NetworkManager/libnm/nm-device-wifi.c
Thomas Haller ce0e898fb4 libnm: refactor caching of D-Bus objects in NMClient
No longer use GDBusObjectMangaerClient and gdbus-codegen generated classes
for the NMClient cache. Instead, use GDBusConnection directly and a
custom implementation (NMLDBusObject) for caching D-Bus' ObjectManager
data.

CHANGES
-------

- This is a complete rework. I think the previous implementation was
difficult to understand. There were unfixed bugs and nobody understood
the code well enough to fix them. Maybe somebody out there understood the
code, but I certainly did not. At least nobody provided patches to fix those
issues. I do believe that this implementation is more straightforward and
easier to understand. It removes a lot of layers of code. Whether this claim
of simplicity is true, each reader must decide for himself/herself. Note
that it is still fairly complex.

- There was a lingering performance issue with large number of D-Bus
objects. The patch tries hard that the implementation scales well. Of
course, when we cache N objects that have N-to-M references to other,
we still are fundamentally O(N*M) for runtime and memory consumption (with
M being the number of references between objects). But each part should behave
efficiently and well.

- Play well with GMainContext. libnm code (NMClient) is generally not
thread safe. However, it should work to use multiple instances in
parallel, as long as each access to a NMClient is through the caller's
GMainContext. This follows glib's style and effectively allows to use NMClient
in a multi threaded scenario. This implies to stick to a main context
upon construction and ensure that callbacks are only invoked when
iterating that context. Also, NMClient itself shall never iterate the
caller's context. This also means, libnm must never use g_idle_add() or
g_timeout_add(), as those enqueue sources in the g_main_context_default()
context.

- Get ordering of messages right. All events are consistently enqueued
in a GMainContext and processed strictly in order. For example,
previously "nm-object.c" tried to combine signals and emit them on an
idle handler. That is wrong, signals must be emitted in the right order
and when they happen. Note that when using GInitable's synchronous initialization
to initialize the NMClient instance, NMClient internally still operates fully
asynchronously. In that case NMClient has an internal main context.

- NMClient takes over most of the functionality. When using D-Bus'
ObjectManager interface, one needs to handle basically the entire state
of the D-Bus interface. That cannot be separated well into distinct
parts, and even if you try, you just end up having closely related code
in different source files. Spreading related code does not make it
easier to understand, on the contrary. That means, NMClient is
inherently complex as it contains most of the logic. I think that is
not avoidable, but it's not as bad as it sounds.

- NMClient processes D-Bus messages and state changes in separate steps.
First NMClient unpacks the message (e.g. _dbus_handle_properties_changed()) and
keeps track of the changed data. Then we update the GObject instances
(_dbus_handle_obj_changed_dbus()) without emitting any signals yet. Finally,
we emit all signals and notifications that were collected
(_dbus_handle_changes_commit()). Note that for example during the initial
GetManagedObjects() reply, NMClient receive a large amount of state at once.
But we first apply all the changes to our GObject instances before
emitting any signals. The result is that signals are always emitted in a moment
when the cache is consistent. The unavoidable downside is that when you receive
a property changed signal, possibly many other properties changed
already and more signals are about to be emitted.

- NMDeviceWifi no longer modifies the content of the cache from client side
during poke_wireless_devices_with_rf_status(). The content of the cache
should be determined by D-Bus alone and follow what NetworkManager
service exposes. Local modifications should be avoided.

- This aims to bring no API/ABI change, though it does of course bring
various subtle changes in behavior. Those should be all for the better, but the
goal is not to break any existing clients. This does change internal
(albeit externally visible) API, like dropping NM_OBJECT_DBUS_OBJECT_MANAGER
property and NMObject no longer implementing GInitableIface and GAsyncInitableIface.

- Some uses of gdbus-codegen classes remain in NMVpnPluginOld, NMVpnServicePlugin
and NMSecretAgentOld. These are independent of NMClient/NMObject and
should be reworked separately.

- While we no longer use generated classes from gdbus-codegen, we don't
need more glue code than before. Also before we constructed NMPropertiesInfo and
a had large amount of code to propagate properties from NMDBus* to NMObject.
That got completely reworked, but did not fundamentally change. You still need
about the same effort to create the NMLDBusMetaIface. Not using
generated bindings did not make anything worse (which tells about the
usefulness of generated code, at least in the way it was used).

- NMLDBusMetaIface and other meta data is static and immutable. This
avoids copying them around. Also, macros like NML_DBUS_META_PROPERTY_INIT_U()
have compile time checks to ensure the property types matches. It's pretty hard
to misuse them because it won't compile.

- The meta data now explicitly encodes the expected D-Bus types and
makes sure never to accept wrong data. That would only matter when the
server (accidentally or intentionally) exposes unexpected types on
D-Bus. I don't think that was previously ensured in all cases.
For example, demarshal_generic() only cared about the GObject property
type, it didn't know the expected D-Bus type.

- Previously GDBusObjectManager would sometimes emit warnings (g_log()). Those
probably indicated real bugs. In any case, it prevented us from running CI
with G_DEBUG=fatal-warnings, because there would be just too many
unrelated crashes. Now we log debug messages that can be enabled with
"LIBNM_CLIENT_DEBUG=trace". Some of these messages can also be turned
into g_warning()/g_critical() by setting LIBNM_CLIENT_DEBUG=warning,error.
Together with G_DEBUG=fatal-warnings, this turns them into assertions.
Note that such "assertion failures" might also happen because of a server
bug (or change). Thus these are not common assertions that indicate a bug
in libnm and are thus not armed unless explicitly requested. In our CI we
should now always run with LIBNM_CLIENT_DEBUG=warning,error and
G_DEBUG=fatal-warnings and to catch bugs. Note that currently
NetworkManager has bugs in this regard, so enabling this will result in
assertion failures. That should be fixed first.

- Note that this changes the order in which we emit "notify:devices" and
"device-added" signals. I think it makes the most sense to emit first
"device-removed", then "notify:devices", and finally "device-added"
signals.
This changes behavior for commit 52ae28f6e5 ('libnm: queue
added/removed signals and suppress uninitialized notifications'),
but I don't think that users should actually rely on the order. Still,
the new order makes the most sense to me.

- In NetworkManager, profiles can be invisible to the user by setting
"connection.permissions". Such profiles would be hidden by NMClient's
nm_client_get_connections() and their "connection-added"/"connection-removed"
signals.
Note that NMActiveConnection's nm_active_connection_get_connection()
and NMDevice's nm_device_get_available_connections() still exposes such
hidden NMRemoteConnection instances. This behavior was preserved.

NUMBERS
-------

I compared 3 versions of libnm.

  [1] 962297f908, current tip of nm-1-20 branch
  [2] 4fad8c7c64, current master, immediate parent of this patch
  [3] this patch

All tests were done on Fedora 31, x86_64, gcc 9.2.1-1.fc31.
The libraries were build with

  $ ./contrib/fedora/rpm/build_clean.sh -g -w test -W debug

Note that RPM build already stripped the library.

---

N1) File size of libnm.so.0.1.0 in bytes. There currently seems to be a issue
  on Fedora 31 generating wrong ELF notes. Usually, libnm is smaller but
  in these tests it had large (and bogus) ELF notes. Anyway, the point
  is to show the relative sizes, so it doesn't matter).

  [1] 4075552 (102.7%)
  [2] 3969624 (100.0%)
  [3] 3705208 ( 93.3%)

---

N2) `size /usr/lib64/libnm.so.0.1.0`:

          text             data              bss                dec               hex   filename
  [1]  1314569 (102.0%)   69980 ( 94.8%)   10632 ( 80.4%)   1395181 (101.4%)   1549ed   /usr/lib64/libnm.so.0.1.0
  [2]  1288410 (100.0%)   73796 (100.0%)   13224 (100.0%)   1375430 (100.0%)   14fcc6   /usr/lib64/libnm.so.0.1.0
  [3]  1229066 ( 95.4%)   65248 ( 88.4%)   13400 (101.3%)   1307714 ( 95.1%)   13f442   /usr/lib64/libnm.so.0.1.0

---

N3) Performance test with test-client.py. With checkout of [2], run

```
prepare_checkout() {
    rm -rf /tmp/nm-test && \
    git checkout -B test 4fad8c7c64 && \
    git clean -fdx && \
    ./autogen.sh --prefix=/tmp/nm-test && \
    make -j 5 install && \
    make -j 5 check-local-clients-tests-test-client
}
prepare_test() {
    NM_TEST_REGENERATE=1 NM_TEST_CLIENT_BUILDDIR="/data/src/NetworkManager" NM_TEST_CLIENT_NMCLI_PATH=/usr/bin/nmcli python3 ./clients/tests/test-client.py -v
}
do_test() {
  for i in {1..10}; do
      NM_TEST_CLIENT_BUILDDIR="/data/src/NetworkManager" NM_TEST_CLIENT_NMCLI_PATH=/usr/bin/nmcli python3 ./clients/tests/test-client.py -v || return -1
  done
  echo "done!"
}
prepare_checkout
prepare_test
time do_test
```

  [1]  real 2m14.497s (101.3%)     user 5m26.651s (100.3%)     sys  1m40.453s (101.4%)
  [2]  real 2m12.800s (100.0%)     user 5m25.619s (100.0%)     sys  1m39.065s (100.0%)
  [3]  real 1m54.915s ( 86.5%)     user 4m18.585s ( 79.4%)     sys  1m32.066s ( 92.9%)

---

N4) Performance. Run NetworkManager from build [2] and setup a large number
of profiles (551 profiles and 515 devices, mostly unrealized). This
setup is already at the edge of what NetworkManager currently can
handle. Of course, that is a different issue. Here we just check how
long plain `nmcli` takes on the system.

```
do_cleanup() {
    for UUID in $(nmcli -g NAME,UUID connection show | sed -n 's/^xx-c-.*:\([^:]\+\)$/\1/p'); do
        nmcli connection delete uuid "$UUID"
    done
    for DEVICE in $(nmcli -g DEVICE device status | grep '^xx-i-'); do
        nmcli device delete "$DEVICE"
    done
}

do_setup() {
    do_cleanup
    for i in {1..30}; do
        nmcli connection add type bond autoconnect no con-name xx-c-bond-$i ifname xx-i-bond-$i ipv4.method disabled ipv6.method ignore
        for j in $(seq $i 30); do
            nmcli connection add type vlan autoconnect no con-name xx-c-vlan-$i-$j vlan.id $j ifname xx-i-vlan-$i-$j vlan.parent xx-i-bond-$i  ipv4.method disabled ipv6.method ignore
        done
    done
    systemctl restart NetworkManager.service
    sleep 5
}

do_test() {
    perf stat -r 50 -B nmcli 1>/dev/null
}

do_test
```

  [1]

   Performance counter stats for 'nmcli' (50 runs):

              456.33 msec task-clock:u              #    1.093 CPUs utilized            ( +-  0.44% )
                   0      context-switches:u        #    0.000 K/sec
                   0      cpu-migrations:u          #    0.000 K/sec
               5,900      page-faults:u             #    0.013 M/sec                    ( +-  0.02% )
       1,408,675,453      cycles:u                  #    3.087 GHz                      ( +-  0.48% )
       1,594,741,060      instructions:u            #    1.13  insn per cycle           ( +-  0.02% )
         368,744,018      branches:u                #  808.061 M/sec                    ( +-  0.02% )
           4,566,058      branch-misses:u           #    1.24% of all branches          ( +-  0.76% )

             0.41761 +- 0.00282 seconds time elapsed  ( +-  0.68% )

  [2]

   Performance counter stats for 'nmcli' (50 runs):

              477.99 msec task-clock:u              #    1.088 CPUs utilized            ( +-  0.36% )
                   0      context-switches:u        #    0.000 K/sec
                   0      cpu-migrations:u          #    0.000 K/sec
               5,948      page-faults:u             #    0.012 M/sec                    ( +-  0.03% )
       1,471,133,482      cycles:u                  #    3.078 GHz                      ( +-  0.36% )
       1,655,275,369      instructions:u            #    1.13  insn per cycle           ( +-  0.02% )
         382,595,152      branches:u                #  800.433 M/sec                    ( +-  0.02% )
           4,746,070      branch-misses:u           #    1.24% of all branches          ( +-  0.49% )

             0.43923 +- 0.00242 seconds time elapsed  ( +-  0.55% )

  [3]

   Performance counter stats for 'nmcli' (50 runs):

              352.36 msec task-clock:u              #    1.027 CPUs utilized            ( +-  0.32% )
                   0      context-switches:u        #    0.000 K/sec
                   0      cpu-migrations:u          #    0.000 K/sec
               4,790      page-faults:u             #    0.014 M/sec                    ( +-  0.26% )
       1,092,341,186      cycles:u                  #    3.100 GHz                      ( +-  0.26% )
       1,209,045,283      instructions:u            #    1.11  insn per cycle           ( +-  0.02% )
         281,708,462      branches:u                #  799.499 M/sec                    ( +-  0.01% )
           3,101,031      branch-misses:u           #    1.10% of all branches          ( +-  0.61% )

             0.34296 +- 0.00120 seconds time elapsed  ( +-  0.35% )

---

N5) same setup as N4), but run `PAGER= /bin/time -v nmcli`:

  [1]

        Command being timed: "nmcli"
        User time (seconds): 0.42
        System time (seconds): 0.04
        Percent of CPU this job got: 107%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.43
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 34456
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 6128
        Voluntary context switches: 1298
        Involuntary context switches: 1106
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0

  [2]
        Command being timed: "nmcli"
        User time (seconds): 0.44
        System time (seconds): 0.04
        Percent of CPU this job got: 108%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.44
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 34452
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 6169
        Voluntary context switches: 1849
        Involuntary context switches: 142
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0

  [3]

        Command being timed: "nmcli"
        User time (seconds): 0.32
        System time (seconds): 0.02
        Percent of CPU this job got: 102%
        Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.34
        Average shared text size (kbytes): 0
        Average unshared data size (kbytes): 0
        Average stack size (kbytes): 0
        Average total size (kbytes): 0
        Maximum resident set size (kbytes): 29196
        Average resident set size (kbytes): 0
        Major (requiring I/O) page faults: 0
        Minor (reclaiming a frame) page faults: 5059
        Voluntary context switches: 919
        Involuntary context switches: 685
        Swaps: 0
        File system inputs: 0
        File system outputs: 0
        Socket messages sent: 0
        Socket messages received: 0
        Signals delivered: 0
        Page size (bytes): 4096
        Exit status: 0

---

N6) same setup as N4), but run `nmcli monitor` and look at `ps aux` for
  the RSS size.

      USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
  [1] me     1492900 21.0  0.2 461348 33248 pts/10   Sl+  15:02   0:00 nmcli monitor
  [2] me     1490721  5.0  0.2 461496 33548 pts/10   Sl+  15:00   0:00 nmcli monitor
  [3] me     1495801 16.5  0.1 459476 28692 pts/10   Sl+  15:04   0:00 nmcli monitor
2019-11-25 15:08:00 +01:00

765 lines
25 KiB
C

// SPDX-License-Identifier: LGPL-2.1+
/*
* Copyright (C) 2007 - 2008 Novell, Inc.
* Copyright (C) 2007 - 2014 Red Hat, Inc.
*/
#include "nm-default.h"
#include "nm-device-wifi.h"
#include "nm-glib-aux/nm-dbus-aux.h"
#include "nm-setting-connection.h"
#include "nm-setting-wireless.h"
#include "nm-setting-wireless-security.h"
#include "nm-utils.h"
#include "nm-access-point.h"
#include "nm-object-private.h"
#include "nm-core-internal.h"
#include "nm-dbus-helpers.h"
/*****************************************************************************/
NM_GOBJECT_PROPERTIES_DEFINE_BASE (
PROP_HW_ADDRESS,
PROP_PERM_HW_ADDRESS,
PROP_MODE,
PROP_BITRATE,
PROP_ACCESS_POINTS,
PROP_ACTIVE_ACCESS_POINT,
PROP_WIRELESS_CAPABILITIES,
PROP_LAST_SCAN,
);
typedef struct {
NMLDBusPropertyAO access_points;
NMLDBusPropertyO active_access_point;
char *hw_address;
char *perm_hw_address;
gint64 last_scan;
guint32 mode;
guint32 bitrate;
guint32 wireless_capabilities;
} NMDeviceWifiPrivate;
enum {
ACCESS_POINT_ADDED,
ACCESS_POINT_REMOVED,
LAST_SIGNAL
};
static guint signals[LAST_SIGNAL] = { 0 };
struct _NMDeviceWifi {
NMDevice parent;
NMDeviceWifiPrivate _priv;
};
struct _NMDeviceWifiClass {
NMDeviceClass parent;
};
G_DEFINE_TYPE (NMDeviceWifi, nm_device_wifi, NM_TYPE_DEVICE)
#define NM_DEVICE_WIFI_GET_PRIVATE(self) _NM_GET_PRIVATE(self, NMDeviceWifi, NM_IS_DEVICE_WIFI, NMObject, NMDevice)
/*****************************************************************************/
/**
* nm_device_wifi_get_hw_address:
* @device: a #NMDeviceWifi
*
* Gets the actual hardware (MAC) address of the #NMDeviceWifi
*
* Returns: the actual hardware address. This is the internal string used by the
* device, and must not be modified.
**/
const char *
nm_device_wifi_get_hw_address (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), NULL);
return _nml_coerce_property_str_not_empty (NM_DEVICE_WIFI_GET_PRIVATE (device)->hw_address);
}
/**
* nm_device_wifi_get_permanent_hw_address:
* @device: a #NMDeviceWifi
*
* Gets the permanent hardware (MAC) address of the #NMDeviceWifi
*
* Returns: the permanent hardware address. This is the internal string used by the
* device, and must not be modified.
**/
const char *
nm_device_wifi_get_permanent_hw_address (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), NULL);
return _nml_coerce_property_str_not_empty (NM_DEVICE_WIFI_GET_PRIVATE (device)->perm_hw_address);
}
/**
* nm_device_wifi_get_mode:
* @device: a #NMDeviceWifi
*
* Gets the #NMDeviceWifi mode.
*
* Returns: the mode
**/
NM80211Mode
nm_device_wifi_get_mode (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), 0);
return NM_DEVICE_WIFI_GET_PRIVATE (device)->mode;
}
/**
* nm_device_wifi_get_bitrate:
* @device: a #NMDeviceWifi
*
* Gets the bit rate of the #NMDeviceWifi in kbit/s.
*
* Returns: the bit rate (kbit/s)
**/
guint32
nm_device_wifi_get_bitrate (NMDeviceWifi *device)
{
NMDeviceState state;
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), 0);
state = nm_device_get_state (NM_DEVICE (device));
switch (state) {
case NM_DEVICE_STATE_IP_CONFIG:
case NM_DEVICE_STATE_IP_CHECK:
case NM_DEVICE_STATE_SECONDARIES:
case NM_DEVICE_STATE_ACTIVATED:
case NM_DEVICE_STATE_DEACTIVATING:
break;
default:
return 0;
}
return NM_DEVICE_WIFI_GET_PRIVATE (device)->bitrate;
}
/**
* nm_device_wifi_get_capabilities:
* @device: a #NMDeviceWifi
*
* Gets the Wi-Fi capabilities of the #NMDeviceWifi.
*
* Returns: the capabilities
**/
NMDeviceWifiCapabilities
nm_device_wifi_get_capabilities (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), 0);
return NM_DEVICE_WIFI_GET_PRIVATE (device)->wireless_capabilities;
}
/**
* nm_device_wifi_get_active_access_point:
* @device: a #NMDeviceWifi
*
* Gets the active #NMAccessPoint.
*
* Returns: (transfer none): the access point or %NULL if none is active
**/
NMAccessPoint *
nm_device_wifi_get_active_access_point (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), NULL);
return nml_dbus_property_o_get_obj (&NM_DEVICE_WIFI_GET_PRIVATE (device)->active_access_point);
}
/**
* nm_device_wifi_get_access_points:
* @device: a #NMDeviceWifi
*
* Gets all the scanned access points of the #NMDeviceWifi.
*
* Returns: (element-type NMAccessPoint): a #GPtrArray containing all the
* scanned #NMAccessPoints.
* The returned array is owned by the client and should not be modified.
**/
const GPtrArray *
nm_device_wifi_get_access_points (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), NULL);
return nml_dbus_property_ao_get_objs_as_ptrarray (&NM_DEVICE_WIFI_GET_PRIVATE (device)->access_points);
}
/**
* nm_device_wifi_get_access_point_by_path:
* @device: a #NMDeviceWifi
* @path: the object path of the access point
*
* Gets a #NMAccessPoint by path.
*
* Returns: (transfer none): the access point or %NULL if none is found.
**/
NMAccessPoint *
nm_device_wifi_get_access_point_by_path (NMDeviceWifi *device,
const char *path)
{
const GPtrArray *aps;
int i;
NMAccessPoint *ap = NULL;
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), NULL);
g_return_val_if_fail (path != NULL, NULL);
aps = nm_device_wifi_get_access_points (device);
if (!aps)
return NULL;
for (i = 0; i < aps->len; i++) {
NMAccessPoint *candidate = g_ptr_array_index (aps, i);
if (!strcmp (nm_object_get_path (NM_OBJECT (candidate)), path)) {
ap = candidate;
break;
}
}
return ap;
}
/**
* nm_device_wifi_get_last_scan:
* @device: a #NMDeviceWifi
*
* Returns the timestamp (in CLOCK_BOOTTIME milliseconds) for the last finished
* network scan. A value of -1 means the device never scanned for access points.
*
* Use nm_utils_get_timestamp_msec() to obtain current time value suitable for
* comparing to this value.
*
* Returns: the last scan time in seconds
*
* Since: 1.12
**/
gint64
nm_device_wifi_get_last_scan (NMDeviceWifi *device)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), -1);
return NM_DEVICE_WIFI_GET_PRIVATE (device)->last_scan;
}
/**
* nm_device_wifi_request_scan:
* @device: a #NMDeviceWifi
* @cancellable: a #GCancellable, or %NULL
* @error: location for a #GError, or %NULL
*
* Request NM to scan for access points on @device. Note that the function
* returns immediately after requesting the scan, and it may take some time
* after that for the scan to complete.
*
* Returns: %TRUE on success, %FALSE on error, in which case @error will be
* set.
*
* Deprecated: 1.22, use nm_device_wifi_request_scan_async() or GDBusConnection
**/
gboolean
nm_device_wifi_request_scan (NMDeviceWifi *device,
GCancellable *cancellable,
GError **error)
{
return nm_device_wifi_request_scan_options (device, NULL, cancellable, error);
}
/**
* nm_device_wifi_request_scan_options:
* @device: a #NMDeviceWifi
* @options: dictionary with options for RequestScan(), or %NULL
* @cancellable: a #GCancellable, or %NULL
* @error: location for a #GError, or %NULL
*
* Request NM to scan for access points on @device. Note that the function
* returns immediately after requesting the scan, and it may take some time
* after that for the scan to complete.
* This is the same as @nm_device_wifi_request_scan except it accepts @options
* for the scanning. The argument is the dictionary passed to RequestScan()
* D-Bus call. Valid options inside the dictionary are:
* 'ssids' => array of SSIDs (saay)
*
* Returns: %TRUE on success, %FALSE on error, in which case @error will be
* set.
*
* Since: 1.2
*
* Deprecated: 1.22, use nm_device_wifi_request_scan_options_async() or GDBusConnection
**/
gboolean
nm_device_wifi_request_scan_options (NMDeviceWifi *device,
GVariant *options,
GCancellable *cancellable,
GError **error)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), FALSE);
g_return_val_if_fail (!options || g_variant_is_of_type (options, G_VARIANT_TYPE_VARDICT), FALSE);
g_return_val_if_fail (!cancellable || G_IS_CANCELLABLE (cancellable), FALSE);
g_return_val_if_fail (!error || !*error, FALSE);
if (!options)
options = g_variant_new_array (G_VARIANT_TYPE ("{sv}"), NULL, 0);
return _nm_client_dbus_call_sync_void (_nm_object_get_client (device),
cancellable,
_nm_object_get_path (device),
NM_DBUS_INTERFACE_DEVICE_WIRELESS,
"RequestScan",
g_variant_new ("(@a{sv})", options),
G_DBUS_CALL_FLAGS_NONE,
NM_DBUS_DEFAULT_TIMEOUT_MSEC,
TRUE,
error);
}
NM_BACKPORT_SYMBOL (libnm_1_0_6, gboolean, nm_device_wifi_request_scan_options,
(NMDeviceWifi *device, GVariant *options, GCancellable *cancellable, GError **error),
(device, options, cancellable, error));
/**
* nm_device_wifi_request_scan_async:
* @device: a #NMDeviceWifi
* @cancellable: a #GCancellable, or %NULL
* @callback: callback to be called when the scan has been requested
* @user_data: caller-specific data passed to @callback
*
* Request NM to scan for access points on @device. Note that @callback will be
* called immediately after requesting the scan, and it may take some time after
* that for the scan to complete.
**/
void
nm_device_wifi_request_scan_async (NMDeviceWifi *device,
GCancellable *cancellable,
GAsyncReadyCallback callback,
gpointer user_data)
{
nm_device_wifi_request_scan_options_async (device, NULL, cancellable, callback, user_data);
}
/**
* nm_device_wifi_request_scan_options_async:
* @device: a #NMDeviceWifi
* @options: dictionary with options for RequestScan(), or %NULL
* @cancellable: a #GCancellable, or %NULL
* @callback: callback to be called when the scan has been requested
* @user_data: caller-specific data passed to @callback
*
* Request NM to scan for access points on @device. Note that @callback will be
* called immediately after requesting the scan, and it may take some time after
* that for the scan to complete.
* This is the same as @nm_device_wifi_request_scan_async except it accepts @options
* for the scanning. The argument is the dictionary passed to RequestScan()
* D-Bus call. Valid options inside the dictionary are:
* 'ssids' => array of SSIDs (saay)
*
* To complete the request call nm_device_wifi_request_scan_finish().
*
* Since: 1.2
**/
void
nm_device_wifi_request_scan_options_async (NMDeviceWifi *device,
GVariant *options,
GCancellable *cancellable,
GAsyncReadyCallback callback,
gpointer user_data)
{
g_return_if_fail (NM_IS_DEVICE_WIFI (device));
g_return_if_fail (!options || g_variant_is_of_type (options, G_VARIANT_TYPE_VARDICT));
g_return_if_fail (!cancellable || G_IS_CANCELLABLE (cancellable));
if (!options)
options = g_variant_new_array (G_VARIANT_TYPE ("{sv}"), NULL, 0);
_nm_client_dbus_call (_nm_object_get_client (device),
device,
nm_device_wifi_request_scan_async,
cancellable,
callback,
user_data,
_nm_object_get_path (device),
NM_DBUS_INTERFACE_DEVICE_WIRELESS,
"RequestScan",
g_variant_new ("(@a{sv})", options),
G_VARIANT_TYPE ("()"),
G_DBUS_CALL_FLAGS_NONE,
NM_DBUS_DEFAULT_TIMEOUT_MSEC,
nm_dbus_connection_call_finish_void_strip_dbus_error_cb);
}
NM_BACKPORT_SYMBOL (libnm_1_0_6, void, nm_device_wifi_request_scan_options_async,
(NMDeviceWifi *device, GVariant *options, GCancellable *cancellable, GAsyncReadyCallback callback, gpointer user_data),
(device, options, cancellable, callback, user_data));
/**
* nm_device_wifi_request_scan_finish:
* @device: a #NMDeviceWifi
* @result: the result passed to the #GAsyncReadyCallback
* @error: location for a #GError, or %NULL
*
* Gets the result of a call to nm_device_wifi_request_scan_async() and
* nm_device_wifi_request_scan_options_async().
*
* Returns: %TRUE on success, %FALSE on error, in which case @error will be
* set.
**/
gboolean
nm_device_wifi_request_scan_finish (NMDeviceWifi *device,
GAsyncResult *result,
GError **error)
{
g_return_val_if_fail (NM_IS_DEVICE_WIFI (device), FALSE);
g_return_val_if_fail (nm_g_task_is_valid (result, device, nm_device_wifi_request_scan_async), FALSE);
return g_task_propagate_boolean (G_TASK (result), error);
}
#define WPA_CAPS (NM_WIFI_DEVICE_CAP_CIPHER_TKIP | \
NM_WIFI_DEVICE_CAP_CIPHER_CCMP | \
NM_WIFI_DEVICE_CAP_WPA | \
NM_WIFI_DEVICE_CAP_RSN)
#define RSN_CAPS (NM_WIFI_DEVICE_CAP_CIPHER_CCMP | NM_WIFI_DEVICE_CAP_RSN)
static gboolean
has_proto (NMSettingWirelessSecurity *s_wsec, const char *proto)
{
int i;
for (i = 0; i < nm_setting_wireless_security_get_num_protos (s_wsec); i++) {
if (g_strcmp0 (proto, nm_setting_wireless_security_get_proto (s_wsec, i)) == 0)
return TRUE;
}
return FALSE;
}
static gboolean
connection_compatible (NMDevice *device, NMConnection *connection, GError **error)
{
NMSettingWireless *s_wifi;
NMSettingWirelessSecurity *s_wsec;
const char *hwaddr, *setting_hwaddr;
NMDeviceWifiCapabilities wifi_caps;
const char *key_mgmt;
if (!NM_DEVICE_CLASS (nm_device_wifi_parent_class)->connection_compatible (device, connection, error))
return FALSE;
if (!nm_connection_is_type (connection, NM_SETTING_WIRELESS_SETTING_NAME)) {
g_set_error_literal (error, NM_DEVICE_ERROR, NM_DEVICE_ERROR_INCOMPATIBLE_CONNECTION,
_("The connection was not a Wi-Fi connection."));
return FALSE;
}
/* Check MAC address */
hwaddr = nm_device_wifi_get_permanent_hw_address (NM_DEVICE_WIFI (device));
if (hwaddr) {
if (!nm_utils_hwaddr_valid (hwaddr, ETH_ALEN)) {
g_set_error_literal (error, NM_DEVICE_ERROR, NM_DEVICE_ERROR_FAILED,
_("Invalid device MAC address."));
return FALSE;
}
s_wifi = nm_connection_get_setting_wireless (connection);
setting_hwaddr = nm_setting_wireless_get_mac_address (s_wifi);
if (setting_hwaddr && !nm_utils_hwaddr_matches (setting_hwaddr, -1, hwaddr, -1)) {
g_set_error_literal (error, NM_DEVICE_ERROR, NM_DEVICE_ERROR_INCOMPATIBLE_CONNECTION,
_("The MACs of the device and the connection didn't match."));
return FALSE;
}
}
/* Check device capabilities; we assume all devices can do WEP at least */
s_wsec = nm_connection_get_setting_wireless_security (connection);
if (s_wsec) {
/* Connection has security, verify it against the device's capabilities */
key_mgmt = nm_setting_wireless_security_get_key_mgmt (s_wsec);
if ( !g_strcmp0 (key_mgmt, "wpa-psk")
|| !g_strcmp0 (key_mgmt, "wpa-eap")) {
wifi_caps = nm_device_wifi_get_capabilities (NM_DEVICE_WIFI (device));
/* Is device only WEP capable? */
if (!(wifi_caps & WPA_CAPS)) {
g_set_error_literal (error, NM_DEVICE_ERROR, NM_DEVICE_ERROR_INCOMPATIBLE_CONNECTION,
_("The device is lacking WPA capabilities required by the connection."));
return FALSE;
}
/* Make sure WPA2/RSN-only connections don't get chosen for WPA-only cards */
if (has_proto (s_wsec, "rsn") && !has_proto (s_wsec, "wpa") && !(wifi_caps & RSN_CAPS)) {
g_set_error_literal (error, NM_DEVICE_ERROR, NM_DEVICE_ERROR_INCOMPATIBLE_CONNECTION,
_("The device is lacking WPA2/RSN capabilities required by the connection."));
return FALSE;
}
}
}
return TRUE;
}
static GType
get_setting_type (NMDevice *device)
{
return NM_TYPE_SETTING_WIRELESS;
}
static const char *
get_hw_address (NMDevice *device)
{
return nm_device_wifi_get_hw_address (NM_DEVICE_WIFI (device));
}
/*****************************************************************************/
static void
_property_ao_notify_changed_access_points_cb (NMLDBusPropertyAO *pr_ao,
NMClient *client,
NMObject *nmobj,
gboolean is_added /* or else removed */)
{
_nm_client_notify_event_queue_emit_obj_signal (client,
G_OBJECT (pr_ao->owner_dbobj->nmobj),
nmobj,
is_added,
10,
is_added
? signals[ACCESS_POINT_ADDED]
: signals[ACCESS_POINT_REMOVED]);
}
/*****************************************************************************/
static void
nm_device_wifi_init (NMDeviceWifi *device)
{
NMDeviceWifiPrivate *priv = NM_DEVICE_WIFI_GET_PRIVATE (device);
priv->last_scan = -1;
}
static void
get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
NMDeviceWifi *self = NM_DEVICE_WIFI (object);
switch (prop_id) {
case PROP_HW_ADDRESS:
g_value_set_string (value, nm_device_wifi_get_hw_address (self));
break;
case PROP_PERM_HW_ADDRESS:
g_value_set_string (value, nm_device_wifi_get_permanent_hw_address (self));
break;
case PROP_MODE:
g_value_set_enum (value, nm_device_wifi_get_mode (self));
break;
case PROP_BITRATE:
g_value_set_uint (value, nm_device_wifi_get_bitrate (self));
break;
case PROP_ACTIVE_ACCESS_POINT:
g_value_set_object (value, nm_device_wifi_get_active_access_point (self));
break;
case PROP_WIRELESS_CAPABILITIES:
g_value_set_flags (value, nm_device_wifi_get_capabilities (self));
break;
case PROP_ACCESS_POINTS:
g_value_take_boxed (value, _nm_utils_copy_object_array (nm_device_wifi_get_access_points (self)));
break;
case PROP_LAST_SCAN:
g_value_set_int64 (value, nm_device_wifi_get_last_scan (self));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
finalize (GObject *object)
{
NMDeviceWifiPrivate *priv = NM_DEVICE_WIFI_GET_PRIVATE (object);
g_free (priv->hw_address);
g_free (priv->perm_hw_address);
G_OBJECT_CLASS (nm_device_wifi_parent_class)->finalize (object);
}
const NMLDBusMetaIface _nml_dbus_meta_iface_nm_device_wireless = NML_DBUS_META_IFACE_INIT_PROP (
NM_DBUS_INTERFACE_DEVICE_WIRELESS,
nm_device_wifi_get_type,
NML_DBUS_META_INTERFACE_PRIO_INSTANTIATE_HIGH,
NML_DBUS_META_IFACE_DBUS_PROPERTIES (
NML_DBUS_META_PROPERTY_INIT_AO_PROP ("AccessPoints", PROP_ACCESS_POINTS, NMDeviceWifi, _priv.access_points, nm_access_point_get_type, .notify_changed_ao = _property_ao_notify_changed_access_points_cb ),
NML_DBUS_META_PROPERTY_INIT_O_PROP ("ActiveAccessPoint", PROP_ACTIVE_ACCESS_POINT, NMDeviceWifi, _priv.active_access_point, nm_access_point_get_type ),
NML_DBUS_META_PROPERTY_INIT_U ("Bitrate", PROP_BITRATE, NMDeviceWifi, _priv.bitrate ),
NML_DBUS_META_PROPERTY_INIT_S ("HwAddress", PROP_HW_ADDRESS, NMDeviceWifi, _priv.hw_address ),
NML_DBUS_META_PROPERTY_INIT_X ("LastScan", PROP_LAST_SCAN, NMDeviceWifi, _priv.last_scan ),
NML_DBUS_META_PROPERTY_INIT_U ("Mode", PROP_MODE, NMDeviceWifi, _priv.mode ),
NML_DBUS_META_PROPERTY_INIT_S ("PermHwAddress", PROP_PERM_HW_ADDRESS, NMDeviceWifi, _priv.perm_hw_address ),
NML_DBUS_META_PROPERTY_INIT_U ("WirelessCapabilities", PROP_WIRELESS_CAPABILITIES, NMDeviceWifi, _priv.wireless_capabilities ),
),
);
static void
nm_device_wifi_class_init (NMDeviceWifiClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
NMObjectClass *nm_object_class = NM_OBJECT_CLASS (klass);
NMDeviceClass *device_class = NM_DEVICE_CLASS (klass);
object_class->get_property = get_property;
object_class->finalize = finalize;
_NM_OBJECT_CLASS_INIT_PRIV_PTR_DIRECT (nm_object_class, NMDeviceWifi);
_NM_OBJECT_CLASS_INIT_PROPERTY_O_FIELDS_1 (nm_object_class, NMDeviceWifiPrivate, active_access_point);
_NM_OBJECT_CLASS_INIT_PROPERTY_AO_FIELDS_1 (nm_object_class, NMDeviceWifiPrivate, access_points);
device_class->connection_compatible = connection_compatible;
device_class->get_setting_type = get_setting_type;
device_class->get_hw_address = get_hw_address;
/**
* NMDeviceWifi:hw-address:
*
* The hardware (MAC) address of the device.
**/
obj_properties[PROP_HW_ADDRESS] =
g_param_spec_string (NM_DEVICE_WIFI_HW_ADDRESS, "", "",
NULL,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:perm-hw-address:
*
* The hardware (MAC) address of the device.
**/
obj_properties[PROP_PERM_HW_ADDRESS] =
g_param_spec_string (NM_DEVICE_WIFI_PERMANENT_HW_ADDRESS, "", "",
NULL,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:mode:
*
* The mode of the device.
**/
obj_properties[PROP_MODE] =
g_param_spec_enum (NM_DEVICE_WIFI_MODE, "", "",
NM_TYPE_802_11_MODE,
NM_802_11_MODE_UNKNOWN,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:bitrate:
*
* The bit rate of the device in kbit/s.
**/
obj_properties[PROP_BITRATE] =
g_param_spec_uint (NM_DEVICE_WIFI_BITRATE, "", "",
0, G_MAXUINT32, 0,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:active-access-point:
*
* The active #NMAccessPoint of the device.
**/
obj_properties[PROP_ACTIVE_ACCESS_POINT] =
g_param_spec_object (NM_DEVICE_WIFI_ACTIVE_ACCESS_POINT, "", "",
NM_TYPE_ACCESS_POINT,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:wireless-capabilities:
*
* The wireless capabilities of the device.
**/
obj_properties[PROP_WIRELESS_CAPABILITIES] =
g_param_spec_flags (NM_DEVICE_WIFI_CAPABILITIES, "", "",
NM_TYPE_DEVICE_WIFI_CAPABILITIES,
NM_WIFI_DEVICE_CAP_NONE,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:access-points: (type GPtrArray(NMAccessPoint))
*
* List of all Wi-Fi access points the device can see.
**/
obj_properties[PROP_ACCESS_POINTS] =
g_param_spec_boxed (NM_DEVICE_WIFI_ACCESS_POINTS, "", "",
G_TYPE_PTR_ARRAY,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
/**
* NMDeviceWifi:last-scan:
*
* The timestamp (in CLOCK_BOOTTIME seconds) for the last finished
* network scan. A value of -1 means the device never scanned for
* access points.
*
* Since: 1.12
**/
obj_properties[PROP_LAST_SCAN] =
g_param_spec_int64 (NM_DEVICE_WIFI_LAST_SCAN, "", "",
-1, G_MAXINT64, -1,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS);
_nml_dbus_meta_class_init_with_properties (object_class, &_nml_dbus_meta_iface_nm_device_wireless);
/**
* NMDeviceWifi::access-point-added:
* @device: the Wi-Fi device that received the signal
* @ap: the new access point
*
* Notifies that a #NMAccessPoint is added to the Wi-Fi device.
**/
signals[ACCESS_POINT_ADDED] =
g_signal_new ("access-point-added",
G_OBJECT_CLASS_TYPE (object_class),
G_SIGNAL_RUN_FIRST,
0, NULL, NULL,
g_cclosure_marshal_VOID__OBJECT,
G_TYPE_NONE, 1,
G_TYPE_OBJECT);
/**
* NMDeviceWifi::access-point-removed:
* @device: the Wi-Fi device that received the signal
* @ap: the removed access point
*
* Notifies that a #NMAccessPoint is removed from the Wi-Fi device.
**/
signals[ACCESS_POINT_REMOVED] =
g_signal_new ("access-point-removed",
G_OBJECT_CLASS_TYPE (object_class),
G_SIGNAL_RUN_FIRST,
0, NULL, NULL,
g_cclosure_marshal_VOID__OBJECT,
G_TYPE_NONE, 1,
G_TYPE_OBJECT);
}