirror +tc.tfilter
    "parent ffff:fff3 matchall action mirred egress mirror dev dummy1"
  nmcli connection modify mirror +tc.tfilter
    "parent ffff:fff2 matchall action mirred egress mirror dev dummy1"

instead of two (ingress + i.e. prio). We don't support yet the
symbolic names 'ingress' and 'egress' for :fff2 and :fff3 in the
filter.

See-also: https://bugzilla.redhat.com/show_bug.cgi?id=1436535

[1] https://lwn.net/Articles/671458/
2020-07-23 14:12:02 +02:00

6192 lines
173 KiB
C

// SPDX-License-Identifier: LGPL-2.1+
/*
* Copyright (C) 2005 - 2017 Red Hat, Inc.
*/
#include "nm-default.h"
#include "nm-utils.h"
#include <stdlib.h>
#include <netinet/ether.h>
#include <arpa/inet.h>
#include <uuid/uuid.h>
#include <libintl.h>
#include <gmodule.h>
#include <sys/stat.h>
#include <linux/pkt_sched.h>
#include "nm-glib-aux/nm-json-aux.h"
#include "nm-glib-aux/nm-str-buf.h"
#include "nm-glib-aux/nm-enum-utils.h"
#include "nm-glib-aux/nm-time-utils.h"
#include "nm-glib-aux/nm-secret-utils.h"
#include "systemd/nm-sd-utils-shared.h"
#include "nm-libnm-core-intern/nm-common-macros.h"
#include "nm-utils-private.h"
#include "nm-setting-private.h"
#include "nm-crypto.h"
#include "nm-setting-bond.h"
#include "nm-setting-bridge.h"
#include "nm-setting-bridge-port.h"
#include "nm-setting-infiniband.h"
#include "nm-setting-ip6-config.h"
#include "nm-setting-team.h"
#include "nm-setting-vlan.h"
#include "nm-setting-wired.h"
#include "nm-setting-wireless.h"
/**
* SECTION:nm-utils
* @short_description: Utility functions
*
* A collection of utility functions for working with SSIDs, IP addresses, Wi-Fi
* access points and devices, among other things.
*/
/*****************************************************************************/
/**
* NMUtilsPredicateStr:
* @str: the name to check.
*
* This function takes a string argument and returns either %TRUE or %FALSE.
* It is a general purpose predicate, for example used by nm_setting_option_clear_by_name().
*
* Returns: %TRUE if the predicate function matches.
*
* Since: 1.26
*/
/*****************************************************************************/
struct _NMSockAddrEndpoint {
const char *host;
guint16 port;
guint refcount;
char endpoint[];
};
static gboolean
NM_IS_SOCK_ADDR_ENDPOINT (const NMSockAddrEndpoint *self)
{
return self && self->refcount > 0;
}
static const char *
_parse_endpoint (char *str,
guint16 *out_port)
{
char *s;
const char *s_port;
gint16 port;
/* Like
* - https://git.zx2c4.com/WireGuard/tree/src/tools/config.c?id=5e99a6d43fe2351adf36c786f5ea2086a8fe7ab8#n192
* - https://github.com/systemd/systemd/blob/911649fdd43f3a9158b847947724a772a5a45c34/src/network/netdev/wireguard.c#L614
*/
g_strstrip (str);
if (!str[0])
return NULL;
if (str[0] == '[') {
str++;
s = strchr (str, ']');
if (!s)
return NULL;
if (s == str)
return NULL;
if (s[1] != ':')
return NULL;
if (!s[2])
return NULL;
*s = '\0';
s_port = &s[2];
} else {
s = strrchr (str, ':');
if (!s)
return NULL;
if (s == str)
return NULL;
if (!s[1])
return NULL;
*s = '\0';
s_port = &s[1];
}
if (!NM_STRCHAR_ALL (s_port, ch, (ch >= '0' && ch <= '9')))
return NULL;
port = _nm_utils_ascii_str_to_int64 (s_port, 10, 1, G_MAXUINT16, 0);
if (port == 0)
return NULL;
*out_port = port;
return str;
}
/**
* nm_sock_addr_endpoint_new:
* @endpoint: the endpoint string.
*
* This function cannot fail, even if the @endpoint is invalid.
* The reason is to allow NMSockAddrEndpoint also to be used
* for tracking invalid endpoints. Use nm_sock_addr_endpoint_get_host()
* to determine whether the endpoint is valid.
*
* Returns: (transfer full): the new #NMSockAddrEndpoint endpoint.
*/
NMSockAddrEndpoint *
nm_sock_addr_endpoint_new (const char *endpoint)
{
NMSockAddrEndpoint *ep;
gsize l_endpoint;
gsize l_host = 0;
gsize i;
gs_free char *host_clone = NULL;
const char *host;
guint16 port;
g_return_val_if_fail (endpoint, NULL);
l_endpoint = strlen (endpoint) + 1;
host = _parse_endpoint (nm_strndup_a (200, endpoint, l_endpoint - 1, &host_clone),
&port);
if (host)
l_host = strlen (host) + 1;
ep = g_malloc (sizeof (NMSockAddrEndpoint) + l_endpoint + l_host);
ep->refcount = 1;
memcpy (ep->endpoint, endpoint, l_endpoint);
if (host) {
i = l_endpoint;
memcpy (&ep->endpoint[i], host, l_host);
ep->host = &ep->endpoint[i];
ep->port = port;
} else {
ep->host = NULL;
ep->port = 0;
}
return ep;
}
/**
* nm_sock_addr_endpoint_ref:
* @self: (allow-none): the #NMSockAddrEndpoint
*/
NMSockAddrEndpoint *
nm_sock_addr_endpoint_ref (NMSockAddrEndpoint *self)
{
if (!self)
return NULL;
g_return_val_if_fail (NM_IS_SOCK_ADDR_ENDPOINT (self), NULL);
nm_assert (self->refcount < G_MAXUINT);
self->refcount++;
return self;
}
/**
* nm_sock_addr_endpoint_unref:
* @self: (allow-none): the #NMSockAddrEndpoint
*/
void
nm_sock_addr_endpoint_unref (NMSockAddrEndpoint *self)
{
if (!self)
return;
g_return_if_fail (NM_IS_SOCK_ADDR_ENDPOINT (self));
if (--self->refcount == 0)
g_free (self);
}
/**
* nm_sock_addr_endpoint_get_endpoint:
* @self: the #NMSockAddrEndpoint
*
* Gives the endpoint string. Since #NMSockAddrEndpoint's only
* information is the endpoint string, this can be used for comparing
* to instances for equality and order them lexically.
*
* Returns: (transfer none): the endpoint.
*/
const char *
nm_sock_addr_endpoint_get_endpoint (NMSockAddrEndpoint *self)
{
g_return_val_if_fail (NM_IS_SOCK_ADDR_ENDPOINT (self), NULL);
return self->endpoint;
}
/**
* nm_sock_addr_endpoint_get_host:
* @self: the #NMSockAddrEndpoint
*
* Returns: (transfer none): the parsed host part of the endpoint.
* If the endpoint is invalid, %NULL will be returned.
*/
const char *
nm_sock_addr_endpoint_get_host (NMSockAddrEndpoint *self)
{
g_return_val_if_fail (NM_IS_SOCK_ADDR_ENDPOINT (self), NULL);
return self->host;
}
/**
* nm_sock_addr_endpoint_get_port:
* @self: the #NMSockAddrEndpoint
*
* Returns: the parsed port part of the endpoint (the service).
* If the endpoint is invalid, -1 will be returned.
*/
gint32
nm_sock_addr_endpoint_get_port (NMSockAddrEndpoint *self)
{
g_return_val_if_fail (NM_IS_SOCK_ADDR_ENDPOINT (self), -1);
return self->host ? (int) self->port : -1;
}
gboolean
nm_sock_addr_endpoint_get_fixed_sockaddr (NMSockAddrEndpoint *self,
gpointer sockaddr)
{
int addr_family;
NMIPAddr addrbin;
const char *s;
guint scope_id = 0;
g_return_val_if_fail (NM_IS_SOCK_ADDR_ENDPOINT (self), FALSE);
g_return_val_if_fail (sockaddr, FALSE);
if (!self->host)
return FALSE;
if (nm_utils_parse_inaddr_bin (AF_UNSPEC, self->host, &addr_family, &addrbin))
goto good;
/* See if there is an IPv6 scope-id...
*
* Note that it does not make sense to persist connection profiles to disk,
* that refenrence a scope-id (because the interface's ifindex changes on
* reboot). However, we also support runtime only changes like `nmcli device modify`
* where nothing is persisted to disk. At least in that case, passing a scope-id
* might be reasonable. So, parse that too. */
s = strchr (self->host, '%');
if (!s)
return FALSE;
if ( s[1] == '\0'
|| !NM_STRCHAR_ALL (&s[1], ch, (ch >= '0' && ch <= '9')))
return FALSE;
scope_id = _nm_utils_ascii_str_to_int64 (&s[1], 10, 0, G_MAXINT32, G_MAXUINT);
if (scope_id == G_MAXUINT && errno)
return FALSE;
{
gs_free char *tmp_str = NULL;
const char *host_part;
host_part = nm_strndup_a (200, self->host, s - self->host, &tmp_str);
if (nm_utils_parse_inaddr_bin (AF_INET6, host_part, &addr_family, &addrbin))
goto good;
}
return FALSE;
good:
switch (addr_family) {
case AF_INET:
*((struct sockaddr_in *) sockaddr) = (struct sockaddr_in) {
.sin_family = AF_INET,
.sin_addr = addrbin.addr4_struct,
.sin_port = htons (self->port),
};
return TRUE;
case AF_INET6:
*((struct sockaddr_in6 *) sockaddr) = (struct sockaddr_in6) {
.sin6_family = AF_INET6,
.sin6_addr = addrbin.addr6,
.sin6_port = htons (self->port),
.sin6_scope_id = scope_id,
.sin6_flowinfo = 0,
};
return TRUE;
}
return FALSE;
}
/*****************************************************************************/
struct IsoLangToEncodings
{
const char *lang;
const char *const *encodings;
};
#define LANG_ENCODINGS(l, ...) { .lang = l, .encodings = NM_MAKE_STRV (__VA_ARGS__), }
/* 5-letter language codes */
static const struct IsoLangToEncodings isoLangEntries5[] =
{
/* Simplified Chinese */
LANG_ENCODINGS ("zh_cn", "euc-cn", "gb2312", "gb18030"), /* PRC */
LANG_ENCODINGS ("zh_sg", "euc-cn", "gb2312", "gb18030"), /* Singapore */
/* Traditional Chinese */
LANG_ENCODINGS ("zh_tw", "big5", "euc-tw"), /* Taiwan */
LANG_ENCODINGS ("zh_hk", "big5", "euc-tw", "big5-hkcs"), /* Hong Kong */
LANG_ENCODINGS ("zh_mo", "big5", "euc-tw"), /* Macau */
LANG_ENCODINGS (NULL, NULL)
};
/* 2-letter language codes; we don't care about the other 3 in this table */
static const struct IsoLangToEncodings isoLangEntries2[] =
{
/* Japanese */
LANG_ENCODINGS ("ja", "euc-jp", "shift_jis", "iso-2022-jp"),
/* Korean */
LANG_ENCODINGS ("ko", "euc-kr", "iso-2022-kr", "johab"),
/* Thai */
LANG_ENCODINGS ("th", "iso-8859-11", "windows-874"),
/* Central European */
LANG_ENCODINGS ("hu", "iso-8859-2", "windows-1250"), /* Hungarian */
LANG_ENCODINGS ("cs", "iso-8859-2", "windows-1250"), /* Czech */
LANG_ENCODINGS ("hr", "iso-8859-2", "windows-1250"), /* Croatian */
LANG_ENCODINGS ("pl", "iso-8859-2", "windows-1250"), /* Polish */
LANG_ENCODINGS ("ro", "iso-8859-2", "windows-1250"), /* Romanian */
LANG_ENCODINGS ("sk", "iso-8859-2", "windows-1250"), /* Slovakian */
LANG_ENCODINGS ("sl", "iso-8859-2", "windows-1250"), /* Slovenian */
LANG_ENCODINGS ("sh", "iso-8859-2", "windows-1250"), /* Serbo-Croatian */
/* Cyrillic */
LANG_ENCODINGS ("ru", "koi8-r", "windows-1251","iso-8859-5"), /* Russian */
LANG_ENCODINGS ("be", "koi8-r", "windows-1251","iso-8859-5"), /* Belorussian */
LANG_ENCODINGS ("bg", "windows-1251","koi8-r", "iso-8859-5"), /* Bulgarian */
LANG_ENCODINGS ("mk", "koi8-r", "windows-1251", "iso-8859-5"),/* Macedonian */
LANG_ENCODINGS ("sr", "koi8-r", "windows-1251", "iso-8859-5"),/* Serbian */
LANG_ENCODINGS ("uk", "koi8-u", "koi8-r", "windows-1251"), /* Ukrainian */
/* Arabic */
LANG_ENCODINGS ("ar", "iso-8859-6","windows-1256"),
/* Baltic */
LANG_ENCODINGS ("et", "iso-8859-4", "windows-1257"), /* Estonian */
LANG_ENCODINGS ("lt", "iso-8859-4", "windows-1257"), /* Lithuanian */
LANG_ENCODINGS ("lv", "iso-8859-4", "windows-1257"), /* Latvian */
/* Greek */
LANG_ENCODINGS ("el", "iso-8859-7","windows-1253"),
/* Hebrew */
LANG_ENCODINGS ("he", "iso-8859-8", "windows-1255"),
LANG_ENCODINGS ("iw", "iso-8859-8", "windows-1255"),
/* Turkish */
LANG_ENCODINGS ("tr", "iso-8859-9", "windows-1254"),
/* Table end */
LANG_ENCODINGS (NULL, NULL)
};
static GHashTable * langToEncodings5 = NULL;
static GHashTable * langToEncodings2 = NULL;
static void
init_lang_to_encodings_hash (void)
{
struct IsoLangToEncodings *enc;
if (G_UNLIKELY (langToEncodings5 == NULL)) {
/* Five-letter codes */
enc = (struct IsoLangToEncodings *) &isoLangEntries5[0];
langToEncodings5 = g_hash_table_new (nm_str_hash, g_str_equal);
while (enc->lang) {
g_hash_table_insert (langToEncodings5, (gpointer) enc->lang,
(gpointer) enc->encodings);
enc++;
}
}
if (G_UNLIKELY (langToEncodings2 == NULL)) {
/* Two-letter codes */
enc = (struct IsoLangToEncodings *) &isoLangEntries2[0];
langToEncodings2 = g_hash_table_new (nm_str_hash, g_str_equal);
while (enc->lang) {
g_hash_table_insert (langToEncodings2, (gpointer) enc->lang,
(gpointer) enc->encodings);
enc++;
}
}
}
static gboolean
get_encodings_for_lang (const char *lang, const char *const **encodings)
{
gs_free char *tmp_lang = NULL;
g_return_val_if_fail (lang, FALSE);
g_return_val_if_fail (encodings, FALSE);
init_lang_to_encodings_hash ();
if ((*encodings = g_hash_table_lookup (langToEncodings5, lang)))
return TRUE;
/* Truncate tmp_lang to length of 2 */
if (strlen (lang) > 2) {
tmp_lang = g_strdup (lang);
tmp_lang[2] = '\0';
if ((*encodings = g_hash_table_lookup (langToEncodings2, tmp_lang)))
return TRUE;
}
return FALSE;
}
static const char *const *
get_system_encodings (void)
{
static const char *const *cached_encodings;
static char *default_encodings[4];
const char *const *encodings = NULL;
char *lang;
if (cached_encodings)
return cached_encodings;
/* Use environment variables as encoding hint */
lang = getenv ("LC_ALL");
if (!lang)
lang = getenv ("LC_CTYPE");
if (!lang)
lang = getenv ("LANG");
if (lang) {
char *dot;
lang = g_ascii_strdown (lang, -1);
if ((dot = strchr (lang, '.')))
*dot = '\0';
get_encodings_for_lang (lang, &encodings);
g_free (lang);
}
if (!encodings) {
g_get_charset ((const char **) &default_encodings[0]);
default_encodings[1] = "iso-8859-1";
default_encodings[2] = "windows-1251";
default_encodings[3] = NULL;
encodings = (const char *const *) default_encodings;
}
cached_encodings = encodings;
return cached_encodings;
}
/*****************************************************************************/
static void __attribute__((constructor))
_nm_utils_init (void)
{
static int initialized = 0;
if (g_atomic_int_get (&initialized) != 0)
return;
/* we don't expect this code to run multiple times, nor on multiple threads.
*
* In practice, it would not be a problem if two threads concurrently try to
* run the initialization code below, all code below itself is thread-safe,
* Hence, a poor-man guard "initialized" above is more than sufficient,
* although it does not guarantee that the code is not run concurrently. */
bindtextdomain (GETTEXT_PACKAGE, NMLOCALEDIR);
bind_textdomain_codeset (GETTEXT_PACKAGE, "UTF-8");
_nm_dbus_errors_init ();
g_atomic_int_set (&initialized, 1);
}
/*****************************************************************************/
gboolean _nm_utils_is_manager_process;
/* ssid helpers */
/**
* nm_utils_ssid_to_utf8:
* @ssid: (array length=len): pointer to a buffer containing the SSID data
* @len: length of the SSID data in @ssid
*
* Wi-Fi SSIDs are byte arrays, they are _not_ strings. Thus, an SSID may
* contain embedded NULLs and other unprintable characters. Often it is
* useful to print the SSID out for debugging purposes, but that should be the
* _only_ use of this function. Do not use this function for any persistent
* storage of the SSID, since the printable SSID returned from this function
* cannot be converted back into the real SSID of the access point.
*
* This function does almost everything humanly possible to convert the input
* into a printable UTF-8 string, using roughly the following procedure:
*
* 1) if the input data is already UTF-8 safe, no conversion is performed
* 2) attempts to get the current system language from the LANG environment
* variable, and depending on the language, uses a table of alternative
* encodings to try. For example, if LANG=hu_HU, the table may first try
* the ISO-8859-2 encoding, and if that fails, try the Windows-1250 encoding.
* If all fallback encodings fail, replaces non-UTF-8 characters with '?'.
* 3) If the system language was unable to be determined, falls back to the
* ISO-8859-1 encoding, then to the Windows-1251 encoding.
* 4) If step 3 fails, replaces non-UTF-8 characters with '?'.
*
* Again, this function should be used for debugging and display purposes
* _only_.
*
* Returns: (transfer full): an allocated string containing a UTF-8
* representation of the SSID, which must be freed by the caller using g_free().
* Returns %NULL on errors.
**/
char *
nm_utils_ssid_to_utf8 (const guint8 *ssid, gsize len)
{
const char *const *encodings;
const char *const *e;
char *converted = NULL;
g_return_val_if_fail (ssid != NULL, NULL);
if (g_utf8_validate ((const char *) ssid, len, NULL))
return g_strndup ((const char *) ssid, len);
encodings = get_system_encodings ();
for (e = encodings; *e; e++) {
converted = g_convert ((const char *) ssid, len, "UTF-8", *e, NULL, NULL, NULL);
if (converted)
break;
}
if (!converted) {
converted = g_convert_with_fallback ((const char *) ssid, len,
"UTF-8", encodings[0], "?", NULL, NULL, NULL);
}
if (!converted) {
/* If there is still no converted string, the SSID probably
* contains characters not valid in the current locale. Convert
* the string to ASCII instead.
*/
/* Use the printable range of 0x20-0x7E */
char *valid_chars = " !\"#$%&'()*+,-./0123456789:;<=>?@"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`"
"abcdefghijklmnopqrstuvwxyz{|}~";
converted = g_strndup ((const char *) ssid, len);
g_strcanon (converted, valid_chars, '?');
}
return converted;
}
char *
_nm_utils_ssid_to_utf8 (GBytes *ssid)
{
const guint8 *p;
gsize l;
g_return_val_if_fail (ssid, NULL);
p = g_bytes_get_data (ssid, &l);
return nm_utils_ssid_to_utf8 (p, l);
}
/* Shamelessly ripped from the Linux kernel ieee80211 stack */
/**
* nm_utils_is_empty_ssid:
* @ssid: (array length=len): pointer to a buffer containing the SSID data
* @len: length of the SSID data in @ssid
*
* Different manufacturers use different mechanisms for not broadcasting the
* AP's SSID. This function attempts to detect blank/empty SSIDs using a
* number of known SSID-cloaking methods.
*
* Returns: %TRUE if the SSID is "empty", %FALSE if it is not
**/
gboolean
nm_utils_is_empty_ssid (const guint8 *ssid, gsize len)
{
/* Single white space is for Linksys APs */
if (len == 1 && ssid[0] == ' ')
return TRUE;
/* Otherwise, if the entire ssid is 0, we assume it is hidden */
while (len--) {
if (ssid[len] != '\0')
return FALSE;
}
return TRUE;
}
gboolean
_nm_utils_is_empty_ssid (GBytes *ssid)
{
const guint8 *p;
gsize l;
g_return_val_if_fail (ssid, FALSE);
p = g_bytes_get_data (ssid, &l);
return nm_utils_is_empty_ssid (p, l);
}
#define ESSID_MAX_SIZE 32
/**
* nm_utils_escape_ssid:
* @ssid: (array length=len): pointer to a buffer containing the SSID data
* @len: length of the SSID data in @ssid
*
* This function does a quick printable character conversion of the SSID, simply
* replacing embedded NULLs and non-printable characters with the hexadecimal
* representation of that character. Intended for debugging only, should not
* be used for display of SSIDs.
*
* Returns: pointer to the escaped SSID, which uses an internal static buffer
* and will be overwritten by subsequent calls to this function
**/
const char *
nm_utils_escape_ssid (const guint8 *ssid, gsize len)
{
static char escaped[ESSID_MAX_SIZE * 2 + 1];
const guint8 *s = ssid;
char *d = escaped;
if (nm_utils_is_empty_ssid (ssid, len)) {
memcpy (escaped, "<hidden>", sizeof ("<hidden>"));
return escaped;
}
len = MIN (len, (guint32) ESSID_MAX_SIZE);
while (len--) {
if (*s == '\0') {
*d++ = '\\';
*d++ = '0';
s++;
} else {
*d++ = *s++;
}
}
*d = '\0';
return escaped;
}
char *
_nm_utils_ssid_to_string_arr (const guint8 *ssid, gsize len)
{
gs_free char *s_copy = NULL;
const char *s_cnst;
if (len == 0)
return g_strdup ("(empty)");
s_cnst = nm_utils_buf_utf8safe_escape (ssid, len, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_CTRL, &s_copy);
nm_assert (s_cnst);
if (nm_utils_is_empty_ssid (ssid, len))
return g_strdup_printf ("\"%s\" (hidden)", s_cnst);
return g_strdup_printf ("\"%s\"", s_cnst);
}
char *
_nm_utils_ssid_to_string (GBytes *ssid)
{
gconstpointer p;
gsize l;
if (!ssid)
return g_strdup ("(none)");
p = g_bytes_get_data (ssid, &l);
return _nm_utils_ssid_to_string_arr (p, l);
}
/**
* nm_utils_same_ssid:
* @ssid1: (array length=len1): the first SSID to compare
* @len1: length of the SSID data in @ssid1
* @ssid2: (array length=len2): the second SSID to compare
* @len2: length of the SSID data in @ssid2
* @ignore_trailing_null: %TRUE to ignore one trailing NULL byte
*
* Earlier versions of the Linux kernel added a NULL byte to the end of the
* SSID to enable easy printing of the SSID on the console or in a terminal,
* but this behavior was problematic (SSIDs are simply byte arrays, not strings)
* and thus was changed. This function compensates for that behavior at the
* cost of some compatibility with odd SSIDs that may legitimately have trailing
* NULLs, even though that is functionally pointless.
*
* Returns: %TRUE if the SSIDs are the same, %FALSE if they are not
**/
gboolean
nm_utils_same_ssid (const guint8 *ssid1, gsize len1,
const guint8 *ssid2, gsize len2,
gboolean ignore_trailing_null)
{
g_return_val_if_fail (ssid1 != NULL || len1 == 0, FALSE);
g_return_val_if_fail (ssid2 != NULL || len2 == 0, FALSE);
if (ssid1 == ssid2 && len1 == len2)
return TRUE;
if (!ssid1 || !ssid2)
return FALSE;
if (ignore_trailing_null) {
if (len1 && ssid1[len1 - 1] == '\0')
len1--;
if (len2 && ssid2[len2 - 1] == '\0')
len2--;
}
if (len1 != len2)
return FALSE;
return memcmp (ssid1, ssid2, len1) == 0 ? TRUE : FALSE;
}
gboolean
_nm_utils_string_slist_validate (GSList *list, const char **valid_values)
{
GSList *iter;
for (iter = list; iter; iter = iter->next) {
if (!g_strv_contains (valid_values, (char *) iter->data))
return FALSE;
}
return TRUE;
}
/**
* _nm_utils_hash_values_to_slist:
* @hash: a #GHashTable
*
* Utility function to iterate over a hash table and return
* its values as a #GSList.
*
* Returns: (element-type gpointer) (transfer container): a newly allocated #GSList
* containing the values of the hash table. The caller must free the
* returned list with g_slist_free(). The hash values are not owned
* by the returned list.
**/
GSList *
_nm_utils_hash_values_to_slist (GHashTable *hash)
{
GSList *list = NULL;
GHashTableIter iter;
void *value;
g_return_val_if_fail (hash, NULL);
g_hash_table_iter_init (&iter, hash);
while (g_hash_table_iter_next (&iter, NULL, &value))
list = g_slist_prepend (list, value);
return list;
}
static GVariant *
_nm_utils_strdict_to_dbus (const GValue *prop_value)
{
return nm_utils_strdict_to_variant_ass (g_value_get_boxed (prop_value));
}
void
_nm_utils_strdict_from_dbus (GVariant *dbus_value,
GValue *prop_value)
{
GVariantIter iter;
const char *key, *value;
GHashTable *hash;
hash = g_hash_table_new_full (nm_str_hash, g_str_equal, g_free, g_free);
g_variant_iter_init (&iter, dbus_value);
while (g_variant_iter_next (&iter, "{&s&s}", &key, &value))
g_hash_table_insert (hash, g_strdup (key), g_strdup (value));
g_value_take_boxed (prop_value, hash);
}
const NMSettInfoPropertType nm_sett_info_propert_type_strdict = {
.dbus_type = NM_G_VARIANT_TYPE ("a{ss}"),
.gprop_to_dbus_fcn = _nm_utils_strdict_to_dbus,
.gprop_from_dbus_fcn = _nm_utils_strdict_from_dbus,
};
GHashTable *
_nm_utils_copy_strdict (GHashTable *strdict)
{
GHashTable *copy;
GHashTableIter iter;
gpointer key, value;
copy = g_hash_table_new_full (nm_str_hash, g_str_equal, g_free, g_free);
if (strdict) {
g_hash_table_iter_init (&iter, strdict);
while (g_hash_table_iter_next (&iter, &key, &value))
g_hash_table_insert (copy, g_strdup (key), g_strdup (value));
}
return copy;
}
GPtrArray *
_nm_utils_copy_array (const GPtrArray *array,
NMUtilsCopyFunc copy_func,
GDestroyNotify free_func)
{
GPtrArray *copy;
int i;
if (!array)
return g_ptr_array_new_with_free_func (free_func);
copy = g_ptr_array_new_full (array->len, free_func);
for (i = 0; i < array->len; i++)
g_ptr_array_add (copy, copy_func (array->pdata[i]));
return copy;
}
GPtrArray *
_nm_utils_copy_object_array (const GPtrArray *array)
{
return _nm_utils_copy_array (array, g_object_ref, g_object_unref);
}
gssize
_nm_utils_ptrarray_find_first (gconstpointer *list, gssize len, gconstpointer needle)
{
gssize i;
if (len == 0)
return -1;
if (len > 0) {
g_return_val_if_fail (list, -1);
for (i = 0; i < len; i++) {
if (list[i] == needle)
return i;
}
} else {
g_return_val_if_fail (needle, -1);
for (i = 0; list && list[i]; i++) {
if (list[i] == needle)
return i;
}
}
return -1;
}
void
_nm_utils_bytes_from_dbus (GVariant *dbus_value,
GValue *prop_value)
{
GBytes *bytes;
if (g_variant_n_children (dbus_value)) {
gconstpointer data;
gsize length;
data = g_variant_get_fixed_array (dbus_value, &length, 1);
bytes = g_bytes_new (data, length);
} else
bytes = NULL;
g_value_take_boxed (prop_value, bytes);
}
/*****************************************************************************/
GSList *
_nm_utils_strv_to_slist (char **strv, gboolean deep_copy)
{
GSList *list = NULL;
gsize i;
if (!strv)
return NULL;
if (deep_copy) {
for (i = 0; strv[i]; i++)
list = g_slist_prepend (list, g_strdup (strv[i]));
} else {
for (i = 0; strv[i]; i++)
list = g_slist_prepend (list, strv[i]);
}
return g_slist_reverse (list);
}
char **
_nm_utils_slist_to_strv (const GSList *slist, gboolean deep_copy)
{
const GSList *iter;
char **strv;
guint len, i;
if (!slist)
return NULL;
len = g_slist_length ((GSList *) slist);
strv = g_new (char *, len + 1);
if (deep_copy) {
for (i = 0, iter = slist; iter; iter = iter->next, i++) {
nm_assert (iter->data);
strv[i] = g_strdup (iter->data);
}
} else {
for (i = 0, iter = slist; iter; iter = iter->next, i++) {
nm_assert (iter->data);
strv[i] = iter->data;
}
}
strv[i] = NULL;
return strv;
}
GPtrArray *
_nm_utils_strv_to_ptrarray (char **strv)
{
GPtrArray *ptrarray;
gsize i, l;
l = NM_PTRARRAY_LEN (strv);
ptrarray = g_ptr_array_new_full (l, g_free);
if (strv) {
for (i = 0; strv[i]; i++)
g_ptr_array_add (ptrarray, g_strdup (strv[i]));
}
return ptrarray;
}
char **
_nm_utils_ptrarray_to_strv (const GPtrArray *ptrarray)
{
char **strv;
guint i;
if (!ptrarray)
return g_new0 (char *, 1);
strv = g_new (char *, ptrarray->len + 1);
for (i = 0; i < ptrarray->len; i++)
strv[i] = g_strdup (ptrarray->pdata[i]);
strv[i] = NULL;
return strv;
}
/*****************************************************************************/
static gboolean
device_supports_ap_ciphers (guint32 dev_caps,
guint32 ap_flags,
gboolean static_wep)
{
gboolean have_pair = FALSE;
gboolean have_group = FALSE;
/* Device needs to support at least one pairwise and one group cipher */
/* Pairwise */
if (static_wep) {
/* Static WEP only uses group ciphers */
have_pair = TRUE;
} else {
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP40)
if (ap_flags & NM_802_11_AP_SEC_PAIR_WEP40)
have_pair = TRUE;
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP104)
if (ap_flags & NM_802_11_AP_SEC_PAIR_WEP104)
have_pair = TRUE;
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP)
if (ap_flags & NM_802_11_AP_SEC_PAIR_TKIP)
have_pair = TRUE;
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP)
if (ap_flags & NM_802_11_AP_SEC_PAIR_CCMP)
have_pair = TRUE;
}
/* Group */
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP40)
if (ap_flags & NM_802_11_AP_SEC_GROUP_WEP40)
have_group = TRUE;
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP104)
if (ap_flags & NM_802_11_AP_SEC_GROUP_WEP104)
have_group = TRUE;
if (!static_wep) {
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP)
if (ap_flags & NM_802_11_AP_SEC_GROUP_TKIP)
have_group = TRUE;
if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP)
if (ap_flags & NM_802_11_AP_SEC_GROUP_CCMP)
have_group = TRUE;
}
return (have_pair && have_group);
}
/**
* nm_utils_ap_mode_security_valid:
* @type: the security type to check device capabilities against,
* e.g. #NMU_SEC_STATIC_WEP
* @wifi_caps: bitfield of the capabilities of the specific Wi-Fi device, e.g.
* #NM_WIFI_DEVICE_CAP_CIPHER_WEP40
*
* Given a set of device capabilities, and a desired security type to check
* against, determines whether the combination of device capabilities and
* desired security type are valid for AP/Hotspot connections.
*
* Returns: %TRUE if the device capabilities are compatible with the desired
* @type, %FALSE if they are not.
**/
gboolean
nm_utils_ap_mode_security_valid (NMUtilsSecurityType type,
NMDeviceWifiCapabilities wifi_caps)
{
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_AP))
return FALSE;
/* Return TRUE for any security that wpa_supplicant's lightweight AP
* mode can handle: which is open, WEP, and WPA/WPA2 PSK.
*/
switch (type) {
case NMU_SEC_NONE:
case NMU_SEC_STATIC_WEP:
case NMU_SEC_WPA_PSK:
case NMU_SEC_WPA2_PSK:
case NMU_SEC_SAE:
case NMU_SEC_OWE:
return TRUE;
case NMU_SEC_LEAP:
case NMU_SEC_DYNAMIC_WEP:
case NMU_SEC_WPA_ENTERPRISE:
case NMU_SEC_WPA2_ENTERPRISE:
return FALSE;
case NMU_SEC_INVALID:
break;
}
return FALSE;
}
/**
* nm_utils_security_valid:
* @type: the security type to check AP flags and device capabilities against,
* e.g. #NMU_SEC_STATIC_WEP
* @wifi_caps: bitfield of the capabilities of the specific Wi-Fi device, e.g.
* #NM_WIFI_DEVICE_CAP_CIPHER_WEP40
* @have_ap: whether the @ap_flags, @ap_wpa, and @ap_rsn arguments are valid
* @adhoc: whether the capabilities being tested are from an Ad-Hoc AP (IBSS)
* @ap_flags: bitfield of AP capabilities, e.g. #NM_802_11_AP_FLAGS_PRIVACY
* @ap_wpa: bitfield of AP capabilities derived from the AP's WPA beacon,
* e.g. (#NM_802_11_AP_SEC_PAIR_TKIP | #NM_802_11_AP_SEC_KEY_MGMT_PSK)
* @ap_rsn: bitfield of AP capabilities derived from the AP's RSN/WPA2 beacon,
* e.g. (#NM_802_11_AP_SEC_PAIR_CCMP | #NM_802_11_AP_SEC_PAIR_TKIP)
*
* Given a set of device capabilities, and a desired security type to check
* against, determines whether the combination of device, desired security
* type, and AP capabilities intersect.
*
* NOTE: this function cannot handle checking security for AP/Hotspot mode;
* use nm_utils_ap_mode_security_valid() instead.
*
* Returns: %TRUE if the device capabilities and AP capabilities intersect and are
* compatible with the desired @type, %FALSE if they are not
**/
gboolean
nm_utils_security_valid (NMUtilsSecurityType type,
NMDeviceWifiCapabilities wifi_caps,
gboolean have_ap,
gboolean adhoc,
NM80211ApFlags ap_flags,
NM80211ApSecurityFlags ap_wpa,
NM80211ApSecurityFlags ap_rsn)
{
switch (type) {
case NMU_SEC_NONE:
if (!have_ap)
return TRUE;
if (ap_flags & NM_802_11_AP_FLAGS_PRIVACY)
return FALSE;
if ( ap_wpa
|| ap_rsn)
return FALSE;
return TRUE;
case NMU_SEC_LEAP: /* require PRIVACY bit for LEAP? */
if (adhoc)
return FALSE;
/* fall-through */
case NMU_SEC_STATIC_WEP:
if (!have_ap) {
if (wifi_caps & (NM_WIFI_DEVICE_CAP_CIPHER_WEP40 | NM_WIFI_DEVICE_CAP_CIPHER_WEP104))
return TRUE;
return FALSE;
}
if (!(ap_flags & NM_802_11_AP_FLAGS_PRIVACY))
return FALSE;
if ( ap_wpa
|| ap_rsn) {
if (!device_supports_ap_ciphers (wifi_caps, ap_wpa, TRUE)) {
if (!device_supports_ap_ciphers (wifi_caps, ap_rsn, TRUE))
return FALSE;
}
}
return TRUE;
case NMU_SEC_DYNAMIC_WEP:
if (adhoc)
return FALSE;
if (!have_ap) {
if (wifi_caps & (NM_WIFI_DEVICE_CAP_CIPHER_WEP40 | NM_WIFI_DEVICE_CAP_CIPHER_WEP104))
return TRUE;
return FALSE;
}
if ( ap_rsn
|| !(ap_flags & NM_802_11_AP_FLAGS_PRIVACY))
return FALSE;
/* Some APs broadcast minimal WPA-enabled beacons that must be handled */
if (ap_wpa) {
if (!(ap_wpa & NM_802_11_AP_SEC_KEY_MGMT_802_1X))
return FALSE;
if (!device_supports_ap_ciphers (wifi_caps, ap_wpa, FALSE))
return FALSE;
}
return TRUE;
case NMU_SEC_WPA_PSK:
if (adhoc)
return FALSE;
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_WPA))
return FALSE;
if (!have_ap)
return TRUE;
if (ap_wpa & NM_802_11_AP_SEC_KEY_MGMT_PSK) {
if ( (ap_wpa & NM_802_11_AP_SEC_PAIR_TKIP)
&& (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP))
return TRUE;
if ( (ap_wpa & NM_802_11_AP_SEC_PAIR_CCMP)
&& (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
return TRUE;
}
return FALSE;
case NMU_SEC_WPA2_PSK:
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_RSN))
return FALSE;
if (!have_ap)
return TRUE;
if (adhoc) {
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_IBSS_RSN))
return FALSE;
if ( (ap_rsn & NM_802_11_AP_SEC_PAIR_CCMP)
&& (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
return TRUE;
return FALSE;
}
if (ap_rsn & NM_802_11_AP_SEC_KEY_MGMT_PSK) {
if ( (ap_rsn & NM_802_11_AP_SEC_PAIR_TKIP)
&& (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP))
return TRUE;
if ( (ap_rsn & NM_802_11_AP_SEC_PAIR_CCMP)
&& (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
return TRUE;
}
return FALSE;
case NMU_SEC_WPA_ENTERPRISE:
if (adhoc)
return FALSE;
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_WPA))
return FALSE;
if (!have_ap)
return TRUE;
if (!(ap_wpa & NM_802_11_AP_SEC_KEY_MGMT_802_1X))
return FALSE;
/* Ensure at least one WPA cipher is supported */
if (!device_supports_ap_ciphers (wifi_caps, ap_wpa, FALSE))
return FALSE;
return TRUE;
case NMU_SEC_WPA2_ENTERPRISE:
if (adhoc)
return FALSE;
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_RSN))
return FALSE;
if (!have_ap)
return TRUE;
if (!(ap_rsn & NM_802_11_AP_SEC_KEY_MGMT_802_1X))
return FALSE;
/* Ensure at least one WPA cipher is supported */
if (!device_supports_ap_ciphers (wifi_caps, ap_rsn, FALSE))
return FALSE;
return TRUE;
case NMU_SEC_SAE:
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_RSN))
return FALSE;
if (adhoc)
return FALSE;
if (!have_ap)
return TRUE;
if (ap_rsn & NM_802_11_AP_SEC_KEY_MGMT_SAE) {
if ( (ap_rsn & NM_802_11_AP_SEC_PAIR_CCMP)
&& (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
return TRUE;
}
return FALSE;
case NMU_SEC_OWE:
if (adhoc)
return FALSE;
if (!(wifi_caps & NM_WIFI_DEVICE_CAP_RSN))
return FALSE;
if (!have_ap)
return TRUE;
if (!NM_FLAGS_ANY (ap_rsn, NM_802_11_AP_SEC_KEY_MGMT_OWE | NM_802_11_AP_SEC_KEY_MGMT_OWE_TM))
return FALSE;
return TRUE;
case NMU_SEC_INVALID:
break;
}
return FALSE;
}
/**
* nm_utils_wep_key_valid:
* @key: a string that might be a WEP key
* @wep_type: the #NMWepKeyType type of the WEP key
*
* Checks if @key is a valid WEP key
*
* Returns: %TRUE if @key is a WEP key, %FALSE if not
*/
gboolean
nm_utils_wep_key_valid (const char *key, NMWepKeyType wep_type)
{
int keylen, i;
if (!key)
return FALSE;
if (wep_type == NM_WEP_KEY_TYPE_UNKNOWN) {
return nm_utils_wep_key_valid (key, NM_WEP_KEY_TYPE_KEY) ||
nm_utils_wep_key_valid (key, NM_WEP_KEY_TYPE_PASSPHRASE);
}
keylen = strlen (key);
if (wep_type == NM_WEP_KEY_TYPE_KEY) {
if (keylen == 10 || keylen == 26) {
/* Hex key */
for (i = 0; i < keylen; i++) {
if (!g_ascii_isxdigit (key[i]))
return FALSE;
}
} else if (keylen == 5 || keylen == 13) {
/* ASCII key */
for (i = 0; i < keylen; i++) {
if (!g_ascii_isprint (key[i]))
return FALSE;
}
} else
return FALSE;
} else if (wep_type == NM_WEP_KEY_TYPE_PASSPHRASE) {
if (!keylen || keylen > 64)
return FALSE;
}
return TRUE;
}
/**
* nm_utils_wpa_psk_valid:
* @psk: a string that might be a WPA PSK
*
* Checks if @psk is a valid WPA PSK
*
* Returns: %TRUE if @psk is a WPA PSK, %FALSE if not
*/
gboolean
nm_utils_wpa_psk_valid (const char *psk)
{
int psklen, i;
if (!psk)
return FALSE;
psklen = strlen (psk);
if (psklen < 8 || psklen > 64)
return FALSE;
if (psklen == 64) {
/* Hex PSK */
for (i = 0; i < psklen; i++) {
if (!g_ascii_isxdigit (psk[i]))
return FALSE;
}
}
return TRUE;
}
/**
* nm_utils_ip4_dns_to_variant:
* @dns: (type utf8): an array of IP address strings
*
* Utility function to convert an array of IP address strings int a #GVariant of
* type 'au' representing an array of IPv4 addresses.
*
* Returns: (transfer none): a new floating #GVariant representing @dns.
**/
GVariant *
nm_utils_ip4_dns_to_variant (char **dns)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("au"));
if (dns) {
for (i = 0; dns[i]; i++) {
guint32 ip = 0;
inet_pton (AF_INET, dns[i], &ip);
g_variant_builder_add (&builder, "u", ip);
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip4_dns_from_variant:
* @value: a #GVariant of type 'au'
*
* Utility function to convert a #GVariant of type 'au' representing a list of
* IPv4 addresses into an array of IP address strings.
*
* Returns: (transfer full) (type utf8): a %NULL-terminated array of IP address strings.
**/
char **
nm_utils_ip4_dns_from_variant (GVariant *value)
{
const guint32 *array;
gsize length;
char **dns;
int i;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("au")), NULL);
array = g_variant_get_fixed_array (value, &length, sizeof (guint32));
dns = g_new (char *, length + 1);
for (i = 0; i < length; i++)
dns[i] = nm_utils_inet4_ntop_dup (array[i]);
dns[i] = NULL;
return dns;
}
/**
* nm_utils_ip4_addresses_to_variant:
* @addresses: (element-type NMIPAddress): an array of #NMIPAddress objects
* @gateway: (allow-none): the gateway IP address
*
* Utility function to convert a #GPtrArray of #NMIPAddress objects representing
* IPv4 addresses into a #GVariant of type 'aau' representing an array of
* NetworkManager IPv4 addresses (which are tuples of address, prefix, and
* gateway). The "gateway" field of the first address will get the value of
* @gateway (if non-%NULL). In all of the other addresses, that field will be 0.
*
* Returns: (transfer none): a new floating #GVariant representing @addresses.
**/
GVariant *
nm_utils_ip4_addresses_to_variant (GPtrArray *addresses, const char *gateway)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("aau"));
if (addresses) {
for (i = 0; i < addresses->len; i++) {
NMIPAddress *addr = addresses->pdata[i];
guint32 array[3];
if (nm_ip_address_get_family (addr) != AF_INET)
continue;
nm_ip_address_get_address_binary (addr, &array[0]);
array[1] = nm_ip_address_get_prefix (addr);
if (i == 0 && gateway)
inet_pton (AF_INET, gateway, &array[2]);
else
array[2] = 0;
g_variant_builder_add (&builder, "@au",
g_variant_new_fixed_array (G_VARIANT_TYPE_UINT32,
array, 3, sizeof (guint32)));
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip4_addresses_from_variant:
* @value: a #GVariant of type 'aau'
* @out_gateway: (out) (allow-none) (transfer full): on return, will contain the IP gateway
*
* Utility function to convert a #GVariant of type 'aau' representing a list of
* NetworkManager IPv4 addresses (which are tuples of address, prefix, and
* gateway) into a #GPtrArray of #NMIPAddress objects. The "gateway" field of
* the first address (if set) will be returned in @out_gateway; the "gateway" fields
* of the other addresses are ignored.
*
* Returns: (transfer full) (element-type NMIPAddress): a newly allocated
* #GPtrArray of #NMIPAddress objects
**/
GPtrArray *
nm_utils_ip4_addresses_from_variant (GVariant *value, char **out_gateway)
{
GPtrArray *addresses;
GVariantIter iter;
GVariant *addr_var;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aau")), NULL);
if (out_gateway)
*out_gateway = NULL;
g_variant_iter_init (&iter, value);
addresses = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_address_unref);
while (g_variant_iter_next (&iter, "@au", &addr_var)) {
const guint32 *addr_array;
gsize length;
NMIPAddress *addr;
GError *error = NULL;
addr_array = g_variant_get_fixed_array (addr_var, &length, sizeof (guint32));
if (length < 3) {
g_warning ("Ignoring invalid IP4 address");
g_variant_unref (addr_var);
continue;
}
addr = nm_ip_address_new_binary (AF_INET, &addr_array[0], addr_array[1], &error);
if (addr) {
g_ptr_array_add (addresses, addr);
if (addr_array[2] && out_gateway && !*out_gateway)
*out_gateway = nm_utils_inet4_ntop_dup (addr_array[2]);
} else {
g_warning ("Ignoring invalid IP4 address: %s", error->message);
g_clear_error (&error);
}
g_variant_unref (addr_var);
}
return addresses;
}
/**
* nm_utils_ip4_routes_to_variant:
* @routes: (element-type NMIPRoute): an array of #NMIP4Route objects
*
* Utility function to convert a #GPtrArray of #NMIPRoute objects representing
* IPv4 routes into a #GVariant of type 'aau' representing an array of
* NetworkManager IPv4 routes (which are tuples of route, prefix, next hop, and
* metric).
*
* Returns: (transfer none): a new floating #GVariant representing @routes.
**/
GVariant *
nm_utils_ip4_routes_to_variant (GPtrArray *routes)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("aau"));
if (routes) {
for (i = 0; i < routes->len; i++) {
NMIPRoute *route = routes->pdata[i];
guint32 array[4];
if (nm_ip_route_get_family (route) != AF_INET)
continue;
nm_ip_route_get_dest_binary (route, &array[0]);
array[1] = nm_ip_route_get_prefix (route);
nm_ip_route_get_next_hop_binary (route, &array[2]);
/* The old routes format uses "0" for default, not "-1" */
array[3] = MAX (0, nm_ip_route_get_metric (route));
g_variant_builder_add (&builder, "@au",
g_variant_new_fixed_array (G_VARIANT_TYPE_UINT32,
array, 4, sizeof (guint32)));
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip4_routes_from_variant:
* @value: #GVariant of type 'aau'
*
* Utility function to convert a #GVariant of type 'aau' representing an array
* of NetworkManager IPv4 routes (which are tuples of route, prefix, next hop,
* and metric) into a #GPtrArray of #NMIPRoute objects.
*
* Returns: (transfer full) (element-type NMIPRoute): a newly allocated
* #GPtrArray of #NMIPRoute objects
**/
GPtrArray *
nm_utils_ip4_routes_from_variant (GVariant *value)
{
GVariantIter iter;
GVariant *route_var;
GPtrArray *routes;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aau")), NULL);
g_variant_iter_init (&iter, value);
routes = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_route_unref);
while (g_variant_iter_next (&iter, "@au", &route_var)) {
const guint32 *route_array;
gsize length;
NMIPRoute *route;
GError *error = NULL;
route_array = g_variant_get_fixed_array (route_var, &length, sizeof (guint32));
if (length < 4) {
g_warning ("Ignoring invalid IP4 route");
g_variant_unref (route_var);
continue;
}
route = nm_ip_route_new_binary (AF_INET,
&route_array[0],
route_array[1],
&route_array[2],
/* The old routes format uses "0" for default, not "-1" */
route_array[3] ? (gint64) route_array[3] : -1,
&error);
if (route)
g_ptr_array_add (routes, route);
else {
g_warning ("Ignoring invalid IP4 route: %s", error->message);
g_clear_error (&error);
}
g_variant_unref (route_var);
}
return routes;
}
/**
* nm_utils_ip4_netmask_to_prefix:
* @netmask: an IPv4 netmask in network byte order
*
* Returns: the CIDR prefix represented by the netmask
**/
guint32
nm_utils_ip4_netmask_to_prefix (guint32 netmask)
{
G_STATIC_ASSERT_EXPR (__SIZEOF_INT__ == 4);
G_STATIC_ASSERT_EXPR (sizeof (int) == 4);
G_STATIC_ASSERT_EXPR (sizeof (netmask) == 4);
return ( (netmask != 0)
? (32 - __builtin_ctz (ntohl (netmask)))
: 0);
}
/**
* nm_utils_ip4_prefix_to_netmask:
* @prefix: a CIDR prefix
*
* Returns: the netmask represented by the prefix, in network byte order
**/
guint32
nm_utils_ip4_prefix_to_netmask (guint32 prefix)
{
return _nm_utils_ip4_prefix_to_netmask (prefix);
}
/**
* nm_utils_ip4_get_default_prefix:
* @ip: an IPv4 address (in network byte order)
*
* When the Internet was originally set up, various ranges of IP addresses were
* segmented into three network classes: A, B, and C. This function will return
* a prefix that is associated with the IP address specified defining where it
* falls in the predefined classes.
*
* Returns: the default class prefix for the given IP
**/
/* The function is originally from ipcalc.c of Red Hat's initscripts. */
guint32
nm_utils_ip4_get_default_prefix (guint32 ip)
{
return _nm_utils_ip4_get_default_prefix (ip);
}
/**
* nm_utils_ip6_dns_to_variant:
* @dns: (type utf8): an array of IP address strings
*
* Utility function to convert an array of IP address strings int a #GVariant of
* type 'aay' representing an array of IPv6 addresses.
*
* Returns: (transfer none): a new floating #GVariant representing @dns.
**/
GVariant *
nm_utils_ip6_dns_to_variant (char **dns)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("aay"));
if (dns) {
for (i = 0; dns[i]; i++) {
struct in6_addr ip;
inet_pton (AF_INET6, dns[i], &ip);
g_variant_builder_add (&builder, "@ay",
g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
&ip, sizeof (ip), 1));
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip6_dns_from_variant:
* @value: a #GVariant of type 'aay'
*
* Utility function to convert a #GVariant of type 'aay' representing a list of
* IPv6 addresses into an array of IP address strings. Each "ay" entry must be
* a IPv6 address in binary form (16 bytes long). Invalid entries are silently
* ignored.
*
* Returns: (transfer full) (type utf8): a %NULL-terminated array of IP address strings.
**/
char **
nm_utils_ip6_dns_from_variant (GVariant *value)
{
GVariantIter iter;
GVariant *ip_var;
char **dns;
int i;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aay")), NULL);
dns = g_new (char *, g_variant_n_children (value) + 1);
g_variant_iter_init (&iter, value);
i = 0;
while (g_variant_iter_next (&iter, "@ay", &ip_var)) {
gsize length;
const struct in6_addr *ip = g_variant_get_fixed_array (ip_var, &length, 1);
if (length == sizeof (struct in6_addr))
dns[i++] = nm_utils_inet6_ntop_dup (ip);
g_variant_unref (ip_var);
}
dns[i] = NULL;
return dns;
}
/**
* nm_utils_ip6_addresses_to_variant:
* @addresses: (element-type NMIPAddress): an array of #NMIPAddress objects
* @gateway: (allow-none): the gateway IP address
*
* Utility function to convert a #GPtrArray of #NMIPAddress objects representing
* IPv6 addresses into a #GVariant of type 'a(ayuay)' representing an array of
* NetworkManager IPv6 addresses (which are tuples of address, prefix, and
* gateway). The "gateway" field of the first address will get the value of
* @gateway (if non-%NULL). In all of the other addresses, that field will be
* all 0s.
*
* Returns: (transfer none): a new floating #GVariant representing @addresses.
**/
GVariant *
nm_utils_ip6_addresses_to_variant (GPtrArray *addresses, const char *gateway)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("a(ayuay)"));
if (addresses) {
for (i = 0; i < addresses->len; i++) {
NMIPAddress *addr = addresses->pdata[i];
struct in6_addr ip_bytes, gateway_bytes;
GVariant *ip_var, *gateway_var;
guint32 prefix;
if (nm_ip_address_get_family (addr) != AF_INET6)
continue;
nm_ip_address_get_address_binary (addr, &ip_bytes);
ip_var = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, &ip_bytes, 16, 1);
prefix = nm_ip_address_get_prefix (addr);
if (i == 0 && gateway)
inet_pton (AF_INET6, gateway, &gateway_bytes);
else
memset (&gateway_bytes, 0, sizeof (gateway_bytes));
gateway_var = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, &gateway_bytes, 16, 1);
g_variant_builder_add (&builder, "(@ayu@ay)", ip_var, prefix, gateway_var);
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip6_addresses_from_variant:
* @value: a #GVariant of type 'a(ayuay)'
* @out_gateway: (out) (allow-none) (transfer full): on return, will contain the IP gateway
*
* Utility function to convert a #GVariant of type 'a(ayuay)' representing a
* list of NetworkManager IPv6 addresses (which are tuples of address, prefix,
* and gateway) into a #GPtrArray of #NMIPAddress objects. The "gateway" field
* of the first address (if set) will be returned in @out_gateway; the "gateway"
* fields of the other addresses are ignored.
*
* Returns: (transfer full) (element-type NMIPAddress): a newly allocated
* #GPtrArray of #NMIPAddress objects
**/
GPtrArray *
nm_utils_ip6_addresses_from_variant (GVariant *value, char **out_gateway)
{
GVariantIter iter;
GVariant *addr_var, *gateway_var;
guint32 prefix;
GPtrArray *addresses;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("a(ayuay)")), NULL);
if (out_gateway)
*out_gateway = NULL;
g_variant_iter_init (&iter, value);
addresses = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_address_unref);
while (g_variant_iter_next (&iter, "(@ayu@ay)", &addr_var, &prefix, &gateway_var)) {
NMIPAddress *addr;
const struct in6_addr *addr_bytes, *gateway_bytes;
gsize addr_len, gateway_len;
GError *error = NULL;
if ( !g_variant_is_of_type (addr_var, G_VARIANT_TYPE_BYTESTRING)
|| !g_variant_is_of_type (gateway_var, G_VARIANT_TYPE_BYTESTRING)) {
g_warning ("%s: ignoring invalid IP6 address structure", __func__);
goto next;
}
addr_bytes = g_variant_get_fixed_array (addr_var, &addr_len, 1);
if (addr_len != 16) {
g_warning ("%s: ignoring invalid IP6 address of length %d",
__func__, (int) addr_len);
goto next;
}
addr = nm_ip_address_new_binary (AF_INET6, addr_bytes, prefix, &error);
if (addr) {
g_ptr_array_add (addresses, addr);
if (out_gateway && !*out_gateway) {
gateway_bytes = g_variant_get_fixed_array (gateway_var, &gateway_len, 1);
if (gateway_len != 16) {
g_warning ("%s: ignoring invalid IP6 address of length %d",
__func__, (int) gateway_len);
goto next;
}
if (!IN6_IS_ADDR_UNSPECIFIED (gateway_bytes))
*out_gateway = nm_utils_inet6_ntop_dup (gateway_bytes);
}
} else {
g_warning ("Ignoring invalid IP6 address: %s", error->message);
g_clear_error (&error);
}
next:
g_variant_unref (addr_var);
g_variant_unref (gateway_var);
}
return addresses;
}
/**
* nm_utils_ip6_routes_to_variant:
* @routes: (element-type NMIPRoute): an array of #NMIPRoute objects
*
* Utility function to convert a #GPtrArray of #NMIPRoute objects representing
* IPv6 routes into a #GVariant of type 'a(ayuayu)' representing an array of
* NetworkManager IPv6 routes (which are tuples of route, prefix, next hop, and
* metric).
*
* Returns: (transfer none): a new floating #GVariant representing @routes.
**/
GVariant *
nm_utils_ip6_routes_to_variant (GPtrArray *routes)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("a(ayuayu)"));
if (routes) {
for (i = 0; i < routes->len; i++) {
NMIPRoute *route = routes->pdata[i];
struct in6_addr dest_bytes, next_hop_bytes;
GVariant *dest, *next_hop;
guint32 prefix, metric;
if (nm_ip_route_get_family (route) != AF_INET6)
continue;
nm_ip_route_get_dest_binary (route, &dest_bytes);
dest = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, &dest_bytes, 16, 1);
prefix = nm_ip_route_get_prefix (route);
nm_ip_route_get_next_hop_binary (route, &next_hop_bytes);
next_hop = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, &next_hop_bytes, 16, 1);
/* The old routes format uses "0" for default, not "-1" */
metric = MAX (0, nm_ip_route_get_metric (route));
g_variant_builder_add (&builder, "(@ayu@ayu)", dest, prefix, next_hop, metric);
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip6_routes_from_variant:
* @value: #GVariant of type 'a(ayuayu)'
*
* Utility function to convert a #GVariant of type 'a(ayuayu)' representing an
* array of NetworkManager IPv6 routes (which are tuples of route, prefix, next
* hop, and metric) into a #GPtrArray of #NMIPRoute objects.
*
* Returns: (transfer full) (element-type NMIPRoute): a newly allocated
* #GPtrArray of #NMIPRoute objects
**/
GPtrArray *
nm_utils_ip6_routes_from_variant (GVariant *value)
{
GPtrArray *routes;
GVariantIter iter;
GVariant *dest_var, *next_hop_var;
const struct in6_addr *dest, *next_hop;
gsize dest_len, next_hop_len;
guint32 prefix, metric;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("a(ayuayu)")), NULL);
routes = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_route_unref);
g_variant_iter_init (&iter, value);
while (g_variant_iter_next (&iter, "(@ayu@ayu)", &dest_var, &prefix, &next_hop_var, &metric)) {
NMIPRoute *route;
GError *error = NULL;
if ( !g_variant_is_of_type (dest_var, G_VARIANT_TYPE_BYTESTRING)
|| !g_variant_is_of_type (next_hop_var, G_VARIANT_TYPE_BYTESTRING)) {
g_warning ("%s: ignoring invalid IP6 address structure", __func__);
goto next;
}
dest = g_variant_get_fixed_array (dest_var, &dest_len, 1);
if (dest_len != 16) {
g_warning ("%s: ignoring invalid IP6 address of length %d",
__func__, (int) dest_len);
goto next;
}
next_hop = g_variant_get_fixed_array (next_hop_var, &next_hop_len, 1);
if (next_hop_len != 16) {
g_warning ("%s: ignoring invalid IP6 address of length %d",
__func__, (int) next_hop_len);
goto next;
}
route = nm_ip_route_new_binary (AF_INET6, dest, prefix, next_hop,
metric ? (gint64) metric : -1,
&error);
if (route)
g_ptr_array_add (routes, route);
else {
g_warning ("Ignoring invalid IP6 route: %s", error->message);
g_clear_error (&error);
}
next:
g_variant_unref (dest_var);
g_variant_unref (next_hop_var);
}
return routes;
}
/**
* nm_utils_ip_addresses_to_variant:
* @addresses: (element-type NMIPAddress): an array of #NMIPAddress objects
*
* Utility function to convert a #GPtrArray of #NMIPAddress objects representing
* IPv4 or IPv6 addresses into a #GVariant of type 'aa{sv}' representing an
* array of new-style NetworkManager IP addresses. All addresses will include
* "address" (an IP address string), and "prefix" (a uint). Some addresses may
* include additional attributes.
*
* Returns: (transfer none): a new floating #GVariant representing @addresses.
**/
GVariant *
nm_utils_ip_addresses_to_variant (GPtrArray *addresses)
{
GVariantBuilder builder;
guint i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("aa{sv}"));
if (addresses) {
for (i = 0; i < addresses->len; i++) {
NMIPAddress *addr = addresses->pdata[i];
GVariantBuilder addr_builder;
gs_free const char **names = NULL;
guint j, len;
g_variant_builder_init (&addr_builder, G_VARIANT_TYPE ("a{sv}"));
g_variant_builder_add (&addr_builder, "{sv}",
"address",
g_variant_new_string (nm_ip_address_get_address (addr)));
g_variant_builder_add (&addr_builder, "{sv}",
"prefix",
g_variant_new_uint32 (nm_ip_address_get_prefix (addr)));
names = _nm_ip_address_get_attribute_names (addr, TRUE, &len);
for (j = 0; j < len; j++) {
g_variant_builder_add (&addr_builder, "{sv}",
names[j],
nm_ip_address_get_attribute (addr, names[j]));
}
g_variant_builder_add (&builder, "a{sv}", &addr_builder);
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip_addresses_from_variant:
* @value: a #GVariant of type 'aa{sv}'
* @family: an IP address family
*
* Utility function to convert a #GVariant representing a list of new-style
* NetworkManager IPv4 or IPv6 addresses (as described in the documentation for
* nm_utils_ip_addresses_to_variant()) into a #GPtrArray of #NMIPAddress
* objects.
*
* Returns: (transfer full) (element-type NMIPAddress): a newly allocated
* #GPtrArray of #NMIPAddress objects
**/
GPtrArray *
nm_utils_ip_addresses_from_variant (GVariant *value,
int family)
{
GPtrArray *addresses;
GVariantIter iter, attrs_iter;
GVariant *addr_var;
const char *ip;
guint32 prefix;
const char *attr_name;
GVariant *attr_val;
NMIPAddress *addr;
GError *error = NULL;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aa{sv}")), NULL);
g_variant_iter_init (&iter, value);
addresses = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_address_unref);
while (g_variant_iter_next (&iter, "@a{sv}", &addr_var)) {
if ( !g_variant_lookup (addr_var, "address", "&s", &ip)
|| !g_variant_lookup (addr_var, "prefix", "u", &prefix)) {
g_warning ("Ignoring invalid address");
g_variant_unref (addr_var);
continue;
}
addr = nm_ip_address_new (family, ip, prefix, &error);
if (!addr) {
g_warning ("Ignoring invalid address: %s", error->message);
g_clear_error (&error);
g_variant_unref (addr_var);
continue;
}
g_variant_iter_init (&attrs_iter, addr_var);
while (g_variant_iter_next (&attrs_iter, "{&sv}", &attr_name, &attr_val)) {
if (!NM_IN_STRSET (attr_name, "address",
"prefix"))
nm_ip_address_set_attribute (addr, attr_name, attr_val);
g_variant_unref (attr_val);
}
g_variant_unref (addr_var);
g_ptr_array_add (addresses, addr);
}
return addresses;
}
/**
* nm_utils_ip_routes_to_variant:
* @routes: (element-type NMIPRoute): an array of #NMIPRoute objects
*
* Utility function to convert a #GPtrArray of #NMIPRoute objects representing
* IPv4 or IPv6 routes into a #GVariant of type 'aa{sv}' representing an array
* of new-style NetworkManager IP routes (which are tuples of destination,
* prefix, next hop, metric, and additional attributes).
*
* Returns: (transfer none): a new floating #GVariant representing @routes.
**/
GVariant *
nm_utils_ip_routes_to_variant (GPtrArray *routes)
{
GVariantBuilder builder;
int i;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("aa{sv}"));
if (routes) {
for (i = 0; i < routes->len; i++) {
NMIPRoute *route = routes->pdata[i];
GVariantBuilder route_builder;
gs_free const char **names = NULL;
guint j, len;
g_variant_builder_init (&route_builder, G_VARIANT_TYPE ("a{sv}"));
g_variant_builder_add (&route_builder, "{sv}",
"dest",
g_variant_new_string (nm_ip_route_get_dest (route)));
g_variant_builder_add (&route_builder, "{sv}",
"prefix",
g_variant_new_uint32 (nm_ip_route_get_prefix (route)));
if (nm_ip_route_get_next_hop (route)) {
g_variant_builder_add (&route_builder, "{sv}",
"next-hop",
g_variant_new_string (nm_ip_route_get_next_hop (route)));
}
if (nm_ip_route_get_metric (route) != -1) {
g_variant_builder_add (&route_builder, "{sv}",
"metric",
g_variant_new_uint32 ((guint32) nm_ip_route_get_metric (route)));
}
names = _nm_ip_route_get_attribute_names (route, TRUE, &len);
for (j = 0; j < len; j++) {
g_variant_builder_add (&route_builder, "{sv}",
names[j],
nm_ip_route_get_attribute (route, names[j]));
}
g_variant_builder_add (&builder, "a{sv}", &route_builder);
}
}
return g_variant_builder_end (&builder);
}
/**
* nm_utils_ip_routes_from_variant:
* @value: a #GVariant of type 'aa{sv}'
* @family: an IP address family
*
* Utility function to convert a #GVariant representing a list of new-style
* NetworkManager IPv4 or IPv6 addresses (which are tuples of destination,
* prefix, next hop, metric, and additional attributes) into a #GPtrArray of
* #NMIPRoute objects.
*
* Returns: (transfer full) (element-type NMIPRoute): a newly allocated
* #GPtrArray of #NMIPRoute objects
**/
GPtrArray *
nm_utils_ip_routes_from_variant (GVariant *value,
int family)
{
GPtrArray *routes;
GVariantIter iter, attrs_iter;
GVariant *route_var;
const char *dest, *next_hop;
guint32 prefix, metric32;
gint64 metric;
const char *attr_name;
GVariant *attr_val;
NMIPRoute *route;
GError *error = NULL;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aa{sv}")), NULL);
g_variant_iter_init (&iter, value);
routes = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip_route_unref);
while (g_variant_iter_next (&iter, "@a{sv}", &route_var)) {
if ( !g_variant_lookup (route_var, "dest", "&s", &dest)
|| !g_variant_lookup (route_var, "prefix", "u", &prefix)) {
g_warning ("Ignoring invalid address");
goto next;
}
if (!g_variant_lookup (route_var, "next-hop", "&s", &next_hop))
next_hop = NULL;
if (g_variant_lookup (route_var, "metric", "u", &metric32))
metric = metric32;
else
metric = -1;
route = nm_ip_route_new (family, dest, prefix, next_hop, metric, &error);
if (!route) {
g_warning ("Ignoring invalid route: %s", error->message);
g_clear_error (&error);
goto next;
}
g_variant_iter_init (&attrs_iter, route_var);
while (g_variant_iter_next (&attrs_iter, "{&sv}", &attr_name, &attr_val)) {
if (!NM_IN_STRSET (attr_name, "dest",
"prefix",
"next-hop",
"metric"))
nm_ip_route_set_attribute (route, attr_name, attr_val);
g_variant_unref (attr_val);
}
g_ptr_array_add (routes, route);
next:
g_variant_unref (route_var);
}
return routes;
}
/*****************************************************************************/
static void
_string_append_tc_handle (GString *string, guint32 handle)
{
g_string_append_printf (string, "%x:", TC_H_MAJ (handle) >> 16);
if (TC_H_MIN (handle) != TC_H_UNSPEC)
g_string_append_printf (string, "%x", TC_H_MIN (handle));
}
/**
* _nm_utils_string_append_tc_parent:
* @string: the string to write the parent handle to
* @prefix: optional prefix for the numeric handle
* @parent: the parent handle
*
* This is used to either write out the parent handle to the tc qdisc string
* or to pretty-format (use symbolic name for root) the key in keyfile.
* The presence of prefix determines which one is the case.
*
* Private API due to general ugliness and overall uselessness for anything
* sensible.
*/
void
_nm_utils_string_append_tc_parent (GString *string, const char *prefix, guint32 parent)
{
if (parent == TC_H_ROOT) {
g_string_append (string, "root");
} else {
if (prefix) {
if (parent == TC_H_INGRESS)
return;
g_string_append_printf (string, "%s ", prefix);
}
_string_append_tc_handle (string, parent);
}
if (prefix)
g_string_append_c (string, ' ');
}
/**
* _nm_utils_parse_tc_handle:
* @str: the string representation of a qdisc handle
* @error: location of the error
*
* Parses tc style handle number into a numeric representation.
* Don't use this, use nm_utils_tc_qdisc_from_str() instead.
*/
guint32
_nm_utils_parse_tc_handle (const char *str, GError **error)
{
gint64 maj;
gint64 min = 0;
const char *sep;
nm_assert (str);
maj = nm_g_ascii_strtoll (str, (char **) &sep, 0x10);
if (sep == str)
goto fail;
sep = nm_str_skip_leading_spaces (sep);
if (sep[0] == ':') {
const char *str2 = &sep[1];
min = nm_g_ascii_strtoll (str2, (char **) &sep, 0x10);
sep = nm_str_skip_leading_spaces (sep);
if (sep[0] != '\0')
goto fail;
} else if (sep[0] != '\0')
goto fail;
if ( maj <= 0
|| maj > 0xffff
|| min < 0
|| min > 0xffff
|| !NM_STRCHAR_ALL (str, ch, ( g_ascii_isxdigit (ch)
|| ch == ':'
|| g_ascii_isspace (ch)))) {
goto fail;
}
return TC_H_MAKE (((guint32) maj) << 16, (guint32) min);
fail:
nm_utils_error_set (error, NM_UTILS_ERROR_UNKNOWN, _("'%s' is not a valid handle."), str);
return TC_H_UNSPEC;
}
static const NMVariantAttributeSpec *const tc_object_attribute_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("root", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("parent", G_VARIANT_TYPE_STRING, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("handle", G_VARIANT_TYPE_STRING, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("kind", G_VARIANT_TYPE_STRING, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("", G_VARIANT_TYPE_STRING, .no_value = TRUE, .consumes_rest = TRUE, ),
NULL,
};
static const NMVariantAttributeSpec *const tc_qdisc_sfq_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("quantum", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("perturb", G_VARIANT_TYPE_INT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("limit", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("divisor", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("flows", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("depth", G_VARIANT_TYPE_UINT32, ),
NULL,
};
static const NMVariantAttributeSpec *const tc_qdisc_tbf_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("rate", G_VARIANT_TYPE_UINT64, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("burst", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("limit", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("latency", G_VARIANT_TYPE_UINT32, ),
NULL,
};
static const NMVariantAttributeSpec *const tc_qdisc_fq_codel_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("limit", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("flows", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("target", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("interval", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("quantum", G_VARIANT_TYPE_UINT32, ),
/* 0x83126E97u is not a valid value (it means "disabled"). We should reject that
* value. Or alternatively, reject all values >= MAX_INT(32). */
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("ce_threshold", G_VARIANT_TYPE_UINT32, ),
/* kernel clamps the value at 2^31. Possibly such values should be rejected from configuration
* as they cannot be configured. Leaving the attribute unspecified causes kernel to choose
* a default (currently 32MB). */
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("memory_limit", G_VARIANT_TYPE_UINT32, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("ecn", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NULL,
};
typedef struct {
const char *kind;
const NMVariantAttributeSpec *const *attrs;
} NMQdiscAttributeSpec;
static const NMQdiscAttributeSpec *const tc_qdisc_attribute_spec[] = {
&(const NMQdiscAttributeSpec) { "fq_codel", tc_qdisc_fq_codel_spec },
&(const NMQdiscAttributeSpec) { "sfq", tc_qdisc_sfq_spec },
&(const NMQdiscAttributeSpec) { "tbf", tc_qdisc_tbf_spec },
NULL,
};
/*****************************************************************************/
/**
* _nm_utils_string_append_tc_qdisc_rest:
* @string: the string to write the formatted qdisc to
* @qdisc: the %NMTCQdisc
*
* This formats the rest of the qdisc string but the parent. Useful to format
* the keyfile value and nowhere else.
* Use nm_utils_tc_qdisc_to_str() that also includes the parent instead.
*/
void
_nm_utils_string_append_tc_qdisc_rest (GString *string, NMTCQdisc *qdisc)
{
guint32 handle = nm_tc_qdisc_get_handle (qdisc);
const char *kind = nm_tc_qdisc_get_kind (qdisc);
gs_free char *str = NULL;
if ( handle != TC_H_UNSPEC
&& !NM_IN_STRSET (kind, "ingress", "clsact")) {
g_string_append (string, "handle ");
_string_append_tc_handle (string, handle);
g_string_append_c (string, ' ');
}
g_string_append (string, kind);
str = nm_utils_format_variant_attributes (_nm_tc_qdisc_get_attributes (qdisc),
' ', ' ');
if (str) {
g_string_append_c (string, ' ');
g_string_append (string, str);
}
}
/**
* nm_utils_tc_qdisc_to_str:
* @qdisc: the %NMTCQdisc
* @error: location of the error
*
* Turns the %NMTCQdisc into a tc style string representation of the queueing
* discipline.
*
* Returns: formatted string or %NULL
*
* Since: 1.12
*/
char *
nm_utils_tc_qdisc_to_str (NMTCQdisc *qdisc, GError **error)
{
GString *string;
string = g_string_sized_new (60);
_nm_utils_string_append_tc_parent (string, "parent",
nm_tc_qdisc_get_parent (qdisc));
_nm_utils_string_append_tc_qdisc_rest (string, qdisc);
return g_string_free (string, FALSE);
}
static gboolean
_tc_read_common_opts (const char *str,
guint32 *handle,
guint32 *parent,
char **kind,
char **rest,
GError **error)
{
gs_unref_hashtable GHashTable *ht = NULL;
GVariant *variant;
ht = nm_utils_parse_variant_attributes (str,
' ', ' ', FALSE,
tc_object_attribute_spec,
error);
if (!ht)
return FALSE;
if (g_hash_table_contains (ht, "root"))
*parent = TC_H_ROOT;
variant = g_hash_table_lookup (ht, "parent");
if (variant) {
if (*parent != TC_H_UNSPEC) {
g_set_error (error, 1, 0,
_("'%s' unexpected: parent already specified."),
g_variant_get_string (variant, NULL));
return FALSE;
}
*parent = _nm_utils_parse_tc_handle (g_variant_get_string (variant, NULL), error);
if (*parent == TC_H_UNSPEC)
return FALSE;
}
variant = g_hash_table_lookup (ht, "handle");
if (variant) {
*handle = _nm_utils_parse_tc_handle (g_variant_get_string (variant, NULL), error);
if (*handle == TC_H_UNSPEC)
return FALSE;
if (TC_H_MIN (*handle)) {
g_set_error (error, 1, 0,
_("invalid handle: '%s'"),
g_variant_get_string (variant, NULL));
return FALSE;
}
}
variant = g_hash_table_lookup (ht, "kind");
if (variant) {
*kind = g_variant_dup_string (variant, NULL);
if (NM_IN_STRSET (*kind, "ingress", "clsact")) {
if (*parent == TC_H_UNSPEC)
*parent = TC_H_INGRESS;
if (*handle == TC_H_UNSPEC)
*handle = TC_H_MAKE (TC_H_INGRESS, 0);
}
}
if (*parent == TC_H_UNSPEC) {
if (*kind) {
g_free (*kind);
*kind = NULL;
}
g_set_error_literal (error, 1, 0, _("parent not specified."));
return FALSE;
}
variant = g_hash_table_lookup (ht, "");
if (variant)
*rest = g_variant_dup_string (variant, NULL);
return TRUE;
}
/**
* nm_utils_tc_qdisc_from_str:
* @str: the string representation of a qdisc
* @error: location of the error
*
* Parses the tc style string qdisc representation of the queueing
* discipline to a %NMTCQdisc instance. Supports a subset of the tc language.
*
* Returns: the %NMTCQdisc or %NULL
*
* Since: 1.12
*/
NMTCQdisc *
nm_utils_tc_qdisc_from_str (const char *str, GError **error)
{
guint32 handle = TC_H_UNSPEC;
guint32 parent = TC_H_UNSPEC;
gs_free char *kind = NULL;
gs_free char *rest = NULL;
NMTCQdisc *qdisc = NULL;
gs_unref_hashtable GHashTable *options = NULL;
GHashTableIter iter;
gpointer key, value;
guint i;
nm_assert (str);
nm_assert (!error || !*error);
if (!_tc_read_common_opts (str, &handle, &parent, &kind, &rest, error))
return NULL;
for (i = 0; rest && tc_qdisc_attribute_spec[i]; i++) {
if (nm_streq (tc_qdisc_attribute_spec[i]->kind, kind)) {
options = nm_utils_parse_variant_attributes (rest,
' ', ' ', FALSE,
tc_qdisc_attribute_spec[i]->attrs,
error);
if (!options)
return NULL;
break;
}
}
nm_clear_g_free (&rest);
if (options) {
value = g_hash_table_lookup (options, "");
if (value)
rest = g_variant_dup_string (value, NULL);
}
if (rest) {
g_set_error (error, 1, 0, _("unsupported qdisc option: '%s'."), rest);
return NULL;
}
qdisc = nm_tc_qdisc_new (kind, parent, error);
if (!qdisc)
return NULL;
nm_tc_qdisc_set_handle (qdisc, handle);
if (options) {
g_hash_table_iter_init (&iter, options);
while (g_hash_table_iter_next (&iter, &key, &value))
nm_tc_qdisc_set_attribute (qdisc, key, g_variant_ref_sink (value));
}
return qdisc;
}
/*****************************************************************************/
static const NMVariantAttributeSpec *const tc_action_simple_attribute_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("sdata", G_VARIANT_TYPE_BYTESTRING, ),
NULL,
};
static const NMVariantAttributeSpec *const tc_action_mirred_attribute_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("egress", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("ingress", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("mirror", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("redirect", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("dev", G_VARIANT_TYPE_STRING, ),
NULL,
};
static const NMVariantAttributeSpec *const tc_action_attribute_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("kind", G_VARIANT_TYPE_STRING, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("", G_VARIANT_TYPE_STRING, .no_value = TRUE, .consumes_rest = TRUE, ),
NULL,
};
static gboolean
_string_append_tc_action (GString *string, NMTCAction *action, GError **error)
{
const char *kind = nm_tc_action_get_kind (action);
gs_free char *str = NULL;
const NMVariantAttributeSpec *const *attrs;
if (nm_streq (kind, "simple"))
attrs = tc_action_simple_attribute_spec;
else if (nm_streq (kind, "mirred"))
attrs = tc_action_mirred_attribute_spec;
else
attrs = NULL;
g_string_append (string, kind);
str = _nm_utils_format_variant_attributes (_nm_tc_action_get_attributes (action),
attrs,
' ', ' ');
if (str) {
g_string_append_c (string, ' ');
g_string_append (string, str);
}
return TRUE;
}
/**
* nm_utils_tc_action_to_str:
* @action: the %NMTCAction
* @error: location of the error
*
* Turns the %NMTCAction into a tc style string representation of the queueing
* discipline.
*
* Returns: formatted string or %NULL
*
* Since: 1.12
*/
char *
nm_utils_tc_action_to_str (NMTCAction *action, GError **error)
{
GString *string;
string = g_string_sized_new (60);
if (!_string_append_tc_action (string, action, error)) {
g_string_free (string, TRUE);
return NULL;
}
return g_string_free (string, FALSE);
}
/**
* nm_utils_tc_action_from_str:
* @str: the string representation of a action
* @error: location of the error
*
* Parses the tc style string action representation of the queueing
* discipline to a %NMTCAction instance. Supports a subset of the tc language.
*
* Returns: the %NMTCAction or %NULL
*
* Since: 1.12
*/
NMTCAction *
nm_utils_tc_action_from_str (const char *str, GError **error)
{
const char *kind = NULL;
const char *rest = NULL;
NMTCAction *action = NULL;
gs_unref_hashtable GHashTable *ht = NULL;
gs_unref_hashtable GHashTable *options = NULL;
GVariant *variant;
const NMVariantAttributeSpec *const *attrs;
nm_assert (str);
nm_assert (!error || !*error);
ht = nm_utils_parse_variant_attributes (str,
' ', ' ', FALSE,
tc_action_attribute_spec,
error);
if (!ht)
return FALSE;
variant = g_hash_table_lookup (ht, "kind");
if (variant) {
kind = g_variant_get_string (variant, NULL);
} else {
g_set_error_literal (error, 1, 0, _("action name missing."));
return NULL;
}
kind = g_variant_get_string (variant, NULL);
if (nm_streq (kind, "simple"))
attrs = tc_action_simple_attribute_spec;
else if (nm_streq (kind, "mirred"))
attrs = tc_action_mirred_attribute_spec;
else
attrs = NULL;
variant = g_hash_table_lookup (ht, "");
if (variant)
rest = g_variant_get_string (variant, NULL);
action = nm_tc_action_new (kind, error);
if (!action)
return NULL;
if (rest) {
GHashTableIter iter;
gpointer key, value;
if (!attrs) {
nm_tc_action_unref (action);
g_set_error (error, 1, 0, _("unsupported action option: '%s'."), rest);
return NULL;
}
options = nm_utils_parse_variant_attributes (rest,
' ', ' ', FALSE,
attrs,
error);
if (!options) {
nm_tc_action_unref (action);
return NULL;
}
g_hash_table_iter_init (&iter, options);
while (g_hash_table_iter_next (&iter, &key, &value))
nm_tc_action_set_attribute (action, key, g_variant_ref_sink (value));
}
return action;
}
/*****************************************************************************/
/**
* _nm_utils_string_append_tc_tfilter_rest:
* @string: the string to write the formatted tfilter to
* @tfilter: the %NMTCTfilter
*
* This formats the rest of the tfilter string but the parent. Useful to format
* the keyfile value and nowhere else.
* Use nm_utils_tc_tfilter_to_str() that also includes the parent instead.
*/
gboolean
_nm_utils_string_append_tc_tfilter_rest (GString *string, NMTCTfilter *tfilter, GError **error)
{
guint32 handle = nm_tc_tfilter_get_handle (tfilter);
const char *kind = nm_tc_tfilter_get_kind (tfilter);
NMTCAction *action;
if (handle != TC_H_UNSPEC) {
g_string_append (string, "handle ");
_string_append_tc_handle (string, handle);
g_string_append_c (string, ' ');
}
g_string_append (string, kind);
action = nm_tc_tfilter_get_action (tfilter);
if (action) {
g_string_append (string, " action ");
if (!_string_append_tc_action (string, action, error))
return FALSE;
}
return TRUE;
}
/**
* nm_utils_tc_tfilter_to_str:
* @tfilter: the %NMTCTfilter
* @error: location of the error
*
* Turns the %NMTCTfilter into a tc style string representation of the queueing
* discipline.
*
* Returns: formatted string or %NULL
*
* Since: 1.12
*/
char *
nm_utils_tc_tfilter_to_str (NMTCTfilter *tfilter, GError **error)
{
GString *string;
string = g_string_sized_new (60);
_nm_utils_string_append_tc_parent (string, "parent",
nm_tc_tfilter_get_parent (tfilter));
if (!_nm_utils_string_append_tc_tfilter_rest (string, tfilter, error)) {
g_string_free (string, TRUE);
return NULL;
}
return g_string_free (string, FALSE);
}
static const NMVariantAttributeSpec *const tc_tfilter_attribute_spec[] = {
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("action", G_VARIANT_TYPE_BOOLEAN, .no_value = TRUE, ),
NM_VARIANT_ATTRIBUTE_SPEC_DEFINE ("", G_VARIANT_TYPE_STRING, .no_value = TRUE, .consumes_rest = TRUE, ),
NULL,
};
/**
* nm_utils_tc_tfilter_from_str:
* @str: the string representation of a tfilter
* @error: location of the error
*
* Parses the tc style string tfilter representation of the queueing
* discipline to a %NMTCTfilter instance. Supports a subset of the tc language.
*
* Returns: the %NMTCTfilter or %NULL
*
* Since: 1.12
*/
NMTCTfilter *
nm_utils_tc_tfilter_from_str (const char *str, GError **error)
{
guint32 handle = TC_H_UNSPEC;
guint32 parent = TC_H_UNSPEC;
gs_free char *kind = NULL;
gs_free char *rest = NULL;
NMTCAction *action = NULL;
const char *extra_opts = NULL;
NMTCTfilter *tfilter = NULL;
gs_unref_hashtable GHashTable *ht = NULL;
GVariant *variant;
nm_assert (str);
nm_assert (!error || !*error);
if (!_tc_read_common_opts (str, &handle, &parent, &kind, &rest, error))
return NULL;
if (rest) {
ht = nm_utils_parse_variant_attributes (rest,
' ', ' ', FALSE,
tc_tfilter_attribute_spec,
error);
if (!ht)
return NULL;
variant = g_hash_table_lookup (ht, "");
if (variant)
extra_opts = g_variant_get_string (variant, NULL);
if (g_hash_table_contains (ht, "action")) {
action = nm_utils_tc_action_from_str (extra_opts, error);
if (!action) {
g_prefix_error (error, _("invalid action: "));
return NULL;
}
} else {
g_set_error (error, 1, 0, _("unsupported tfilter option: '%s'."), rest);
return NULL;
}
}
tfilter = nm_tc_tfilter_new (kind, parent, error);
if (!tfilter)
return NULL;
nm_tc_tfilter_set_handle (tfilter, handle);
if (action) {
nm_tc_tfilter_set_action (tfilter, action);
nm_tc_action_unref (action);
}
return tfilter;
}
/*****************************************************************************/
extern const NMVariantAttributeSpec *const _nm_sriov_vf_attribute_spec[];
/**
* nm_utils_sriov_vf_to_str:
* @vf: the %NMSriovVF
* @omit_index: if %TRUE, the VF index will be omitted from output string
* @error: (out) (allow-none): location to store the error on failure
*
* Converts a SR-IOV virtual function object to its string representation.
*
* Returns: a newly allocated string or %NULL on error
*
* Since: 1.14
*/
char *
nm_utils_sriov_vf_to_str (const NMSriovVF *vf, gboolean omit_index, GError **error)
{
gs_free NMUtilsNamedValue *values = NULL;
gs_free const char **names = NULL;
const guint *vlan_ids;
guint num_vlans, num_attrs;
guint i;
GString *str;
str = g_string_new ("");
if (!omit_index)
g_string_append_printf (str, "%u", nm_sriov_vf_get_index (vf));
names = nm_sriov_vf_get_attribute_names (vf);
num_attrs = names ? g_strv_length ((char **) names) : 0;
values = g_new0 (NMUtilsNamedValue, num_attrs);
for (i = 0; i < num_attrs; i++) {
values[i].name = names[i];
values[i].value_ptr = nm_sriov_vf_get_attribute (vf, names[i]);
}
if (num_attrs > 0) {
if (!omit_index)
g_string_append_c (str, ' ');
_nm_utils_format_variant_attributes_full (str, values, num_attrs, NULL, ' ', '=');
}
vlan_ids = nm_sriov_vf_get_vlan_ids (vf, &num_vlans);
if (num_vlans != 0) {
g_string_append (str, " vlans");
for (i = 0; i < num_vlans; i++) {
guint32 qos;
NMSriovVFVlanProtocol protocol;
qos = nm_sriov_vf_get_vlan_qos (vf, vlan_ids[i]);
protocol = nm_sriov_vf_get_vlan_protocol (vf, vlan_ids[i]);
g_string_append_c (str, i == 0 ? '=' : ';');
g_string_append_printf (str, "%u", vlan_ids[i]);
if ( qos != 0
|| protocol != NM_SRIOV_VF_VLAN_PROTOCOL_802_1Q) {
g_string_append_printf (str,
".%u%s",
(unsigned) qos,
protocol == NM_SRIOV_VF_VLAN_PROTOCOL_802_1Q ? "" : ".ad");
}
}
}
return g_string_free (str, FALSE);
}
gboolean
_nm_sriov_vf_parse_vlans (NMSriovVF *vf, const char *str, GError **error)
{
gs_free const char **vlans = NULL;
guint i;
vlans = nm_utils_strsplit_set (str, ";");
if (!vlans) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"empty VF VLAN");
return FALSE;
}
for (i = 0; vlans[i]; i++) {
gs_strfreev char **params = NULL;
guint id = G_MAXUINT;
gint64 qos = -1;
/* we accept leading/trailing whitespace around vlans[1]. Hence
* the nm_str_skip_leading_spaces() and g_strchomp() below.
*
* However, we don't accept any whitespace inside the specifier.
* Hence the NM_STRCHAR_ALL() checks. */
params = g_strsplit (nm_str_skip_leading_spaces (vlans[i]), ".", 3);
if (!params || !params[0] || *params[0] == '\0') {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"empty VF VLAN");
return FALSE;
}
if (!params[1])
g_strchomp (params[0]);
if (NM_STRCHAR_ALL (params[0], ch, ch == 'x' || g_ascii_isdigit (ch)))
id = _nm_utils_ascii_str_to_int64 (params[0], 0, 0, 4095, G_MAXUINT);
if (id == G_MAXUINT) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"invalid VF VLAN id '%s'",
params[0]);
return FALSE;
}
if (!nm_sriov_vf_add_vlan (vf, id)) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"duplicate VLAN id %u",
id);
return FALSE;
}
if (!params[1])
continue;
if (!params[2])
g_strchomp (params[1]);
if (NM_STRCHAR_ALL (params[1], ch, ch == 'x' || g_ascii_isdigit (ch)))
qos = _nm_utils_ascii_str_to_int64 (params[1], 0, 0, G_MAXUINT32, -1);
if (qos == -1) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"invalid VF VLAN QoS '%s'",
params[1]);
return FALSE;
}
nm_sriov_vf_set_vlan_qos (vf, id, qos);
if (!params[2])
continue;
g_strchomp (params[2]);
if (nm_streq (params[2], "ad"))
nm_sriov_vf_set_vlan_protocol (vf, id, NM_SRIOV_VF_VLAN_PROTOCOL_802_1AD);
else if (nm_streq (params[2], "q"))
nm_sriov_vf_set_vlan_protocol (vf, id, NM_SRIOV_VF_VLAN_PROTOCOL_802_1Q);
else {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"invalid VF VLAN protocol '%s'",
params[2]);
return FALSE;
}
}
return TRUE;
}
/**
* nm_utils_sriov_vf_from_str:
* @str: the input string
* @error: (out) (allow-none): location to store the error on failure
*
* Converts a string to a SR-IOV virtual function object.
*
* Returns: (transfer full): the virtual function object
*
* Since: 1.14
*/
NMSriovVF *
nm_utils_sriov_vf_from_str (const char *str, GError **error)
{
gs_free char *index_free = NULL;
const char *detail;
g_return_val_if_fail (str, NULL);
g_return_val_if_fail (!error || !*error, NULL);
while (*str == ' ')
str++;
detail = strchr (str, ' ');
if (detail) {
str = nm_strndup_a (200, str, detail - str, &index_free);
detail++;
}
return _nm_utils_sriov_vf_from_strparts (str, detail, FALSE, error);
}
NMSriovVF *
_nm_utils_sriov_vf_from_strparts (const char *index,
const char *detail,
gboolean ignore_unknown,
GError **error)
{
NMSriovVF *vf;
guint32 n_index;
GHashTableIter iter;
char *key;
GVariant *variant;
gs_unref_hashtable GHashTable *ht = NULL;
n_index = _nm_utils_ascii_str_to_int64 (index, 10, 0, G_MAXUINT32, 0);
if (errno) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
"invalid index");
return NULL;
}
vf = nm_sriov_vf_new (n_index);
if (detail) {
ht = nm_utils_parse_variant_attributes (detail,
' ',
'=',
ignore_unknown,
_nm_sriov_vf_attribute_spec,
error);
if (!ht) {
nm_sriov_vf_unref (vf);
return NULL;
}
if ((variant = g_hash_table_lookup (ht, "vlans"))) {
if (!_nm_sriov_vf_parse_vlans (vf, g_variant_get_string (variant, NULL), error)) {
nm_sriov_vf_unref (vf);
return NULL;
}
g_hash_table_remove (ht, "vlans");
}
g_hash_table_iter_init (&iter, ht);
while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &variant))
nm_sriov_vf_set_attribute (vf, key, g_variant_ref_sink (variant));
}
return vf;
}
/*****************************************************************************/
NMUuid *
_nm_utils_uuid_parse (const char *str,
NMUuid *out_uuid)
{
nm_assert (str);
nm_assert (out_uuid);
if (uuid_parse (str, out_uuid->uuid) != 0)
return NULL;
return out_uuid;
}
char *
_nm_utils_uuid_unparse (const NMUuid *uuid,
char *out_str /*[37]*/)
{
nm_assert (uuid);
if (!out_str) {
/* for convenience, allow %NULL to indicate that a new
* string should be allocated. */
out_str = g_malloc (37);
}
uuid_unparse_lower (uuid->uuid, out_str);
return out_str;
}
NMUuid *
_nm_utils_uuid_generate_random (NMUuid *out_uuid)
{
nm_assert (out_uuid);
uuid_generate_random (out_uuid->uuid);
return out_uuid;
}
gboolean
nm_utils_uuid_is_null (const NMUuid *uuid)
{
int i;
if (!uuid)
return TRUE;
for (i = 0; i < G_N_ELEMENTS (uuid->uuid); i++) {
if (uuid->uuid[i])
return FALSE;
}
return TRUE;
}
/**
* nm_utils_uuid_generate_buf_:
* @buf: input buffer, must contain at least 37 bytes
*
* Returns: generates a new random UUID, writes it to @buf and returns @buf.
**/
char *
nm_utils_uuid_generate_buf_ (char *buf)
{
NMUuid uuid;
nm_assert (buf);
_nm_utils_uuid_generate_random (&uuid);
return _nm_utils_uuid_unparse (&uuid, buf);
}
/**
* nm_utils_uuid_generate:
*
* Returns: a newly allocated UUID suitable for use as the #NMSettingConnection
* object's #NMSettingConnection:id: property. Should be freed with g_free()
**/
char *
nm_utils_uuid_generate (void)
{
return nm_utils_uuid_generate_buf_ (g_malloc (37));
}
/**
* nm_utils_uuid_generate_from_string_bin:
* @uuid: the UUID to update inplace. This function cannot
* fail to succeed.
* @s: a string to use as the seed for the UUID
* @slen: if negative, treat @s as zero terminated C string.
* Otherwise, assume the length as given (and allow @s to be
* non-null terminated or contain '\0').
* @uuid_type: a type identifier which UUID format to generate.
* @type_args: additional arguments, depending on the uuid_type
*
* For a given @s, this function will always return the same UUID.
*
* Returns: the input @uuid. This function cannot fail.
**/
NMUuid *
nm_utils_uuid_generate_from_string_bin (NMUuid *uuid, const char *s, gssize slen, int uuid_type, gpointer type_args)
{
g_return_val_if_fail (uuid, FALSE);
g_return_val_if_fail (slen == 0 || s, FALSE);
if (slen < 0)
slen = s ? strlen (s) : 0;
switch (uuid_type) {
case NM_UTILS_UUID_TYPE_LEGACY:
g_return_val_if_fail (!type_args, NULL);
nm_crypto_md5_hash (NULL,
0,
(guint8 *) s,
slen,
(guint8 *) uuid,
sizeof (*uuid));
break;
case NM_UTILS_UUID_TYPE_VERSION3:
case NM_UTILS_UUID_TYPE_VERSION5: {
NMUuid ns_uuid = { };
if (type_args) {
/* type_args can be a name space UUID. Interpret it as (char *) */
if (!_nm_utils_uuid_parse (type_args, &ns_uuid))
g_return_val_if_reached (NULL);
}
if (uuid_type == NM_UTILS_UUID_TYPE_VERSION3) {
nm_crypto_md5_hash ((guint8 *) s,
slen,
(guint8 *) &ns_uuid,
sizeof (ns_uuid),
(guint8 *) uuid,
sizeof (*uuid));
} else {
nm_auto_free_checksum GChecksum *sum = NULL;
union {
guint8 sha1[NM_UTILS_CHECKSUM_LENGTH_SHA1];
NMUuid uuid;
} digest;
sum = g_checksum_new (G_CHECKSUM_SHA1);
g_checksum_update (sum, (guchar *) &ns_uuid, sizeof (ns_uuid));
g_checksum_update (sum, (guchar *) s, slen);
nm_utils_checksum_get_digest (sum, digest.sha1);
G_STATIC_ASSERT_EXPR (sizeof (digest.sha1) > sizeof (digest.uuid));
*uuid = digest.uuid;
}
uuid->uuid[6] = (uuid->uuid[6] & 0x0F) | (uuid_type << 4);
uuid->uuid[8] = (uuid->uuid[8] & 0x3F) | 0x80;
break;
}
default:
g_return_val_if_reached (NULL);
}
return uuid;
}
/**
* nm_utils_uuid_generate_from_string:
* @s: a string to use as the seed for the UUID
* @slen: if negative, treat @s as zero terminated C string.
* Otherwise, assume the length as given (and allow @s to be
* non-null terminated or contain '\0').
* @uuid_type: a type identifier which UUID format to generate.
* @type_args: additional arguments, depending on the uuid_type
*
* For a given @s, this function will always return the same UUID.
*
* Returns: a newly allocated UUID suitable for use as the #NMSettingConnection
* object's #NMSettingConnection:id: property
**/
char *
nm_utils_uuid_generate_from_string (const char *s, gssize slen, int uuid_type, gpointer type_args)
{
NMUuid uuid;
nm_utils_uuid_generate_from_string_bin (&uuid, s, slen, uuid_type, type_args);
return _nm_utils_uuid_unparse (&uuid, NULL);
}
/**
* _nm_utils_uuid_generate_from_strings:
* @string1: a variadic list of strings. Must be NULL terminated.
*
* Returns a variant3 UUID based on the concatenated C strings.
* It does not simply concatenate them, but also includes the
* terminating '\0' character. For example "a", "b", gives
* "a\0b\0".
*
* This has the advantage, that the following invocations
* all give different UUIDs: (NULL), (""), ("",""), ("","a"), ("a",""),
* ("aa"), ("aa", ""), ("", "aa"), ...
*/
char *
_nm_utils_uuid_generate_from_strings (const char *string1, ...)
{
if (!string1)
return nm_utils_uuid_generate_from_string (NULL, 0, NM_UTILS_UUID_TYPE_VERSION3, NM_UTILS_UUID_NS);
{
nm_auto_str_buf NMStrBuf str = NM_STR_BUF_INIT (NM_UTILS_GET_NEXT_REALLOC_SIZE_104, FALSE);
va_list args;
const char *s;
nm_str_buf_append_len (&str, string1, strlen (string1) + 1u);
va_start (args, string1);
s = va_arg (args, const char *);
while (s) {
nm_str_buf_append_len (&str, s, strlen (s) + 1u);
s = va_arg (args, const char *);
}
va_end (args);
return nm_utils_uuid_generate_from_string (nm_str_buf_get_str_unsafe (&str),
str.len,
NM_UTILS_UUID_TYPE_VERSION3,
NM_UTILS_UUID_NS);
}
}
/*****************************************************************************/
static gboolean
file_has_extension (const char *filename, const char *extensions[])
{
const char *ext;
int i;
ext = strrchr (filename, '.');
if (!ext)
return FALSE;
for (i = 0; extensions[i]; i++) {
if (!g_ascii_strcasecmp (ext, extensions[i]))
return TRUE;
}
return FALSE;
}
/**
* nm_utils_file_is_certificate:
* @filename: name of the file to test
*
* Tests if @filename has a valid extension for an X.509 certificate file
* (".cer", ".crt", ".der", or ".pem"), and contains a certificate in a format
* recognized by NetworkManager.
*
* Returns: %TRUE if the file is a certificate, %FALSE if it is not
**/
gboolean
nm_utils_file_is_certificate (const char *filename)
{
const char *extensions[] = { ".der", ".pem", ".crt", ".cer", NULL };
NMCryptoFileFormat file_format;
g_return_val_if_fail (filename != NULL, FALSE);
if (!file_has_extension (filename, extensions))
return FALSE;
if (!nm_crypto_load_and_verify_certificate (filename, &file_format, NULL, NULL))
return FALSE;
return file_format = NM_CRYPTO_FILE_FORMAT_X509;
}
/**
* nm_utils_file_is_private_key:
* @filename: name of the file to test
* @out_encrypted: (out): on return, whether the file is encrypted
*
* Tests if @filename has a valid extension for an X.509 private key file
* (".der", ".key", ".pem", or ".p12"), and contains a private key in a format
* recognized by NetworkManager.
*
* Returns: %TRUE if the file is a private key, %FALSE if it is not
**/
gboolean
nm_utils_file_is_private_key (const char *filename, gboolean *out_encrypted)
{
const char *extensions[] = { ".der", ".pem", ".p12", ".key", NULL };
g_return_val_if_fail (filename != NULL, FALSE);
NM_SET_OUT (out_encrypted, FALSE);
if (!file_has_extension (filename, extensions))
return FALSE;
return nm_crypto_verify_private_key (filename, NULL, out_encrypted, NULL) != NM_CRYPTO_FILE_FORMAT_UNKNOWN;
}
/**
* nm_utils_file_is_pkcs12:
* @filename: name of the file to test
*
* Tests if @filename is a PKCS#<!-- -->12 file.
*
* Returns: %TRUE if the file is PKCS#<!-- -->12, %FALSE if it is not
**/
gboolean
nm_utils_file_is_pkcs12 (const char *filename)
{
g_return_val_if_fail (filename != NULL, FALSE);
return nm_crypto_is_pkcs12_file (filename, NULL);
}
/*****************************************************************************/
gboolean
_nm_utils_check_file (const char *filename,
gint64 check_owner,
NMUtilsCheckFilePredicate check_file,
gpointer user_data,
struct stat *out_st,
GError **error)
{
struct stat st_backup;
if (!out_st)
out_st = &st_backup;
if (stat (filename, out_st) != 0) {
int errsv = errno;
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("failed stat file %s: %s"), filename, nm_strerror_native (errsv));
return FALSE;
}
/* ignore non-files. */
if (!S_ISREG (out_st->st_mode)) {
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("not a file (%s)"), filename);
return FALSE;
}
/* with check_owner enabled, check that the file belongs to the
* owner or root. */
if ( check_owner >= 0
&& (out_st->st_uid != 0 && (gint64) out_st->st_uid != check_owner)) {
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("invalid file owner %d for %s"), out_st->st_uid, filename);
return FALSE;
}
/* with check_owner enabled, check that the file cannot be modified
* by other users (except root). */
if ( check_owner >= 0
&& NM_FLAGS_ANY (out_st->st_mode, S_IWGRP | S_IWOTH | S_ISUID)) {
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("file permissions for %s"), filename);
return FALSE;
}
if ( check_file
&& !check_file (filename, out_st, user_data, error)) {
if (error && !*error) {
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("reject %s"), filename);
}
return FALSE;
}
return TRUE;
}
gboolean
_nm_utils_check_module_file (const char *name,
int check_owner,
NMUtilsCheckFilePredicate check_file,
gpointer user_data,
GError **error)
{
if (!g_path_is_absolute (name)) {
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("path is not absolute (%s)"), name);
return FALSE;
}
/* Set special error code if the file doesn't exist.
* The VPN package might be split into separate packages,
* so it could be correct that the plugin file is missing.
*
* Note that nm-applet checks for this error code to fail
* gracefully. */
if (!g_file_test (name, G_FILE_TEST_EXISTS)) {
g_set_error (error,
G_FILE_ERROR,
G_FILE_ERROR_NOENT,
_("Plugin file does not exist (%s)"), name);
return FALSE;
}
if (!g_file_test (name, G_FILE_TEST_IS_REGULAR)) {
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("Plugin is not a valid file (%s)"), name);
return FALSE;
}
if (g_str_has_suffix (name, ".la")) {
/* g_module_open() treats files that end with .la special.
* We don't want to parse the libtool archive. Just error out. */
g_set_error (error,
NM_VPN_PLUGIN_ERROR,
NM_VPN_PLUGIN_ERROR_FAILED,
_("libtool archives are not supported (%s)"), name);
return FALSE;
}
return _nm_utils_check_file (name,
check_owner,
check_file,
user_data,
NULL,
error);
}
/*****************************************************************************/
/**
* nm_utils_file_search_in_paths:
* @progname: the helper program name, like "iptables"
* Must be a non-empty string, without path separator (/).
* @try_first: (allow-none): a custom path to try first before searching.
* It is silently ignored if it is empty or not an absolute path.
* @paths: (allow-none): a %NULL terminated list of search paths.
* Can be empty or %NULL, in which case only @try_first is checked.
* @file_test_flags: the flags passed to g_file_test() when searching
* for @progname. Set it to 0 to skip the g_file_test().
* @predicate: (scope call): if given, pass the file name to this function
* for additional checks. This check is performed after the check for
* @file_test_flags. You cannot omit both @file_test_flags and @predicate.
* @user_data: (closure) (allow-none): user data for @predicate function.
* @error: (allow-none): on failure, set a "not found" error %G_IO_ERROR %G_IO_ERROR_NOT_FOUND.
*
* Searches for a @progname file in a list of search @paths.
*
* Returns: (transfer none): the full path to the helper, if found, or %NULL if not found.
* The returned string is not owned by the caller, but later
* invocations of the function might overwrite it.
*/
const char *
nm_utils_file_search_in_paths (const char *progname,
const char *try_first,
const char *const *paths,
GFileTest file_test_flags,
NMUtilsFileSearchInPathsPredicate predicate,
gpointer user_data,
GError **error)
{
g_return_val_if_fail (!error || !*error, NULL);
g_return_val_if_fail (progname && progname[0] && !strchr (progname, '/'), NULL);
g_return_val_if_fail (file_test_flags || predicate, NULL);
/* Only consider @try_first if it is a valid, absolute path. This makes
* it simpler to pass in a path from configure checks. */
if ( try_first
&& try_first[0] == '/'
&& ( file_test_flags == 0
|| g_file_test (try_first, file_test_flags))
&& ( !predicate
|| predicate (try_first, user_data)))
return g_intern_string (try_first);
if ( paths
&& paths[0]) {
nm_auto_str_buf NMStrBuf strbuf = NM_STR_BUF_INIT (NM_UTILS_GET_NEXT_REALLOC_SIZE_104, FALSE);
for (; *paths; paths++) {
const char *path = *paths;
const char *s;
if (!path[0])
continue;
nm_str_buf_reset (&strbuf, path);
nm_str_buf_ensure_trailing_c (&strbuf, '/');
s = nm_str_buf_append0 (&strbuf, progname);
if ( ( file_test_flags == 0
|| g_file_test (s, file_test_flags))
&& ( !predicate
|| predicate (s, user_data)))
return g_intern_string (s);
}
}
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_FOUND, _("Could not find \"%s\" binary"), progname);
return NULL;
}
/*****************************************************************************/
/* Band, channel/frequency stuff for wireless */
struct cf_pair {
guint32 chan;
guint32 freq;
};
static const struct cf_pair a_table[] = {
/* A band */
{ 7, 5035 },
{ 8, 5040 },
{ 9, 5045 },
{ 11, 5055 },
{ 12, 5060 },
{ 16, 5080 },
{ 34, 5170 },
{ 36, 5180 },
{ 38, 5190 },
{ 40, 5200 },
{ 42, 5210 },
{ 44, 5220 },
{ 46, 5230 },
{ 48, 5240 },
{ 50, 5250 },
{ 52, 5260 },
{ 56, 5280 },
{ 58, 5290 },
{ 60, 5300 },
{ 64, 5320 },
{ 100, 5500 },
{ 104, 5520 },
{ 108, 5540 },
{ 112, 5560 },
{ 116, 5580 },
{ 120, 5600 },
{ 124, 5620 },
{ 128, 5640 },
{ 132, 5660 },
{ 136, 5680 },
{ 140, 5700 },
{ 149, 5745 },
{ 152, 5760 },
{ 153, 5765 },
{ 157, 5785 },
{ 160, 5800 },
{ 161, 5805 },
{ 165, 5825 },
{ 183, 4915 },
{ 184, 4920 },
{ 185, 4925 },
{ 187, 4935 },
{ 188, 4945 },
{ 192, 4960 },
{ 196, 4980 },
{ 0, 0 }
};
static const guint a_table_freqs[G_N_ELEMENTS (a_table)] = {
/* A band */
5035,
5040,
5045,
5055,
5060,
5080,
5170,
5180,
5190,
5200,
5210,
5220,
5230,
5240,
5250,
5260,
5280,
5290,
5300,
5320,
5500,
5520,
5540,
5560,
5580,
5600,
5620,
5640,
5660,
5680,
5700,
5745,
5760,
5765,
5785,
5800,
5805,
5825,
4915,
4920,
4925,
4935,
4945,
4960,
4980,
0,
};
static const struct cf_pair bg_table[] = {
/* B/G band */
{ 1, 2412 },
{ 2, 2417 },
{ 3, 2422 },
{ 4, 2427 },
{ 5, 2432 },
{ 6, 2437 },
{ 7, 2442 },
{ 8, 2447 },
{ 9, 2452 },
{ 10, 2457 },
{ 11, 2462 },
{ 12, 2467 },
{ 13, 2472 },
{ 14, 2484 },
{ 0, 0 }
};
static const guint bg_table_freqs[G_N_ELEMENTS (bg_table)] = {
/* B/G band */
2412,
2417,
2422,
2427,
2432,
2437,
2442,
2447,
2452,
2457,
2462,
2467,
2472,
2484,
0,
};
/**
* nm_utils_wifi_freq_to_channel:
* @freq: frequency
*
* Utility function to translate a Wi-Fi frequency to its corresponding channel.
*
* Returns: the channel represented by the frequency or 0
**/
guint32
nm_utils_wifi_freq_to_channel (guint32 freq)
{
int i = 0;
if (freq > 4900) {
while ( a_table[i].freq
&& (a_table[i].freq != freq))
i++;
return a_table[i].chan;
}
while ( bg_table[i].freq
&& (bg_table[i].freq != freq))
i++;
return bg_table[i].chan;
}
/**
* nm_utils_wifi_freq_to_band:
* @freq: frequency
*
* Utility function to translate a Wi-Fi frequency to its corresponding band.
*
* Returns: the band containing the frequency or NULL if freq is invalid
**/
const char *
nm_utils_wifi_freq_to_band (guint32 freq)
{
if (freq >= 4915 && freq <= 5825)
return "a";
else if (freq >= 2412 && freq <= 2484)
return "bg";
return NULL;
}
/**
* nm_utils_wifi_channel_to_freq:
* @channel: channel
* @band: frequency band for wireless ("a" or "bg")
*
* Utility function to translate a Wi-Fi channel to its corresponding frequency.
*
* Returns: the frequency represented by the channel of the band,
* or -1 when the freq is invalid, or 0 when the band
* is invalid
**/
guint32
nm_utils_wifi_channel_to_freq (guint32 channel, const char *band)
{
int i;
g_return_val_if_fail (band, 0);
if (nm_streq (band, "a")) {
for (i = 0; a_table[i].chan; i++) {
if (a_table[i].chan == channel)
return a_table[i].freq;
}
return ((guint32) -1);
}
if (nm_streq (band, "bg")) {
for (i = 0; bg_table[i].chan; i++) {
if (bg_table[i].chan == channel)
return bg_table[i].freq;
}
return ((guint32) -1);
}
return 0;
}
/**
* nm_utils_wifi_find_next_channel:
* @channel: current channel
* @direction: whether going downward (0 or less) or upward (1 or more)
* @band: frequency band for wireless ("a" or "bg")
*
* Utility function to find out next/previous Wi-Fi channel for a channel.
*
* Returns: the next channel in the specified direction or 0
**/
guint32
nm_utils_wifi_find_next_channel (guint32 channel, int direction, char *band)
{
size_t a_size = G_N_ELEMENTS (a_table);
size_t bg_size = G_N_ELEMENTS (bg_table);
const struct cf_pair *pair;
if (nm_streq (band, "a")) {
if (channel < a_table[0].chan)
return a_table[0].chan;
if (channel > a_table[a_size - 2].chan)
return a_table[a_size - 2].chan;
pair = &a_table[0];
} else if (nm_streq (band, "bg")) {
if (channel < bg_table[0].chan)
return bg_table[0].chan;
if (channel > bg_table[bg_size - 2].chan)
return bg_table[bg_size - 2].chan;
pair = &bg_table[0];
} else
g_return_val_if_reached (0);
while (pair->chan) {
if (channel == pair->chan)
return channel;
if ((channel < (pair+1)->chan) && (channel > pair->chan)) {
if (direction > 0)
return (pair+1)->chan;
else
return pair->chan;
}
pair++;
}
return 0;
}
/**
* nm_utils_wifi_is_channel_valid:
* @channel: channel
* @band: frequency band for wireless ("a" or "bg")
*
* Utility function to verify Wi-Fi channel validity.
*
* Returns: %TRUE or %FALSE
**/
gboolean
nm_utils_wifi_is_channel_valid (guint32 channel, const char *band)
{
guint32 freq;
freq = nm_utils_wifi_channel_to_freq (channel, band);
return !NM_IN_SET (freq, 0u, (guint32) -1);
}
#define _nm_assert_wifi_freqs(table, table_freqs) \
G_STMT_START { \
if (NM_MORE_ASSERT_ONCE (5)) { \
int i, j; \
\
G_STATIC_ASSERT (G_N_ELEMENTS (table) > 0); \
G_STATIC_ASSERT (G_N_ELEMENTS (table) == G_N_ELEMENTS (table_freqs)); \
\
for (i = 0; i < G_N_ELEMENTS (table); i++) { \
nm_assert ((i == G_N_ELEMENTS (table) - 1) == (table[i].chan == 0)); \
nm_assert ((i == G_N_ELEMENTS (table) - 1) == (table[i].freq == 0)); \
nm_assert (table[i].freq == table_freqs[i]); \
for (j = 0; j < i; j++) { \
nm_assert (table[j].chan != table[i].chan); \
nm_assert (table[j].freq != table[i].freq); \
} \
} \
} \
} G_STMT_END
/**
* nm_utils_wifi_2ghz_freqs:
*
* Utility function to return 2.4 GHz Wi-Fi frequencies (802.11bg band).
*
* Returns: zero-terminated array of frequencies numbers (in MHz)
*
* Since: 1.2
**/
const guint *
nm_utils_wifi_2ghz_freqs (void)
{
_nm_assert_wifi_freqs (bg_table, bg_table_freqs);
return bg_table_freqs;
}
/**
* nm_utils_wifi_5ghz_freqs:
*
* Utility function to return 5 GHz Wi-Fi frequencies (802.11a band).
*
* Returns: zero-terminated array of frequencies numbers (in MHz)
*
* Since: 1.2
**/
const guint *
nm_utils_wifi_5ghz_freqs (void)
{
_nm_assert_wifi_freqs (a_table, a_table_freqs);
return a_table_freqs;
}
/**
* nm_utils_wifi_strength_bars:
* @strength: the access point strength, from 0 to 100
*
* Converts @strength into a 4-character-wide graphical representation of
* strength suitable for printing to stdout.
*
* Previous versions used to take a guess at the terminal type and possibly
* return a wide UTF-8 encoded string. Now it always returns a 7-bit
* clean strings of one to 0 to 4 asterisks. Users that actually need
* the functionality are encouraged to make their implementations instead.
*
* Returns: the graphical representation of the access point strength
*/
const char *
nm_utils_wifi_strength_bars (guint8 strength)
{
if (strength > 80)
return "****";
else if (strength > 55)
return "*** ";
else if (strength > 30)
return "** ";
else if (strength > 5)
return "* ";
else
return " ";
}
/**
* nm_utils_hwaddr_len:
* @type: the type of address; either <literal>ARPHRD_ETHER</literal> or
* <literal>ARPHRD_INFINIBAND</literal>
*
* Returns the length in octets of a hardware address of type @type.
*
* It is an error to call this function with any value other than
* <literal>ARPHRD_ETHER</literal> or <literal>ARPHRD_INFINIBAND</literal>.
*
* Return value: the length.
*/
gsize
nm_utils_hwaddr_len (int type)
{
if (type == ARPHRD_ETHER)
return ETH_ALEN;
else if (type == ARPHRD_INFINIBAND)
return INFINIBAND_ALEN;
g_return_val_if_reached (0);
}
/**
* nm_utils_hexstr2bin:
* @hex: a string of hexadecimal characters with optional ':' separators
*
* Converts a hexadecimal string @hex into an array of bytes. The optional
* separator ':' may be used between single or pairs of hexadecimal characters,
* eg "00:11" or "0:1". Any "0x" at the beginning of @hex is ignored. @hex
* may not start or end with ':'.
*
* Return value: (transfer full): the converted bytes, or %NULL on error
*/
GBytes *
nm_utils_hexstr2bin (const char *hex)
{
guint8 *buffer;
gsize len;
buffer = nm_utils_hexstr2bin_alloc (hex, TRUE, FALSE, ":", 0, &len);
if (!buffer)
return NULL;
buffer = g_realloc (buffer, len);
return g_bytes_new_take (buffer, len);
}
#define hwaddr_aton(asc, buffer, buffer_len, out_len) nm_utils_hexstr2bin_full ((asc), FALSE, TRUE, ":-", 0, (buffer), (buffer_len), (out_len))
/**
* nm_utils_hwaddr_atoba:
* @asc: the ASCII representation of a hardware address
* @length: the expected length in bytes of the result
*
* Parses @asc and converts it to binary form in a #GByteArray. See
* nm_utils_hwaddr_aton() if you don't want a #GByteArray.
*
* Return value: (transfer full): a new #GByteArray, or %NULL if @asc couldn't
* be parsed
*/
GByteArray *
nm_utils_hwaddr_atoba (const char *asc, gsize length)
{
GByteArray *ba;
gsize l;
g_return_val_if_fail (asc, NULL);
g_return_val_if_fail (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX, NULL);
ba = g_byte_array_sized_new (length);
g_byte_array_set_size (ba, length);
if (!hwaddr_aton (asc, ba->data, length, &l))
goto fail;
if (length != l)
goto fail;
return ba;
fail:
g_byte_array_unref (ba);
return NULL;
}
/**
* _nm_utils_hwaddr_aton:
* @asc: the ASCII representation of a hardware address
* @buffer: buffer to store the result into. Must have
* at least a size of @buffer_length.
* @buffer_length: the length of the input buffer @buffer.
* The result must fit into that buffer, otherwise
* the function fails and returns %NULL.
* @out_length: the output length in case of success.
*
* Parses @asc and converts it to binary form in @buffer.
* Bytes in @asc can be separated by colons (:), or hyphens (-), but not mixed.
*
* It is like nm_utils_hwaddr_aton(), but contrary to that it
* can parse addresses of any length. That is, you don't need
* to know the length before-hand.
*
* Return value: @buffer, or %NULL if @asc couldn't be parsed.
*/
guint8 *
_nm_utils_hwaddr_aton (const char *asc, gpointer buffer, gsize buffer_length, gsize *out_length)
{
g_return_val_if_fail (asc, NULL);
g_return_val_if_fail (buffer, NULL);
g_return_val_if_fail (buffer_length > 0, NULL);
g_return_val_if_fail (out_length, NULL);
return hwaddr_aton (asc, buffer, buffer_length, out_length);
}
/**
* nm_utils_hwaddr_aton:
* @asc: the ASCII representation of a hardware address
* @buffer: (type guint8) (array length=length): buffer to store the result into
* @length: the expected length in bytes of the result and
* the size of the buffer in bytes.
*
* Parses @asc and converts it to binary form in @buffer.
* Bytes in @asc can be separated by colons (:), or hyphens (-), but not mixed.
*
* Return value: @buffer, or %NULL if @asc couldn't be parsed
* or would be shorter or longer than @length.
*/
guint8 *
nm_utils_hwaddr_aton (const char *asc, gpointer buffer, gsize length)
{
gsize l;
g_return_val_if_fail (asc, NULL);
g_return_val_if_fail (buffer, NULL);
g_return_val_if_fail (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX, NULL);
if (!hwaddr_aton (asc, buffer, length, &l))
return NULL;
if (length != l)
return NULL;
return buffer;
}
/**
* nm_utils_bin2hexstr:
* @src: (type guint8) (array length=len): an array of bytes
* @len: the length of the @src array
* @final_len: an index where to cut off the returned string, or -1
*
* Converts the byte array @src into a hexadecimal string. If @final_len is
* greater than -1, the returned string is terminated at that index
* (returned_string[final_len] == '\0'),
*
* Return value: (transfer full): the textual form of @bytes
*/
char *
nm_utils_bin2hexstr (gconstpointer src, gsize len, int final_len)
{
char *result;
gsize buflen = (len * 2) + 1;
g_return_val_if_fail (src != NULL, NULL);
g_return_val_if_fail (len > 0 && (buflen - 1) / 2 == len, NULL);
g_return_val_if_fail (final_len < 0 || (gsize) final_len < buflen, NULL);
result = g_malloc (buflen);
nm_utils_bin2hexstr_full (src, len, '\0', FALSE, result);
/* Cut converted key off at the correct length for this cipher type */
if (final_len >= 0 && (gsize) final_len < buflen)
result[final_len] = '\0';
return result;
}
/**
* nm_utils_hwaddr_ntoa:
* @addr: (type guint8) (array length=length): a binary hardware address
* @length: the length of @addr
*
* Converts @addr to textual form.
*
* Return value: (transfer full): the textual form of @addr
*/
char *
nm_utils_hwaddr_ntoa (gconstpointer addr, gsize length)
{
g_return_val_if_fail (addr, g_strdup (""));
g_return_val_if_fail (length > 0, g_strdup (""));
return nm_utils_bin2hexstr_full (addr, length, ':', TRUE, NULL);
}
const char *
nm_utils_hwaddr_ntoa_buf (gconstpointer addr, gsize addr_len, gboolean upper_case, char *buf, gsize buf_len)
{
g_return_val_if_fail (addr, NULL);
g_return_val_if_fail (addr_len > 0, NULL);
g_return_val_if_fail (buf, NULL);
if (buf_len < addr_len * 3)
g_return_val_if_reached (NULL);
return nm_utils_bin2hexstr_full (addr, addr_len, ':', upper_case, buf);
}
/**
* nm_utils_hwaddr_valid:
* @asc: the ASCII representation of a hardware address
* @length: the length of address that @asc is expected to convert to
* (or -1 to accept any length up to %NM_UTILS_HWADDR_LEN_MAX)
*
* Parses @asc to see if it is a valid hardware address of the given
* length.
*
* Return value: %TRUE if @asc appears to be a valid hardware address
* of the indicated length, %FALSE if not.
*/
gboolean
nm_utils_hwaddr_valid (const char *asc, gssize length)
{
guint8 buf[NM_UTILS_HWADDR_LEN_MAX];
gsize l;
g_return_val_if_fail (asc != NULL, FALSE);
if (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX) {
if (!hwaddr_aton (asc, buf, length, &l))
return FALSE;
return length == l;
} else if (length == -1)
return !!hwaddr_aton (asc, buf, sizeof (buf), &l);
else if (length == 0)
return FALSE;
else
g_return_val_if_reached (FALSE);
}
/**
* nm_utils_hwaddr_canonical:
* @asc: the ASCII representation of a hardware address
* @length: the length of address that @asc is expected to convert to
* (or -1 to accept any length up to %NM_UTILS_HWADDR_LEN_MAX)
*
* Parses @asc to see if it is a valid hardware address of the given
* length, and if so, returns it in canonical form (uppercase, with
* leading 0s as needed, and with colons rather than hyphens).
*
* Return value: (transfer full): the canonicalized address if @asc appears to
* be a valid hardware address of the indicated length, %NULL if not.
*/
char *
nm_utils_hwaddr_canonical (const char *asc, gssize length)
{
guint8 buf[NM_UTILS_HWADDR_LEN_MAX];
gsize l;
g_return_val_if_fail (asc, NULL);
g_return_val_if_fail (length == -1 || (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX), NULL);
if (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX) {
if (!hwaddr_aton (asc, buf, length, &l))
return NULL;
if (l != length)
return NULL;
} else if (length == -1) {
if (!hwaddr_aton (asc, buf, NM_UTILS_HWADDR_LEN_MAX, &l))
return NULL;
} else
g_return_val_if_reached (NULL);
return nm_utils_hwaddr_ntoa (buf, l);
}
/* This is used to possibly canonicalize values passed to MAC address property
* setters. Unlike nm_utils_hwaddr_canonical(), it accepts %NULL, and if you
* pass it an invalid MAC address, it just returns that string rather than
* returning %NULL (so that we can return a proper error from verify() later).
*/
char *
_nm_utils_hwaddr_canonical_or_invalid (const char *mac, gssize length)
{
char *canonical;
if (!mac)
return NULL;
canonical = nm_utils_hwaddr_canonical (mac, length);
if (canonical)
return canonical;
else
return g_strdup (mac);
}
/*
* Determine if given Ethernet address is link-local
*
* Return value: %TRUE if @mac is link local
* reserved addr (01:80:c2:00:00:0X) per IEEE 802.1Q 8.6.3 Frame filtering, %FALSE if not.
*/
gboolean
_nm_utils_hwaddr_link_local_valid (const char *mac)
{
guint8 mac_net[ETH_ALEN];
static const guint8 eth_reserved_addr_base[] = {
0x01, 0x80,
0xc2, 0x00,
0x00
};
if (!mac)
return FALSE;
if (!nm_utils_hwaddr_aton (mac, mac_net, ETH_ALEN))
return FALSE;
if ( memcmp (mac_net,
eth_reserved_addr_base, ETH_ALEN - 1)
|| (mac_net[5] & 0xF0))
return FALSE;
if ( mac_net[5] == 1 /* 802.3x Pause address */
|| mac_net[5] == 2 /* 802.3ad Slow protocols */
|| mac_net[5] == 3) /* 802.1X PAE address */
return FALSE;
return TRUE;
}
/**
* nm_utils_hwaddr_matches:
* @hwaddr1: (nullable): pointer to a binary or ASCII hardware address, or %NULL
* @hwaddr1_len: size of @hwaddr1, or -1 if @hwaddr1 is ASCII
* @hwaddr2: (nullable): pointer to a binary or ASCII hardware address, or %NULL
* @hwaddr2_len: size of @hwaddr2, or -1 if @hwaddr2 is ASCII
*
* Generalized hardware address comparison function. Tests if @hwaddr1 and
* @hwaddr2 "equal" (or more precisely, "equivalent"), with several advantages
* over a simple memcmp():
*
* 1. If @hwaddr1_len or @hwaddr2_len is -1, then the corresponding address is
* assumed to be ASCII rather than binary, and will be converted to binary
* before being compared.
*
* 2. If @hwaddr1 or @hwaddr2 is %NULL, it is treated instead as though it was
* a zero-filled buffer @hwaddr1_len or @hwaddr2_len bytes long.
*
* 3. If @hwaddr1 and @hwaddr2 are InfiniBand hardware addresses (that is, if
* they are <literal>INFINIBAND_ALEN</literal> bytes long in binary form)
* then only the last 8 bytes are compared, since those are the only bytes
* that actually identify the hardware. (The other 12 bytes will change
* depending on the configuration of the InfiniBand fabric that the device
* is connected to.)
*
* If a passed-in ASCII hardware address cannot be parsed, or would parse to an
* address larger than %NM_UTILS_HWADDR_LEN_MAX, then it will silently fail to
* match. (This means that externally-provided address strings do not need to be
* sanity-checked before comparing them against known good addresses; they are
* guaranteed to not match if they are invalid.)
*
* Return value: %TRUE if @hwaddr1 and @hwaddr2 are equivalent, %FALSE if they are
* different (or either of them is invalid).
*/
gboolean
nm_utils_hwaddr_matches (gconstpointer hwaddr1,
gssize hwaddr1_len,
gconstpointer hwaddr2,
gssize hwaddr2_len)
{
guint8 buf1[NM_UTILS_HWADDR_LEN_MAX], buf2[NM_UTILS_HWADDR_LEN_MAX];
gsize l;
if (hwaddr1_len == -1) {
if (hwaddr1 == NULL) {
hwaddr1_len = 0;
} else if (hwaddr_aton (hwaddr1, buf1, sizeof (buf1), &l)) {
hwaddr1 = buf1;
hwaddr1_len = l;
} else {
g_return_val_if_fail ( hwaddr2_len == -1
|| (hwaddr2_len > 0 && hwaddr2_len <= NM_UTILS_HWADDR_LEN_MAX), FALSE);
return FALSE;
}
} else {
g_return_val_if_fail (hwaddr1_len > 0 && hwaddr1_len <= NM_UTILS_HWADDR_LEN_MAX, FALSE);
if (!hwaddr1) {
memset (buf1, 0, hwaddr1_len);
hwaddr1 = buf1;
}
}
if (hwaddr2_len == -1) {
if (hwaddr2 == NULL)
l = 0;
else if (!hwaddr_aton (hwaddr2, buf2, sizeof (buf2), &l))
return FALSE;
if (l != hwaddr1_len)
return FALSE;
hwaddr2 = buf2;
} else {
g_return_val_if_fail (hwaddr2_len > 0 && hwaddr2_len <= NM_UTILS_HWADDR_LEN_MAX, FALSE);
if (hwaddr2_len != hwaddr1_len)
return FALSE;
if (!hwaddr2) {
memset (buf2, 0, hwaddr2_len);
hwaddr2 = buf2;
}
}
if (G_UNLIKELY ( hwaddr1_len <= 0
|| hwaddr1_len > NM_UTILS_HWADDR_LEN_MAX)) {
/* Only valid addresses can compare equal. In particular,
* addresses that are too long or of zero bytes, never
* compare equal. */
return FALSE;
}
if (hwaddr1_len == INFINIBAND_ALEN) {
hwaddr1 = &((guint8 *) hwaddr1)[INFINIBAND_ALEN - 8];
hwaddr2 = &((guint8 *) hwaddr2)[INFINIBAND_ALEN - 8];
hwaddr1_len = 8;
}
return !memcmp (hwaddr1, hwaddr2, hwaddr1_len);
}
/*****************************************************************************/
static GVariant *
_nm_utils_hwaddr_to_dbus_impl (const char *str)
{
guint8 buf[NM_UTILS_HWADDR_LEN_MAX];
gsize len;
if (!str)
return NULL;
if (!hwaddr_aton (str, buf, sizeof (buf), &len))
return NULL;
return g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, buf, len, 1);
}
static GVariant *
_nm_utils_hwaddr_cloned_get (const NMSettInfoSetting *sett_info,
guint property_idx,
NMConnection *connection,
NMSetting *setting,
NMConnectionSerializationFlags flags,
const NMConnectionSerializationOptions *options)
{
gs_free char *addr = NULL;
nm_assert (nm_streq (sett_info->property_infos[property_idx].name, "cloned-mac-address"));
g_object_get (setting, "cloned-mac-address", &addr, NULL);
return _nm_utils_hwaddr_to_dbus_impl (addr);
}
static gboolean
_nm_utils_hwaddr_cloned_set (NMSetting *setting,
GVariant *connection_dict,
const char *property,
GVariant *value,
NMSettingParseFlags parse_flags,
GError **error)
{
gsize length;
const guint8 *array;
char *str;
nm_assert (nm_streq0 (property, "cloned-mac-address"));
if (!_nm_setting_use_legacy_property (setting, connection_dict, "cloned-mac-address", "assigned-mac-address"))
return TRUE;
length = 0;
array = g_variant_get_fixed_array (value, &length, 1);
if (!length)
return TRUE;
str = nm_utils_hwaddr_ntoa (array, length);
g_object_set (setting,
"cloned-mac-address",
str,
NULL);
g_free (str);
return TRUE;
}
static gboolean
_nm_utils_hwaddr_cloned_not_set (NMSetting *setting,
GVariant *connection_dict,
const char *property,
NMSettingParseFlags parse_flags,
GError **error)
{
nm_assert (nm_streq0 (property, "cloned-mac-address"));
return TRUE;
}
const NMSettInfoPropertType nm_sett_info_propert_type_cloned_mac_address = {
.dbus_type = G_VARIANT_TYPE_BYTESTRING,
.to_dbus_fcn = _nm_utils_hwaddr_cloned_get,
.from_dbus_fcn = _nm_utils_hwaddr_cloned_set,
.missing_from_dbus_fcn = _nm_utils_hwaddr_cloned_not_set,
};
static GVariant *
_nm_utils_hwaddr_cloned_data_synth (const NMSettInfoSetting *sett_info,
guint property_idx,
NMConnection *connection,
NMSetting *setting,
NMConnectionSerializationFlags flags,
const NMConnectionSerializationOptions *options)
{
gs_free char *addr = NULL;
if (flags & NM_CONNECTION_SERIALIZE_ONLY_SECRETS)
return NULL;
nm_assert (nm_streq0 (sett_info->property_infos[property_idx].name, "assigned-mac-address"));
g_object_get (setting,
"cloned-mac-address",
&addr,
NULL);
/* Before introducing the extended "cloned-mac-address" (and its D-Bus
* field "assigned-mac-address"), libnm's _nm_utils_hwaddr_to_dbus()
* would drop invalid values as it was unable to serialize them.
*
* Now, we would like to send invalid values as "assigned-mac-address"
* over D-Bus and let the server reject them.
*
* However, clients used to set the cloned-mac-address property
* to "" and it just worked as the value was not serialized in
* an ill form.
*
* To preserve that behavior, serialize "" as NULL.
*/
return addr && addr[0]
? g_variant_new_take_string (g_steal_pointer (&addr))
: NULL;
}
static gboolean
_nm_utils_hwaddr_cloned_data_set (NMSetting *setting,
GVariant *connection_dict,
const char *property,
GVariant *value,
NMSettingParseFlags parse_flags,
GError **error)
{
nm_assert (nm_streq0 (property, "assigned-mac-address"));
if (_nm_setting_use_legacy_property (setting, connection_dict, "cloned-mac-address", "assigned-mac-address"))
return TRUE;
g_object_set (setting,
"cloned-mac-address",
nm_str_not_empty (g_variant_get_string (value, NULL)),
NULL);
return TRUE;
}
const NMSettInfoPropertType nm_sett_info_propert_type_assigned_mac_address = {
.dbus_type = G_VARIANT_TYPE_STRING,
.to_dbus_fcn = _nm_utils_hwaddr_cloned_data_synth,
.from_dbus_fcn = _nm_utils_hwaddr_cloned_data_set,
};
static GVariant *
_nm_utils_hwaddr_to_dbus (const GValue *prop_value)
{
return _nm_utils_hwaddr_to_dbus_impl (g_value_get_string (prop_value));
}
static void
_nm_utils_hwaddr_from_dbus (GVariant *dbus_value,
GValue *prop_value)
{
gsize length = 0;
const guint8 *array = g_variant_get_fixed_array (dbus_value, &length, 1);
char *str;
str = length ? nm_utils_hwaddr_ntoa (array, length) : NULL;
g_value_take_string (prop_value, str);
}
const NMSettInfoPropertType nm_sett_info_propert_type_mac_address = {
.dbus_type = G_VARIANT_TYPE_BYTESTRING,
.gprop_to_dbus_fcn = _nm_utils_hwaddr_to_dbus,
.gprop_from_dbus_fcn = _nm_utils_hwaddr_from_dbus,
};
/*****************************************************************************/
/* Validate secret-flags. Most settings don't validate them, which is a bug.
* But we possibly cannot enforce a strict validation now.
*
* For new settings, they shall validate the secret-flags strictly. */
gboolean
_nm_utils_secret_flags_validate (NMSettingSecretFlags secret_flags,
const char *setting_name,
const char *property_name,
NMSettingSecretFlags disallowed_flags,
GError **error)
{
if (secret_flags == NM_SETTING_SECRET_FLAG_NONE)
return TRUE;
if (NM_FLAGS_ANY (secret_flags, ~NM_SETTING_SECRET_FLAG_ALL)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("unknown secret flags"));
if (setting_name)
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
if (!nm_utils_is_power_of_two (secret_flags)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("conflicting secret flags"));
if (setting_name)
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
if (NM_FLAGS_ANY (secret_flags, disallowed_flags)) {
if (NM_FLAGS_HAS (secret_flags, NM_SETTING_SECRET_FLAG_NOT_REQUIRED)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("secret flags must not be \"not-required\""));
if (setting_name)
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("unsupported secret flags"));
if (setting_name)
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
return TRUE;
}
gboolean
_nm_utils_wps_method_validate (NMSettingWirelessSecurityWpsMethod wps_method,
const char *setting_name,
const char *property_name,
gboolean wps_required,
GError **error)
{
if (wps_method > NM_SETTING_WIRELESS_SECURITY_WPS_METHOD_PIN) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("property is invalid"));
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
if (NM_FLAGS_HAS (wps_method, NM_SETTING_WIRELESS_SECURITY_WPS_METHOD_DISABLED)) {
if (wps_method != NM_SETTING_WIRELESS_SECURITY_WPS_METHOD_DISABLED) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("can't be simultaneously disabled and enabled"));
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
if (wps_required) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("WPS is required"));
g_prefix_error (error, "%s.%s: ", setting_name, property_name);
return FALSE;
}
}
return TRUE;
}
/*****************************************************************************/
static char *
_split_word (char *s)
{
/* takes @s and truncates the string on the first white-space.
* then it returns the first word afterwards (again seeking
* over leading white-space). */
for (; s[0]; s++) {
if (g_ascii_isspace (s[0])) {
s[0] = '\0';
s++;
while (g_ascii_isspace (s[0]))
s++;
return s;
}
}
return s;
}
gboolean
_nm_utils_generate_mac_address_mask_parse (const char *value,
struct ether_addr *out_mask,
struct ether_addr **out_ouis,
gsize *out_ouis_len,
GError **error)
{
gs_free char *s_free = NULL;
char *s, *s_next;
struct ether_addr mask;
gs_unref_array GArray *ouis = NULL;
g_return_val_if_fail (!error || !*error, FALSE);
if (!value || !*value) {
/* NULL and "" are valid values and both mean the default
* "q */
if (out_mask) {
memset (out_mask, 0, sizeof (*out_mask));
out_mask->ether_addr_octet[0] |= 0x02;
}
NM_SET_OUT (out_ouis, NULL);
NM_SET_OUT (out_ouis_len, 0);
return TRUE;
}
s_free = g_strdup (value);
s = s_free;
/* skip over leading whitespace */
while (g_ascii_isspace (s[0]))
s++;
/* parse the first mask */
s_next = _split_word (s);
if (!nm_utils_hwaddr_aton (s, &mask, ETH_ALEN)) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("not a valid ethernet MAC address for mask at position %lld"),
(long long) (s - s_free));
return FALSE;
}
if (s_next[0]) {
ouis = g_array_sized_new (FALSE, FALSE, sizeof (struct ether_addr), 4);
do {
s = s_next;
s_next = _split_word (s);
g_array_set_size (ouis, ouis->len + 1);
if (!nm_utils_hwaddr_aton (s, &g_array_index (ouis, struct ether_addr, ouis->len - 1), ETH_ALEN)) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("not a valid ethernet MAC address #%u at position %lld"),
ouis->len, (long long) (s - s_free));
return FALSE;
}
} while (s_next[0]);
}
NM_SET_OUT (out_mask, mask);
NM_SET_OUT (out_ouis_len, ouis ? ouis->len : 0);
NM_SET_OUT (out_ouis, ouis ? ((struct ether_addr *) g_array_free (g_steal_pointer (&ouis), FALSE)) : NULL);
return TRUE;
}
/*****************************************************************************/
gboolean
nm_utils_is_valid_iface_name_utf8safe (const char *utf8safe_name)
{
gs_free gpointer bin_to_free = NULL;
gconstpointer bin;
gsize len;
g_return_val_if_fail (utf8safe_name, FALSE);
bin = nm_utils_buf_utf8safe_unescape (utf8safe_name, NM_UTILS_STR_UTF8_SAFE_FLAG_NONE, &len, &bin_to_free);
if (bin_to_free) {
/* some unescaping happened... */
if (len != strlen (bin)) {
/* there are embedded NUL chars. Invalid. */
return FALSE;
}
}
return nm_utils_ifname_valid_kernel (bin, NULL);
}
/**
* nm_utils_is_valid_iface_name:
* @name: (allow-none): Name of interface
* @error: location to store the error occurring, or %NULL to ignore
*
* Validate the network interface name.
*
* This function is a 1:1 copy of the kernel's interface validation
* function in net/core/dev.c.
*
* Returns: %TRUE if interface name is valid, otherwise %FALSE is returned.
*
* Before 1.20, this function did not accept %NULL as @name argument. If you
* want to run against older versions of libnm, don't pass %NULL.
*/
gboolean
nm_utils_is_valid_iface_name (const char *name, GError **error)
{
g_return_val_if_fail (!error || !*error, FALSE);
return nm_utils_ifname_valid_kernel (name, error);
}
/**
* nm_utils_iface_valid_name:
* @name: (allow-none): Name of interface
*
* Validate the network interface name.
*
* Deprecated: 1.6: Use nm_utils_is_valid_iface_name() instead, with better error reporting.
*
* Returns: %TRUE if interface name is valid, otherwise %FALSE is returned.
*
* Before 1.20, this function did not accept %NULL as @name argument. If you
* want to run against older versions of libnm, don't pass %NULL.
*/
gboolean
nm_utils_iface_valid_name (const char *name)
{
return nm_utils_is_valid_iface_name (name, NULL);
}
/**
* nm_utils_is_uuid:
* @str: (allow-none): a string that might be a UUID
*
* Checks if @str is a UUID
*
* Returns: %TRUE if @str is a UUID, %FALSE if not
*
* In older versions, nm_utils_is_uuid() did not accept %NULL as @str
* argument. Don't pass %NULL if you run against older versions of libnm.
*/
gboolean
nm_utils_is_uuid (const char *str)
{
const char *p = str;
int num_dashes = 0;
if (!p)
return FALSE;
while (*p) {
if (*p == '-')
num_dashes++;
else if (!g_ascii_isxdigit (*p))
return FALSE;
p++;
}
if ((num_dashes == 4) && (p - str == 36))
return TRUE;
/* Backwards compat for older configurations */
if ((num_dashes == 0) && (p - str == 40))
return TRUE;
return FALSE;
}
static char _nm_utils_inet_ntop_buffer[NM_UTILS_INET_ADDRSTRLEN];
/**
* nm_utils_inet4_ntop: (skip)
* @inaddr: the address that should be converted to string.
* @dst: the destination buffer, it must contain at least
* <literal>INET_ADDRSTRLEN</literal> or %NM_UTILS_INET_ADDRSTRLEN
* characters. If set to %NULL, it will return a pointer to an internal, static
* buffer (shared with nm_utils_inet6_ntop()). Beware, that the internal
* buffer will be overwritten with ever new call of nm_utils_inet4_ntop() or
* nm_utils_inet6_ntop() that does not provide its own @dst buffer. Also,
* using the internal buffer is not thread safe. When in doubt, pass your own
* @dst buffer to avoid these issues.
*
* Wrapper for inet_ntop.
*
* Returns: the input buffer @dst, or a pointer to an
* internal, static buffer. This function cannot fail.
**/
const char *
nm_utils_inet4_ntop (in_addr_t inaddr, char *dst)
{
/* relying on the static buffer (by leaving @dst as %NULL) is discouraged.
* Don't do that!
*
* However, still support it to be lenient against mistakes and because
* this is public API of libnm. */
return _nm_utils_inet4_ntop (inaddr, dst ?: _nm_utils_inet_ntop_buffer);
}
/**
* nm_utils_inet6_ntop: (skip)
* @in6addr: the address that should be converted to string.
* @dst: the destination buffer, it must contain at least
* <literal>INET6_ADDRSTRLEN</literal> or %NM_UTILS_INET_ADDRSTRLEN
* characters. If set to %NULL, it will return a pointer to an internal, static
* buffer (shared with nm_utils_inet4_ntop()). Beware, that the internal
* buffer will be overwritten with ever new call of nm_utils_inet4_ntop() or
* nm_utils_inet6_ntop() that does not provide its own @dst buffer. Also,
* using the internal buffer is not thread safe. When in doubt, pass your own
* @dst buffer to avoid these issues.
*
* Wrapper for inet_ntop.
*
* Returns: the input buffer @dst, or a pointer to an
* internal, static buffer. %NULL is not allowed as @in6addr,
* otherwise, this function cannot fail.
**/
const char *
nm_utils_inet6_ntop (const struct in6_addr *in6addr, char *dst)
{
/* relying on the static buffer (by leaving @dst as %NULL) is discouraged.
* Don't do that!
*
* However, still support it to be lenient against mistakes and because
* this is public API of libnm. */
g_return_val_if_fail (in6addr, NULL);
return _nm_utils_inet6_ntop (in6addr, dst ?: _nm_utils_inet_ntop_buffer);
}
/**
* nm_utils_ipaddr_valid:
* @family: <literal>AF_INET</literal> or <literal>AF_INET6</literal>, or
* <literal>AF_UNSPEC</literal> to accept either
* @ip: an IP address
*
* Checks if @ip contains a valid IP address of the given family.
*
* Return value: %TRUE or %FALSE
*/
gboolean
nm_utils_ipaddr_valid (int family, const char *ip)
{
g_return_val_if_fail (family == AF_INET || family == AF_INET6 || family == AF_UNSPEC, FALSE);
return nm_utils_ipaddr_is_valid (family, ip);
}
/**
* nm_utils_iinet6_is_token:
* @in6addr: the AF_INET6 address structure
*
* Checks if only the bottom 64bits of the address are set.
*
* Return value: %TRUE or %FALSE
*/
gboolean
_nm_utils_inet6_is_token (const struct in6_addr *in6addr)
{
if ( in6addr->s6_addr[0]
|| in6addr->s6_addr[1]
|| in6addr->s6_addr[2]
|| in6addr->s6_addr[3]
|| in6addr->s6_addr[4]
|| in6addr->s6_addr[5]
|| in6addr->s6_addr[6]
|| in6addr->s6_addr[7])
return FALSE;
if ( in6addr->s6_addr[8]
|| in6addr->s6_addr[9]
|| in6addr->s6_addr[10]
|| in6addr->s6_addr[11]
|| in6addr->s6_addr[12]
|| in6addr->s6_addr[13]
|| in6addr->s6_addr[14]
|| in6addr->s6_addr[15])
return TRUE;
return FALSE;
}
/**
* _nm_utils_dhcp_duid_valid:
* @duid: the candidate DUID
*
* Checks if @duid string contains either a special duid value ("ll",
* "llt", "lease" or the "stable" variants) or a valid hex DUID.
*
* Return value: %TRUE or %FALSE
*/
gboolean
_nm_utils_dhcp_duid_valid (const char *duid, GBytes **out_duid_bin)
{
guint8 duid_arr[128 + 2];
gsize duid_len;
NM_SET_OUT (out_duid_bin, NULL);
if (!duid)
return FALSE;
if (NM_IN_STRSET (duid, "lease",
"llt",
"ll",
"stable-llt",
"stable-ll",
"stable-uuid")) {
return TRUE;
}
if (nm_utils_hexstr2bin_full (duid, FALSE, FALSE, ":", 0, duid_arr, sizeof (duid_arr), &duid_len)) {
/* MAX DUID length is 128 octects + the type code (2 octects). */
if ( duid_len > 2
&& duid_len <= (128 + 2)) {
NM_SET_OUT (out_duid_bin, g_bytes_new (duid_arr, duid_len));
return TRUE;
}
}
return FALSE;
}
/**
* nm_utils_check_virtual_device_compatibility:
* @virtual_type: a virtual connection type
* @other_type: a connection type to test against @virtual_type
*
* Determines if a connection of type @virtual_type can (in the
* general case) work with connections of type @other_type.
*
* If @virtual_type is %NM_TYPE_SETTING_VLAN, then this checks if
* @other_type is a valid type for the parent of a VLAN.
*
* If @virtual_type is a "master" type (eg, %NM_TYPE_SETTING_BRIDGE),
* then this checks if @other_type is a valid type for a slave of that
* master.
*
* Note that even if this returns %TRUE it is not guaranteed that
* <emphasis>every</emphasis> connection of type @other_type is
* compatible with @virtual_type; it may depend on the exact
* configuration of the two connections, or on the capabilities of an
* underlying device driver.
*
* Returns: %TRUE or %FALSE
*/
gboolean
nm_utils_check_virtual_device_compatibility (GType virtual_type, GType other_type)
{
g_return_val_if_fail (_nm_setting_type_get_base_type_priority (virtual_type) != NM_SETTING_PRIORITY_INVALID, FALSE);
g_return_val_if_fail (_nm_setting_type_get_base_type_priority (other_type) != NM_SETTING_PRIORITY_INVALID, FALSE);
if (virtual_type == NM_TYPE_SETTING_BOND) {
return ( other_type == NM_TYPE_SETTING_INFINIBAND
|| other_type == NM_TYPE_SETTING_WIRED
|| other_type == NM_TYPE_SETTING_BRIDGE
|| other_type == NM_TYPE_SETTING_BOND
|| other_type == NM_TYPE_SETTING_TEAM
|| other_type == NM_TYPE_SETTING_VLAN);
} else if (virtual_type == NM_TYPE_SETTING_BRIDGE) {
return ( other_type == NM_TYPE_SETTING_WIRED
|| other_type == NM_TYPE_SETTING_BOND
|| other_type == NM_TYPE_SETTING_TEAM
|| other_type == NM_TYPE_SETTING_VLAN);
} else if (virtual_type == NM_TYPE_SETTING_TEAM) {
return ( other_type == NM_TYPE_SETTING_WIRED
|| other_type == NM_TYPE_SETTING_BRIDGE
|| other_type == NM_TYPE_SETTING_BOND
|| other_type == NM_TYPE_SETTING_TEAM
|| other_type == NM_TYPE_SETTING_VLAN);
} else if (virtual_type == NM_TYPE_SETTING_VLAN) {
return ( other_type == NM_TYPE_SETTING_WIRED
|| other_type == NM_TYPE_SETTING_WIRELESS
|| other_type == NM_TYPE_SETTING_BRIDGE
|| other_type == NM_TYPE_SETTING_BOND
|| other_type == NM_TYPE_SETTING_TEAM
|| other_type == NM_TYPE_SETTING_VLAN);
} else {
g_warn_if_reached ();
return FALSE;
}
}
typedef struct {
const char *str;
const char *num;
} BondMode;
static const BondMode bond_mode_table[] = {
[0] = { "balance-rr", "0" },
[1] = { "active-backup", "1" },
[2] = { "balance-xor", "2" },
[3] = { "broadcast", "3" },
[4] = { "802.3ad", "4" },
[5] = { "balance-tlb", "5" },
[6] = { "balance-alb", "6" },
};
/**
* nm_utils_bond_mode_int_to_string:
* @mode: bonding mode as a numeric value
*
* Convert bonding mode from integer value to descriptive name.
* See https://www.kernel.org/doc/Documentation/networking/bonding.txt for
* available modes.
*
* Returns: bonding mode string, or NULL on error
*
* Since: 1.2
*/
const char *
nm_utils_bond_mode_int_to_string (int mode)
{
if (mode >= 0 && mode < G_N_ELEMENTS (bond_mode_table))
return bond_mode_table[mode].str;
return NULL;
}
/**
* nm_utils_bond_mode_string_to_int:
* @mode: bonding mode as string
*
* Convert bonding mode from string representation to numeric value.
* See https://www.kernel.org/doc/Documentation/networking/bonding.txt for
* available modes.
* The @mode string can be either a descriptive name or a number (as string).
*
* Returns: numeric bond mode, or -1 on error
*
* Since: 1.2
*/
int
nm_utils_bond_mode_string_to_int (const char *mode)
{
int i;
if (!mode || !*mode)
return -1;
for (i = 0; i < G_N_ELEMENTS (bond_mode_table); i++) {
if (NM_IN_STRSET (mode, bond_mode_table[i].str,
bond_mode_table[i].num))
return i;
}
return -1;
}
/*****************************************************************************/
#define STRSTRDICTKEY_V1_SET 0x01
#define STRSTRDICTKEY_V2_SET 0x02
#define STRSTRDICTKEY_ALL_SET 0x03
struct _NMUtilsStrStrDictKey {
char type;
char data[1];
};
guint
_nm_utils_strstrdictkey_hash (gconstpointer a)
{
const NMUtilsStrStrDictKey *k = a;
const char *p;
NMHashState h;
nm_hash_init (&h, 76642997u);
if (k) {
if (((int) k->type) & ~STRSTRDICTKEY_ALL_SET)
g_return_val_if_reached (0);
nm_hash_update_val (&h, k->type);
if (k->type & STRSTRDICTKEY_ALL_SET) {
p = strchr (k->data, '\0');
if (k->type == STRSTRDICTKEY_ALL_SET) {
/* the key contains two strings. Continue... */
p = strchr (p + 1, '\0');
}
if (p != k->data)
nm_hash_update (&h, k->data, p - k->data);
}
}
return nm_hash_complete (&h);
}
gboolean
_nm_utils_strstrdictkey_equal (gconstpointer a, gconstpointer b)
{
const NMUtilsStrStrDictKey *k1 = a;
const NMUtilsStrStrDictKey *k2 = b;
if (k1 == k2)
return TRUE;
if (!k1 || !k2)
return FALSE;
if (k1->type != k2->type)
return FALSE;
if (k1->type & STRSTRDICTKEY_ALL_SET) {
if (!nm_streq (k1->data, k2->data))
return FALSE;
if (k1->type == STRSTRDICTKEY_ALL_SET) {
gsize l = strlen (k1->data) + 1;
return nm_streq (&k1->data[l], &k2->data[l]);
}
}
return TRUE;
}
NMUtilsStrStrDictKey *
_nm_utils_strstrdictkey_create (const char *v1, const char *v2)
{
char type = 0;
gsize l1 = 0, l2 = 0;
NMUtilsStrStrDictKey *k;
if (!v1 && !v2)
return g_malloc0 (1);
/* we need to distinguish between ("",NULL) and (NULL,"").
* Thus, in @type we encode which strings we have present
* as not-NULL. */
if (v1) {
type |= STRSTRDICTKEY_V1_SET;
l1 = strlen (v1) + 1;
}
if (v2) {
type |= STRSTRDICTKEY_V2_SET;
l2 = strlen (v2) + 1;
}
k = g_malloc (G_STRUCT_OFFSET (NMUtilsStrStrDictKey, data) + l1 + l2);
k->type = type;
if (v1)
memcpy (&k->data[0], v1, l1);
if (v2)
memcpy (&k->data[l1], v2, l2);
return k;
}
static gboolean
validate_dns_option (const char *name,
gboolean numeric,
gboolean ipv6,
const NMUtilsDNSOptionDesc *option_descs)
{
const NMUtilsDNSOptionDesc *desc;
if (!option_descs)
return !!*name;
for (desc = option_descs; desc->name; desc++) {
if (nm_streq (name, desc->name) &&
numeric == desc->numeric &&
(!desc->ipv6_only || ipv6))
return TRUE;
}
return FALSE;
}
/**
* _nm_utils_dns_option_validate:
* @option: option string
* @out_name: (out) (allow-none): the option name
* @out_value: (out) (allow-none): the option value
* @ipv6: whether the option refers to a IPv6 configuration
* @option_descs: (allow-none): an array of NMUtilsDNSOptionDesc which describes the
* valid options
*
* Parses a DNS option in the form "name" or "name:number" and, if
* @option_descs is not NULL, checks that the option conforms to one
* of the provided descriptors. If @option_descs is NULL @ipv6 is
* not considered.
*
* Returns: %TRUE when the parsing was successful and the option is valid,
* %FALSE otherwise
*/
gboolean
_nm_utils_dns_option_validate (const char *option,
char **out_name,
long *out_value,
gboolean ipv6,
const NMUtilsDNSOptionDesc *option_descs)
{
gs_free char *option0_free = NULL;
const char *option0;
const char *option1;
const char *delim;
long option1_num;
g_return_val_if_fail (option != NULL, FALSE);
NM_SET_OUT (out_name, NULL);
NM_SET_OUT (out_value, -1);
if (!option[0])
return FALSE;
delim = strchr (option, ':');
if (!delim) {
if (!validate_dns_option (option, FALSE, ipv6, option_descs))
return FALSE;
NM_SET_OUT (out_name, g_strdup (option));
return TRUE;
}
option1 = &delim[1];
if (!option1[0])
return FALSE;
if (!NM_STRCHAR_ALL (option1, ch, g_ascii_isdigit (ch)))
return FALSE;
option0 = nm_strndup_a (300, option, delim - option, &option0_free);
if (!validate_dns_option (option0, TRUE, ipv6, option_descs))
return FALSE;
option1_num = _nm_utils_ascii_str_to_int64 (option1, 10, 0, G_MAXINT32, -1);
if (option1_num == -1)
return FALSE;
NM_SET_OUT (out_name, g_steal_pointer (&option0_free)
?: g_strdup (option0));
NM_SET_OUT (out_value, option1_num);
return TRUE;
}
/**
* _nm_utils_dns_option_find_idx:
* @array: an array of strings
* @option: a dns option string
*
* Searches for an option in an array of strings. The match is
* performed only the option name; the option value is ignored.
*
* Returns: the index of the option in the array or -1 if was not
* found.
*/
gssize _nm_utils_dns_option_find_idx (GPtrArray *array, const char *option)
{
gs_free char *option_name = NULL;
guint i;
if (!_nm_utils_dns_option_validate (option, &option_name, NULL, FALSE, NULL))
return -1;
for (i = 0; i < array->len; i++) {
gs_free char *tmp_name = NULL;
if (_nm_utils_dns_option_validate (array->pdata[i], &tmp_name, NULL, FALSE, NULL)) {
if (nm_streq (tmp_name, option_name))
return i;
}
}
return -1;
}
/*****************************************************************************/
/**
* nm_utils_enum_to_str:
* @type: the %GType of the enum
* @value: the value to be translated
*
* Converts an enum value to its string representation. If the enum is a
* %G_TYPE_FLAGS the function returns a comma-separated list of matching values.
* If the value has no corresponding string representation, it is converted
* to a number. For enums it is converted to a decimal number, for flags
* to an (unsigned) hex number.
*
* Returns: a newly allocated string or %NULL
*
* Since: 1.2
*/
char *
nm_utils_enum_to_str (GType type, int value)
{
return _nm_utils_enum_to_str_full (type, value, ", ", NULL);
}
/**
* nm_utils_enum_from_str:
* @type: the %GType of the enum
* @str: the input string
* @out_value: (out) (allow-none): the output value
* @err_token: (out) (allow-none) (transfer full): location to store the first unrecognized token
*
* Converts a string to the matching enum value.
*
* If the enum is a %G_TYPE_FLAGS the function returns the logical OR of values
* matching the comma-separated tokens in the string; if an unknown token is found
* the function returns %FALSE and stores a pointer to a newly allocated string
* containing the unrecognized token in @err_token.
*
* Returns: %TRUE if the conversion was successful, %FALSE otherwise
*
* Since: 1.2
*/
gboolean
nm_utils_enum_from_str (GType type, const char *str,
int *out_value, char **err_token)
{
return _nm_utils_enum_from_str_full (type, str, out_value, err_token, NULL);
}
/**
* nm_utils_enum_get_values:
* @type: the %GType of the enum
* @from: the first element to be returned
* @to: the last element to be returned
*
* Returns the list of possible values for a given enum.
*
* Returns: (transfer container): a NULL-terminated dynamically-allocated array of static strings
* or %NULL on error
*
* Since: 1.2
*/
const char **nm_utils_enum_get_values (GType type, int from, int to)
{
return _nm_utils_enum_get_values (type, from, to);
}
/*****************************************************************************/
static gboolean
_nm_utils_is_json_object_no_validation (const char *str, GError **error)
{
nm_assert (str);
/* libjansson also requires only utf-8 encoding. */
if (!g_utf8_validate (str, -1, NULL)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("not valid utf-8"));
return FALSE;
}
while (g_ascii_isspace (str[0]))
str++;
/* do some very basic validation to see if this might be a JSON object. */
if (str[0] == '{') {
gsize l;
l = strlen (str) - 1;
while (l > 0 && g_ascii_isspace (str[l]))
l--;
if (str[l] == '}')
return TRUE;
}
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("is not a JSON object"));
return FALSE;
}
/**
* nm_utils_is_json_object:
* @str: the JSON string to test
* @error: optional error reason
*
* Returns: whether the passed string is valid JSON.
* If libnm is not compiled with libjansson support, this check will
* also return %TRUE for possibly invalid inputs. If that is a problem
* for you, you must validate the JSON yourself.
*
* Since: 1.6
*/
gboolean
nm_utils_is_json_object (const char *str, GError **error)
{
nm_auto_decref_json nm_json_t *json = NULL;
const NMJsonVt *vt;
nm_json_error_t jerror;
g_return_val_if_fail (!error || !*error, FALSE);
if (!str || !str[0]) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
str ? _("value is NULL") : _("value is empty"));
return FALSE;
}
if (!(vt = nm_json_vt ()))
return _nm_utils_is_json_object_no_validation (str, error);
json = vt->nm_json_loads (str, NM_JSON_REJECT_DUPLICATES, &jerror);
if (!json) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("invalid JSON at position %d (%s)"),
jerror.position,
jerror.text);
return FALSE;
}
/* valid JSON (depending on the definition) can also be a literal.
* Here we only allow objects. */
if (!nm_json_is_object (json)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("is not a JSON object"));
return FALSE;
}
return TRUE;
}
static char *
attribute_unescape (const char *start, const char *end)
{
char *ret, *dest;
nm_assert (start <= end);
dest = ret = g_malloc (end - start + 1);
for (; start < end && *start; start++) {
if (*start == '\\') {
start++;
if (!*start)
break;
}
*dest++ = *start;
}
*dest = '\0';
return ret;
}
gboolean
_nmtst_variant_attribute_spec_assert_sorted (const NMVariantAttributeSpec *const*array,
gsize len)
{
gsize i;
g_assert (array);
g_assert (len > 0);
g_assert_cmpint(len, ==, NM_PTRARRAY_LEN (array));
for (i = 0; i < len; i++) {
nm_assert (array[i]->name);
nm_assert (array[i]->name[0]);
if (i > 0)
nm_assert (strcmp (array[i - 1]->name, array[i]->name) < 0);
}
nm_assert (!array[i]);
return TRUE;
}
const NMVariantAttributeSpec *
_nm_variant_attribute_spec_find_binary_search (const NMVariantAttributeSpec *const*array,
gsize len,
const char *name)
{
gssize idx;
G_STATIC_ASSERT_EXPR (G_STRUCT_OFFSET (NMVariantAttributeSpec, name) == 0);
idx = nm_utils_ptrarray_find_binary_search ((gconstpointer *) array,
len,
&name,
nm_strcmp_p_with_data,
NULL,
NULL,
NULL);
if (idx < 0)
return NULL;
return array[idx];
}
/**
* nm_utils_parse_variant_attributes:
* @string: the input string
* @attr_separator: the attribute separator character
* @key_value_separator: character separating key and values
* @ignore_unknown: whether unknown attributes should be ignored
* @spec: the attribute format specifiers
* @error: (out) (allow-none): location to store the error on failure
*
* Parse attributes from a string.
*
* Returns: (transfer full) (element-type utf8 GVariant): a #GHashTable mapping
* attribute names to #GVariant values. Warning: the variant are still floating
* references, owned by the hash table. If you take a reference, ensure to sink
* the one of the hash table first.
*
* Since: 1.8
*/
GHashTable *
nm_utils_parse_variant_attributes (const char *string,
char attr_separator,
char key_value_separator,
gboolean ignore_unknown,
const NMVariantAttributeSpec *const *spec,
GError **error)
{
gs_unref_hashtable GHashTable *ht = NULL;
const char *ptr = string, *start = NULL, *sep;
GVariant *variant;
const NMVariantAttributeSpec *const *s;
g_return_val_if_fail (string, NULL);
g_return_val_if_fail (attr_separator, NULL);
g_return_val_if_fail (key_value_separator, NULL);
g_return_val_if_fail (!error || !*error, NULL);
ht = g_hash_table_new_full (nm_str_hash, g_str_equal, g_free, (GDestroyNotify) g_variant_unref);
while (TRUE) {
gs_free char *name = NULL, *value = NULL;
if (!start)
start = ptr;
if (*ptr == '\\') {
ptr++;
if (!*ptr) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
_("unterminated escape sequence"));
return NULL;
}
goto next;
}
if (*ptr == attr_separator || *ptr == '\0') {
if (ptr == start) {
/* multiple separators */
start = NULL;
goto next;
}
/* Find the key-value separator */
for (sep = start; sep != ptr; sep++) {
if (*sep == '\\') {
sep++;
if (!*sep) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_FAILED,
_("unterminated escape sequence"));
return NULL;
}
}
if (*sep == key_value_separator)
break;
}
name = attribute_unescape (start, sep);
for (s = spec; *s; s++) {
if (g_hash_table_contains (ht, (*s)->name))
continue;
if (nm_streq (name, (*s)->name))
break;
if ( (*s)->no_value
&& g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_STRING))
break;
}
if (!*s) {
if (ignore_unknown)
goto next;
else {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("unknown attribute '%s'"), name);
return NULL;
}
}
if ((*s)->no_value) {
if ((*s)->consumes_rest) {
value = g_strdup (start);
ptr = strchr (start, '\0');
} else {
value = g_steal_pointer (&name);
}
} else {
if (*sep != key_value_separator) {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("missing key-value separator '%c' after '%s'"), key_value_separator, name);
return NULL;
}
/* The attribute and key/value separators are the same. Look for the next one. */
if (ptr == sep)
goto next;
value = attribute_unescape (sep + 1, ptr);
}
if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_UINT32)) {
gint64 num = _nm_utils_ascii_str_to_int64 (value, 10, 0, G_MAXUINT32, -1);
if (num == -1) {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("invalid uint32 value '%s' for attribute '%s'"), value, (*s)->name);
return NULL;
}
variant = g_variant_new_uint32 (num);
} else if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_INT32)) {
gint64 num = _nm_utils_ascii_str_to_int64 (value, 10, G_MININT32, G_MAXINT32, G_MAXINT64);
if (num == G_MAXINT64) {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("invalid int32 value '%s' for attribute '%s'"), value, (*s)->name);
return NULL;
}
variant = g_variant_new_int32 (num);
} else if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_UINT64)) {
guint64 num = _nm_utils_ascii_str_to_uint64 (value, 10, 0, G_MAXUINT64, G_MAXUINT64);
if (num == G_MAXUINT64 && errno != 0) {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("invalid uint64 value '%s' for attribute '%s'"), value, (*s)->name);
return NULL;
}
variant = g_variant_new_uint64 (num);
} else if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_BYTE)) {
gint64 num = _nm_utils_ascii_str_to_int64 (value, 10, 0, G_MAXUINT8, -1);
if (num == -1) {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("invalid uint8 value '%s' for attribute '%s'"), value, (*s)->name);
return NULL;
}
variant = g_variant_new_byte ((guchar) num);
} else if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_BOOLEAN)) {
int b;
b = (*s)->no_value ? TRUE :_nm_utils_ascii_str_to_bool (value, -1);
if (b == -1) {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("invalid boolean value '%s' for attribute '%s'"), value, (*s)->name);
return NULL;
}
variant = g_variant_new_boolean (b);
} else if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_STRING)) {
variant = g_variant_new_take_string (g_steal_pointer (&value));
} else if (g_variant_type_equal ((*s)->type, G_VARIANT_TYPE_BYTESTRING)) {
variant = g_variant_new_bytestring (value);
} else {
g_set_error (error, NM_CONNECTION_ERROR, NM_CONNECTION_ERROR_FAILED,
_("unsupported attribute '%s' of type '%s'"), (*s)->name,
(char *) (*s)->type);
return NULL;
}
g_hash_table_insert (ht, g_strdup ((*s)->name), variant);
start = NULL;
}
next:
if (*ptr == '\0')
break;
ptr++;
}
return g_steal_pointer (&ht);
}
/*
* nm_utils_format_variant_attributes:
* @attributes: (element-type utf8 GVariant): a #GHashTable mapping attribute names to #GVariant values
* @attr_separator: the attribute separator character
* @key_value_separator: character separating key and values
*
* Format attributes to a string.
*
* Returns: (transfer full): the string representing attributes, or %NULL
* in case there are no attributes
*
* Since: 1.8
*/
char *
nm_utils_format_variant_attributes (GHashTable *attributes,
char attr_separator,
char key_value_separator)
{
return _nm_utils_format_variant_attributes (attributes,
NULL,
attr_separator,
key_value_separator);
}
/*****************************************************************************/
/*
* nm_utils_get_timestamp_msec():
*
* Gets current time in milliseconds of CLOCK_BOOTTIME.
*
* Returns: time in milliseconds
*
* Since: 1.12
*/
gint64
nm_utils_get_timestamp_msec (void)
{
gint64 ts;
ts = nm_utils_clock_gettime_msec (CLOCK_BOOTTIME);
if (ts >= 0)
return ts;
if (ts == -EINVAL) {
/* The fallback to CLOCK_MONOTONIC is taken only if we're running on a
* criminally old kernel, prior to 2.6.39 (released on 18 May, 2011).
* That happens during buildcheck on old builders, we don't expect to
* be actually runs on kernels that old. */
ts = nm_utils_clock_gettime_msec (CLOCK_MONOTONIC);
if (ts >= 0)
return ts;
}
g_return_val_if_reached (-1);
}
/*****************************************************************************/
/**
* nm_utils_version:
*
* Returns: the version ID of the libnm version. That is, the %NM_VERSION
* at runtime.
*
* Since: 1.6.0
*/
guint
nm_utils_version (void)
{
return NM_VERSION;
}
/*****************************************************************************/
NM_UTILS_FLAGS2STR_DEFINE (nm_bluetooth_capability_to_string, NMBluetoothCapabilities,
NM_UTILS_FLAGS2STR (NM_BT_CAPABILITY_NONE, "NONE"),
NM_UTILS_FLAGS2STR (NM_BT_CAPABILITY_DUN, "DUN"),
NM_UTILS_FLAGS2STR (NM_BT_CAPABILITY_NAP, "NAP"),
)
/*****************************************************************************/
/**
* nm_utils_base64secret_decode:
* @base64_key: the (possibly invalid) base64 encode key.
* @required_key_len: the expected (binary) length of the key after
* decoding. If the length does not match, the validation fails.
* @out_key: (allow-none): (out): an optional output buffer for the binary
* key. If given, it will be filled with exactly @required_key_len
* bytes.
*
* Returns: %TRUE if the input key is a valid base64 encoded key
* with @required_key_len bytes.
*
* Since: 1.16
*/
gboolean
nm_utils_base64secret_decode (const char *base64_key,
gsize required_key_len,
guint8 *out_key)
{
nm_auto_free guint8 *bin_arr = NULL;
gsize base64_key_len;
gsize bin_len;
int r;
if (!base64_key)
return FALSE;
base64_key_len = strlen (base64_key);
r = nm_sd_utils_unbase64mem (base64_key, base64_key_len, TRUE, &bin_arr, &bin_len);
if (r < 0)
return FALSE;
if (bin_len != required_key_len) {
nm_explicit_bzero (bin_arr, bin_len);
return FALSE;
}
if (out_key)
memcpy (out_key, bin_arr, required_key_len);
nm_explicit_bzero (bin_arr, bin_len);
return TRUE;
}
gboolean
nm_utils_base64secret_normalize (const char *base64_key,
gsize required_key_len,
char **out_base64_key_norm)
{
gs_free guint8 *buf_free = NULL;
guint8 buf_static[200];
guint8 *buf;
if (required_key_len > sizeof (buf_static)) {
buf_free = g_new (guint8, required_key_len);
buf = buf_free;
} else
buf = buf_static;
if (!nm_utils_base64secret_decode (base64_key, required_key_len, buf)) {
NM_SET_OUT (out_base64_key_norm, NULL);
return FALSE;
}
NM_SET_OUT (out_base64_key_norm, g_base64_encode (buf, required_key_len));
nm_explicit_bzero (buf, required_key_len);
return TRUE;
}
static GVariant *
_nm_utils_bridge_vlans_to_dbus (const NMSettInfoSetting *sett_info,
guint property_idx,
NMConnection *connection,
NMSetting *setting,
NMConnectionSerializationFlags flags,
const NMConnectionSerializationOptions *options)
{
gs_unref_ptrarray GPtrArray *vlans = NULL;
GVariantBuilder builder;
guint i;
const char *property_name = sett_info->property_infos[property_idx].name;
nm_assert (property_name);
g_object_get (setting, property_name, &vlans, NULL);
g_variant_builder_init (&builder, G_VARIANT_TYPE ("aa{sv}"));
if (vlans) {
for (i = 0; i < vlans->len; i++) {
NMBridgeVlan *vlan = vlans->pdata[i];
GVariantBuilder vlan_builder;
guint16 vid_start, vid_end;
nm_bridge_vlan_get_vid_range (vlan, &vid_start, &vid_end);
g_variant_builder_init (&vlan_builder, G_VARIANT_TYPE_VARDICT);
g_variant_builder_add (&vlan_builder, "{sv}", "vid-start",
g_variant_new_uint16 (vid_start));
g_variant_builder_add (&vlan_builder, "{sv}", "vid-end",
g_variant_new_uint16 (vid_end));
g_variant_builder_add (&vlan_builder, "{sv}", "pvid",
g_variant_new_boolean (nm_bridge_vlan_is_pvid (vlan)));
g_variant_builder_add (&vlan_builder, "{sv}", "untagged",
g_variant_new_boolean (nm_bridge_vlan_is_untagged (vlan)));
g_variant_builder_add (&builder, "a{sv}", &vlan_builder);
}
}
return g_variant_builder_end (&builder);
}
static gboolean
_nm_utils_bridge_vlans_from_dbus (NMSetting *setting,
GVariant *connection_dict,
const char *property,
GVariant *value,
NMSettingParseFlags parse_flags,
GError **error)
{
gs_unref_ptrarray GPtrArray *vlans = NULL;
GVariantIter vlan_iter;
GVariant *vlan_var;
g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aa{sv}")), FALSE);
vlans = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_bridge_vlan_unref);
g_variant_iter_init (&vlan_iter, value);
while (g_variant_iter_next (&vlan_iter, "@a{sv}", &vlan_var)) {
_nm_unused gs_unref_variant GVariant *var_unref = vlan_var;
NMBridgeVlan *vlan;
guint16 vid_start, vid_end;
gboolean pvid = FALSE, untagged = FALSE;
if (!g_variant_lookup (vlan_var, "vid-start", "q", &vid_start))
continue;
if ( vid_start < NM_BRIDGE_VLAN_VID_MIN
|| vid_start > NM_BRIDGE_VLAN_VID_MAX)
continue;
if (!g_variant_lookup (vlan_var, "vid-end", "q", &vid_end))
continue;
if ( vid_end < NM_BRIDGE_VLAN_VID_MIN
|| vid_end > NM_BRIDGE_VLAN_VID_MAX)
continue;
if (vid_start > vid_end)
continue;
if (!g_variant_lookup (vlan_var, "pvid", "b", &pvid))
pvid = FALSE;
if (pvid && vid_start != vid_end)
continue;
if (!g_variant_lookup (vlan_var, "untagged", "b", &untagged))
untagged = FALSE;
vlan = nm_bridge_vlan_new (vid_start, vid_end);
nm_bridge_vlan_set_untagged (vlan, untagged);
nm_bridge_vlan_set_pvid (vlan, pvid);
g_ptr_array_add (vlans, vlan);
}
g_object_set (setting, property, vlans, NULL);
return TRUE;
}
const NMSettInfoPropertType nm_sett_info_propert_type_bridge_vlans = {
.dbus_type = NM_G_VARIANT_TYPE ("aa{sv}"),
.to_dbus_fcn = _nm_utils_bridge_vlans_to_dbus,
.from_dbus_fcn = _nm_utils_bridge_vlans_from_dbus,
};
gboolean
_nm_utils_bridge_vlan_verify_list (GPtrArray *vlans,
gboolean check_normalizable,
GError **error,
const char *setting,
const char *property)
{
guint i;
gs_unref_hashtable GHashTable *h = NULL;
gboolean pvid_found = FALSE;
if ( !vlans
|| vlans->len <= 1)
return TRUE;
if (check_normalizable) {
guint16 vid_prev_end, vid_start, vid_end;
nm_assert (_nm_utils_bridge_vlan_verify_list (vlans, FALSE, NULL, setting, property));
nm_bridge_vlan_get_vid_range (vlans->pdata[0], NULL, &vid_prev_end);
for (i = 1; i < vlans->len; i++) {
const NMBridgeVlan *vlan = vlans->pdata[i];
nm_bridge_vlan_get_vid_range (vlan, &vid_start, &vid_end);
if (vid_prev_end > vid_start) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("Bridge VLANs %d and %d are not sorted by ascending vid"),
vid_prev_end,
vid_start);
g_prefix_error (error, "%s.%s: ", setting, property);
return FALSE;
}
vid_prev_end = vid_end;
}
return TRUE;
}
h = g_hash_table_new (nm_direct_hash, NULL);
for (i = 0; i < vlans->len; i++) {
NMBridgeVlan *vlan = vlans->pdata[i];
guint16 v, vid_start, vid_end;
nm_bridge_vlan_get_vid_range (vlan, &vid_start, &vid_end);
for (v = vid_start; v <= vid_end; v++) {
if (!nm_g_hash_table_add (h, GUINT_TO_POINTER (v))) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("duplicate bridge VLAN vid %u"), v);
g_prefix_error (error, "%s.%s: ", setting, property);
return FALSE;
}
}
if (nm_bridge_vlan_is_pvid (vlan)) {
if ( vid_start != vid_end
|| pvid_found) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("only one VLAN can be the PVID"));
g_prefix_error (error, "%s.%s: ", setting, property);
return FALSE;
}
pvid_found = TRUE;
}
}
return TRUE;
}
gboolean
_nm_utils_iaid_verify (const char *str, gint64 *out_value)
{
gint64 iaid;
NM_SET_OUT (out_value, -1);
if (!str || !str[0])
return FALSE;
if (NM_IAID_IS_SPECIAL (str))
return TRUE;
if ( NM_STRCHAR_ALL (str, ch, ch >= '0' && ch <= '9')
&& (str[0] != '0' || str[1] == '\0')
&& (iaid = _nm_utils_ascii_str_to_int64 (str, 10, 0, G_MAXUINT32, -1)) != -1) {
NM_SET_OUT (out_value, iaid);
return TRUE;
}
return FALSE;
}
gboolean
_nm_utils_validate_dhcp_hostname_flags (NMDhcpHostnameFlags flags,
int addr_family,
GError **error)
{
NMDhcpHostnameFlags unknown;
unknown = flags;
unknown &= ~( NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED
| NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE
| NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE
| NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS);
if (unknown) {
g_set_error (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("unknown flags 0x%x"), (guint) unknown);
return FALSE;
}
if (NM_FLAGS_ALL (flags,
NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE
| NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("'fqdn-no-update' and 'fqdn-serv-update' flags cannot be set at the same time"));
return FALSE;
}
if ( NM_FLAGS_HAS (flags, NM_DHCP_HOSTNAME_FLAG_FQDN_CLEAR_FLAGS)
&& NM_FLAGS_ANY (flags, NM_DHCP_HOSTNAME_FLAG_FQDN_SERV_UPDATE
| NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED
| NM_DHCP_HOSTNAME_FLAG_FQDN_NO_UPDATE)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("'fqdn-clear-flags' flag is incompatible with other FQDN flags"));
return FALSE;
}
if ( addr_family == AF_INET6
&& (flags & NM_DHCP_HOSTNAME_FLAG_FQDN_ENCODED)) {
g_set_error_literal (error,
NM_CONNECTION_ERROR,
NM_CONNECTION_ERROR_INVALID_PROPERTY,
_("DHCPv6 does not support the E (encoded) FQDN flag"));
return FALSE;
}
return TRUE;
}