NetworkManager/shared/nm-glib-aux/nm-shared-utils.c
Thomas Haller 0f22f77b1c
shared: support stripping whitespace from nm_utils_buf_utf8safe_unescape()
When parsing user input if is often convenient to allow stripping whitespace.
Especially with escaped strings, the user could still escape the whitespace,
if the space should be taken literally.

Add support for that to nm_utils_buf_utf8safe_unescape().

Note that this is not the same as calling g_strstrip() before/after
unescape. That is, because nm_utils_buf_utf8safe_unescape() correctly
preserves escaped whitespace. If you call g_strstrip() before/after
the unescape, you don't know whether the whitespace is escaped.
2020-05-13 10:28:04 +02:00

4871 lines
129 KiB
C

// SPDX-License-Identifier: LGPL-2.1+
/*
* Copyright (C) 2016 Red Hat, Inc.
*/
#include "nm-default.h"
#include "nm-shared-utils.h"
#include <arpa/inet.h>
#include <poll.h>
#include <fcntl.h>
#include <sys/syscall.h>
#include <glib-unix.h>
#include <net/if.h>
#include "nm-errno.h"
#include "nm-str-buf.h"
/*****************************************************************************/
const void *const _NM_PTRARRAY_EMPTY[1] = { NULL };
/*****************************************************************************/
const NMIPAddr nm_ip_addr_zero = { };
/* this initializes a struct in_addr/in6_addr and allows for untrusted
* arguments (like unsuitable @addr_family or @src_len). It's almost safe
* in the sense that it verifies input arguments strictly. Also, it
* uses memcpy() to access @src, so alignment is not an issue.
*
* Only potential pitfalls:
*
* - it allows for @addr_family to be AF_UNSPEC. If that is the case (and the
* caller allows for that), the caller MUST provide @out_addr_family.
* - when setting @dst to an IPv4 address, the trailing bytes are not touched.
* Meaning, if @dst is an NMIPAddr union, only the first bytes will be set.
* If that matter to you, clear @dst before. */
gboolean
nm_ip_addr_set_from_untrusted (int addr_family,
gpointer dst,
gconstpointer src,
gsize src_len,
int *out_addr_family)
{
nm_assert (dst);
switch (addr_family) {
case AF_UNSPEC:
if (!out_addr_family) {
/* when the callers allow undefined @addr_family, they must provide
* an @out_addr_family argument. */
nm_assert_not_reached ();
return FALSE;
}
switch (src_len) {
case sizeof (struct in_addr): addr_family = AF_INET; break;
case sizeof (struct in6_addr): addr_family = AF_INET6; break;
default:
return FALSE;
}
break;
case AF_INET:
if (src_len != sizeof (struct in_addr))
return FALSE;
break;
case AF_INET6:
if (src_len != sizeof (struct in6_addr))
return FALSE;
break;
default:
/* when the callers allow undefined @addr_family, they must provide
* an @out_addr_family argument. */
nm_assert (out_addr_family);
return FALSE;
}
nm_assert (src);
memcpy (dst, src, src_len);
NM_SET_OUT (out_addr_family, addr_family);
return TRUE;
}
/*****************************************************************************/
gsize
nm_utils_get_next_realloc_size (gboolean true_realloc, gsize requested)
{
gsize n, x;
/* https://doc.qt.io/qt-5/containers.html#growth-strategies */
if (requested <= 40) {
/* small allocations. Increase in small steps of 8 bytes.
*
* We get thus sizes of 8, 16, 32, 40. */
if (requested <= 8)
return 8;
if (requested <= 16)
return 16;
if (requested <= 32)
return 32;
/* The return values for < 104 are essentially hard-coded, and the choice here is
* made without very strong reasons.
*
* We want to stay 24 bytes below the power-of-two border 64. Hence, return 40 here.
* However, the next step then is already 104 (128 - 24). It's a larger gap than in
* the steps before.
*
* It's not clear whether some of the steps should be adjusted (or how exactly). */
return 40;
}
if ( requested <= 0x2000u - 24u
|| G_UNLIKELY (!true_realloc)) {
/* mid sized allocations. Return next power of two, minus 24 bytes extra space
* at the beginning.
* That means, we double the size as we grow.
*
* With !true_realloc, it means that the caller does not intend to call
* realloc() but instead clone the buffer. This is for example the case, when we
* want to nm_explicit_bzero() the old buffer. In that case we really want to grow
* the buffer exponentially every time and not increment in page sizes of 4K (below).
*
* We get thus sizes of 104, 232, 488, 1000, 2024, 4072, 8168... */
if (G_UNLIKELY (requested > G_MAXSIZE / 2u - 24u))
return G_MAXSIZE;
x = requested + 24u;
n = 128u;
while (n < x) {
n <<= 1;
nm_assert (n > 128u);
}
nm_assert (n > 24u && n - 24u >= requested);
return n - 24u;
}
if (G_UNLIKELY (requested > G_MAXSIZE - 0x1000u - 24u))
return G_MAXSIZE;
/* For large allocations (with !true_realloc) we allocate memory in chunks of
* 4K (- 24 bytes extra), assuming that the memory gets mmapped and thus
* realloc() is efficient by just reordering pages. */
n = ((requested + (0x0FFFu + 24u)) & ~((gsize) 0x0FFFu)) - 24u;
nm_assert (n >= requested);
return n;
}
/*****************************************************************************/
pid_t
nm_utils_gettid (void)
{
return (pid_t) syscall (SYS_gettid);
}
/* Used for asserting that this function is called on the main-thread.
* The main-thread is determined by remembering the thread-id
* of when the function was called the first time.
*
* When forking, the thread-id is again reset upon first call. */
gboolean
_nm_assert_on_main_thread (void)
{
G_LOCK_DEFINE_STATIC (lock);
static pid_t seen_tid;
static pid_t seen_pid;
pid_t tid;
pid_t pid;
gboolean success = FALSE;
tid = nm_utils_gettid ();
nm_assert (tid != 0);
G_LOCK (lock);
if (G_LIKELY (tid == seen_tid)) {
/* we don't care about false positives (when the process forked, and the thread-id
* is accidentally re-used) . It's for assertions only. */
success = TRUE;
} else {
pid = getpid ();
nm_assert (pid != 0);
if ( seen_tid == 0
|| seen_pid != pid) {
/* either this is the first time we call the function, or the process
* forked. In both cases, remember the thread-id. */
seen_tid = tid;
seen_pid = pid;
success = TRUE;
}
}
G_UNLOCK (lock);
return success;
}
/*****************************************************************************/
void
nm_utils_strbuf_append_c (char **buf, gsize *len, char c)
{
switch (*len) {
case 0:
return;
case 1:
(*buf)[0] = '\0';
*len = 0;
(*buf)++;
return;
default:
(*buf)[0] = c;
(*buf)[1] = '\0';
(*len)--;
(*buf)++;
return;
}
}
void
nm_utils_strbuf_append_bin (char **buf, gsize *len, gconstpointer str, gsize str_len)
{
switch (*len) {
case 0:
return;
case 1:
if (str_len == 0) {
(*buf)[0] = '\0';
return;
}
(*buf)[0] = '\0';
*len = 0;
(*buf)++;
return;
default:
if (str_len == 0) {
(*buf)[0] = '\0';
return;
}
if (str_len >= *len) {
memcpy (*buf, str, *len - 1);
(*buf)[*len - 1] = '\0';
*buf = &(*buf)[*len];
*len = 0;
} else {
memcpy (*buf, str, str_len);
*buf = &(*buf)[str_len];
(*buf)[0] = '\0';
*len -= str_len;
}
return;
}
}
void
nm_utils_strbuf_append_str (char **buf, gsize *len, const char *str)
{
gsize src_len;
switch (*len) {
case 0:
return;
case 1:
if (!str || !*str) {
(*buf)[0] = '\0';
return;
}
(*buf)[0] = '\0';
*len = 0;
(*buf)++;
return;
default:
if (!str || !*str) {
(*buf)[0] = '\0';
return;
}
src_len = g_strlcpy (*buf, str, *len);
if (src_len >= *len) {
*buf = &(*buf)[*len];
*len = 0;
} else {
*buf = &(*buf)[src_len];
*len -= src_len;
}
return;
}
}
void
nm_utils_strbuf_append (char **buf, gsize *len, const char *format, ...)
{
char *p = *buf;
va_list args;
int retval;
if (*len == 0)
return;
va_start (args, format);
retval = g_vsnprintf (p, *len, format, args);
va_end (args);
if ((gsize) retval >= *len) {
*buf = &p[*len];
*len = 0;
} else {
*buf = &p[retval];
*len -= retval;
}
}
/**
* nm_utils_strbuf_seek_end:
* @buf: the input/output buffer
* @len: the input/output length of the buffer.
*
* Commonly, one uses nm_utils_strbuf_append*(), to incrementally
* append strings to the buffer. However, sometimes we need to use
* existing API to write to the buffer.
* After doing so, we want to adjust the buffer counter.
* Essentially,
*
* g_snprintf (buf, len, ...);
* nm_utils_strbuf_seek_end (&buf, &len);
*
* is almost the same as
*
* nm_utils_strbuf_append (&buf, &len, ...);
*
* The only difference is the behavior when the string got truncated:
* nm_utils_strbuf_append() will recognize that and set the remaining
* length to zero.
*
* In general, the behavior is:
*
* - if *len is zero, do nothing
* - if the buffer contains a NUL byte within the first *len characters,
* the buffer is pointed to the NUL byte and len is adjusted. In this
* case, the remaining *len is always >= 1.
* In particular, that is also the case if the NUL byte is at the very last
* position ((*buf)[*len -1]). That happens, when the previous operation
* either fit the string exactly into the buffer or the string was truncated
* by g_snprintf(). The difference cannot be determined.
* - if the buffer contains no NUL bytes within the first *len characters,
* write NUL at the last position, set *len to zero, and point *buf past
* the NUL byte. This would happen with
*
* strncpy (buf, long_str, len);
* nm_utils_strbuf_seek_end (&buf, &len).
*
* where strncpy() does truncate the string and not NUL terminate it.
* nm_utils_strbuf_seek_end() would then NUL terminate it.
*/
void
nm_utils_strbuf_seek_end (char **buf, gsize *len)
{
gsize l;
char *end;
nm_assert (len);
nm_assert (buf && *buf);
if (*len <= 1) {
if ( *len == 1
&& (*buf)[0])
goto truncate;
return;
}
end = memchr (*buf, 0, *len);
if (end) {
l = end - *buf;
nm_assert (l < *len);
*buf = end;
*len -= l;
return;
}
truncate:
/* hm, no NUL character within len bytes.
* Just NUL terminate the array and consume them
* all. */
*buf += *len;
(*buf)[-1] = '\0';
*len = 0;
return;
}
/*****************************************************************************/
GBytes *
nm_gbytes_get_empty (void)
{
static GBytes *bytes = NULL;
GBytes *b;
again:
b = g_atomic_pointer_get (&bytes);
if (G_UNLIKELY (!b)) {
b = g_bytes_new_static ("", 0);
if (!g_atomic_pointer_compare_and_exchange (&bytes, NULL, b)) {
g_bytes_unref (b);
goto again;
}
}
return b;
}
/**
* nm_utils_gbytes_equals:
* @bytes: (allow-none): a #GBytes array to compare. Note that
* %NULL is treated like an #GBytes array of length zero.
* @mem_data: the data pointer with @mem_len bytes
* @mem_len: the length of the data pointer
*
* Returns: %TRUE if @bytes contains the same data as @mem_data. As a
* special case, a %NULL @bytes is treated like an empty array.
*/
gboolean
nm_utils_gbytes_equal_mem (GBytes *bytes,
gconstpointer mem_data,
gsize mem_len)
{
gconstpointer p;
gsize l;
if (!bytes) {
/* as a special case, let %NULL GBytes compare idential
* to an empty array. */
return (mem_len == 0);
}
p = g_bytes_get_data (bytes, &l);
return l == mem_len
&& ( mem_len == 0 /* allow @mem_data to be %NULL */
|| memcmp (p, mem_data, mem_len) == 0);
}
GVariant *
nm_utils_gbytes_to_variant_ay (GBytes *bytes)
{
const guint8 *p;
gsize l;
if (!bytes) {
/* for convenience, accept NULL to return an empty variant */
return g_variant_new_array (G_VARIANT_TYPE_BYTE, NULL, 0);
}
p = g_bytes_get_data (bytes, &l);
return g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, p, l, 1);
}
/*****************************************************************************/
/* Convert a hash table with "char *" keys and values to an "a{ss}" GVariant.
* The keys will be sorted asciibetically.
* Returns a floating reference.
*/
GVariant *
nm_utils_strdict_to_variant_ass (GHashTable *strdict)
{
GHashTableIter iter;
const char *key, *value;
GVariantBuilder builder;
guint i, len;
g_variant_builder_init (&builder, G_VARIANT_TYPE ("a{ss}"));
if (!strdict)
goto out;
len = g_hash_table_size (strdict);
if (!len)
goto out;
g_hash_table_iter_init (&iter, strdict);
if (!g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value))
nm_assert_not_reached ();
if (len == 1)
g_variant_builder_add (&builder, "{ss}", key, value);
else {
gs_free NMUtilsNamedValue *idx_free = NULL;
NMUtilsNamedValue *idx;
if (len > 300 / sizeof (NMUtilsNamedValue)) {
idx_free = g_new (NMUtilsNamedValue, len);
idx = idx_free;
} else
idx = g_alloca (sizeof (NMUtilsNamedValue) * len);
i = 0;
do {
idx[i].name = key;
idx[i].value_str = value;
i++;
} while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &value));
nm_assert (i == len);
nm_utils_named_value_list_sort (idx, len, NULL, NULL);
for (i = 0; i < len; i++)
g_variant_builder_add (&builder, "{ss}", idx[i].name, idx[i].value_str);
}
out:
return g_variant_builder_end (&builder);
}
/*****************************************************************************/
/**
* nm_strquote:
* @buf: the output buffer of where to write the quoted @str argument.
* @buf_len: the size of @buf.
* @str: (allow-none): the string to quote.
*
* Writes @str to @buf with quoting. The resulting buffer
* is always NUL terminated, unless @buf_len is zero.
* If @str is %NULL, it writes "(null)".
*
* If @str needs to be truncated, the closing quote is '^' instead
* of '"'.
*
* This is similar to nm_strquote_a(), which however uses alloca()
* to allocate a new buffer. Also, here @buf_len is the size of @buf,
* while nm_strquote_a() has the number of characters to print. The latter
* doesn't include the quoting.
*
* Returns: the input buffer with the quoted string.
*/
const char *
nm_strquote (char *buf, gsize buf_len, const char *str)
{
const char *const buf0 = buf;
if (!str) {
nm_utils_strbuf_append_str (&buf, &buf_len, "(null)");
goto out;
}
if (G_UNLIKELY (buf_len <= 2)) {
switch (buf_len) {
case 2:
*(buf++) = '^';
/* fall-through */
case 1:
*(buf++) = '\0';
break;
}
goto out;
}
*(buf++) = '"';
buf_len--;
nm_utils_strbuf_append_str (&buf, &buf_len, str);
/* if the string was too long we indicate truncation with a
* '^' instead of a closing quote. */
if (G_UNLIKELY (buf_len <= 1)) {
switch (buf_len) {
case 1:
buf[-1] = '^';
break;
case 0:
buf[-2] = '^';
break;
default:
nm_assert_not_reached ();
break;
}
} else {
nm_assert (buf_len >= 2);
*(buf++) = '"';
*(buf++) = '\0';
}
out:
return buf0;
}
/*****************************************************************************/
char _nm_utils_to_string_buffer[];
void
nm_utils_to_string_buffer_init (char **buf, gsize *len)
{
if (!*buf) {
*buf = _nm_utils_to_string_buffer;
*len = sizeof (_nm_utils_to_string_buffer);
}
}
gboolean
nm_utils_to_string_buffer_init_null (gconstpointer obj, char **buf, gsize *len)
{
nm_utils_to_string_buffer_init (buf, len);
if (!obj) {
g_strlcpy (*buf, "(null)", *len);
return FALSE;
}
return TRUE;
}
/*****************************************************************************/
const char *
nm_utils_flags2str (const NMUtilsFlags2StrDesc *descs,
gsize n_descs,
unsigned flags,
char *buf,
gsize len)
{
gsize i;
char *p;
#if NM_MORE_ASSERTS > 10
nm_assert (descs);
nm_assert (n_descs > 0);
for (i = 0; i < n_descs; i++) {
gsize j;
nm_assert (descs[i].name && descs[i].name[0]);
for (j = 0; j < i; j++)
nm_assert (descs[j].flag != descs[i].flag);
}
#endif
nm_utils_to_string_buffer_init (&buf, &len);
if (!len)
return buf;
buf[0] = '\0';
p = buf;
if (!flags) {
for (i = 0; i < n_descs; i++) {
if (!descs[i].flag) {
nm_utils_strbuf_append_str (&p, &len, descs[i].name);
break;
}
}
return buf;
}
for (i = 0; flags && i < n_descs; i++) {
if ( descs[i].flag
&& NM_FLAGS_ALL (flags, descs[i].flag)) {
flags &= ~descs[i].flag;
if (buf[0] != '\0')
nm_utils_strbuf_append_c (&p, &len, ',');
nm_utils_strbuf_append_str (&p, &len, descs[i].name);
}
}
if (flags) {
if (buf[0] != '\0')
nm_utils_strbuf_append_c (&p, &len, ',');
nm_utils_strbuf_append (&p, &len, "0x%x", flags);
}
return buf;
};
/*****************************************************************************/
/**
* _nm_utils_ip4_prefix_to_netmask:
* @prefix: a CIDR prefix
*
* Returns: the netmask represented by the prefix, in network byte order
**/
guint32
_nm_utils_ip4_prefix_to_netmask (guint32 prefix)
{
return prefix < 32 ? ~htonl(0xFFFFFFFF >> prefix) : 0xFFFFFFFF;
}
gconstpointer
nm_utils_ipx_address_clear_host_address (int family, gpointer dst, gconstpointer src, guint8 plen)
{
g_return_val_if_fail (dst, NULL);
switch (family) {
case AF_INET:
g_return_val_if_fail (plen <= 32, NULL);
if (!src) {
/* allow "self-assignment", by specifying %NULL as source. */
src = dst;
}
*((guint32 *) dst) = nm_utils_ip4_address_clear_host_address (*((guint32 *) src), plen);
break;
case AF_INET6:
nm_utils_ip6_address_clear_host_address (dst, src, plen);
break;
default:
g_return_val_if_reached (NULL);
}
return dst;
}
/* nm_utils_ip4_address_clear_host_address:
* @addr: source ip6 address
* @plen: prefix length of network
*
* returns: the input address, with the host address set to 0.
*/
in_addr_t
nm_utils_ip4_address_clear_host_address (in_addr_t addr, guint8 plen)
{
return addr & _nm_utils_ip4_prefix_to_netmask (plen);
}
/* nm_utils_ip6_address_clear_host_address:
* @dst: destination output buffer, will contain the network part of the @src address
* @src: source ip6 address
* @plen: prefix length of network
*
* Note: this function is self assignment safe, to update @src inplace, set both
* @dst and @src to the same destination or set @src NULL.
*/
const struct in6_addr *
nm_utils_ip6_address_clear_host_address (struct in6_addr *dst, const struct in6_addr *src, guint8 plen)
{
g_return_val_if_fail (plen <= 128, NULL);
g_return_val_if_fail (dst, NULL);
if (!src)
src = dst;
if (plen < 128) {
guint nbytes = plen / 8;
guint nbits = plen % 8;
if (nbytes && dst != src)
memcpy (dst, src, nbytes);
if (nbits) {
dst->s6_addr[nbytes] = (src->s6_addr[nbytes] & (0xFF << (8 - nbits)));
nbytes++;
}
if (nbytes <= 15)
memset (&dst->s6_addr[nbytes], 0, 16 - nbytes);
} else if (src != dst)
*dst = *src;
return dst;
}
int
nm_utils_ip6_address_same_prefix_cmp (const struct in6_addr *addr_a, const struct in6_addr *addr_b, guint8 plen)
{
int nbytes;
guint8 va, vb, m;
if (plen >= 128)
NM_CMP_DIRECT_MEMCMP (addr_a, addr_b, sizeof (struct in6_addr));
else {
nbytes = plen / 8;
if (nbytes)
NM_CMP_DIRECT_MEMCMP (addr_a, addr_b, nbytes);
plen = plen % 8;
if (plen != 0) {
m = ~((1 << (8 - plen)) - 1);
va = ((((const guint8 *) addr_a))[nbytes]) & m;
vb = ((((const guint8 *) addr_b))[nbytes]) & m;
NM_CMP_DIRECT (va, vb);
}
}
return 0;
}
/**
* _nm_utils_ip4_get_default_prefix:
* @ip: an IPv4 address (in network byte order)
*
* When the Internet was originally set up, various ranges of IP addresses were
* segmented into three network classes: A, B, and C. This function will return
* a prefix that is associated with the IP address specified defining where it
* falls in the predefined classes.
*
* Returns: the default class prefix for the given IP
**/
/* The function is originally from ipcalc.c of Red Hat's initscripts. */
guint32
_nm_utils_ip4_get_default_prefix (guint32 ip)
{
if (((ntohl (ip) & 0xFF000000) >> 24) <= 127)
return 8; /* Class A - 255.0.0.0 */
else if (((ntohl (ip) & 0xFF000000) >> 24) <= 191)
return 16; /* Class B - 255.255.0.0 */
return 24; /* Class C - 255.255.255.0 */
}
gboolean
nm_utils_ip_is_site_local (int addr_family,
const void *address)
{
in_addr_t addr4;
switch (addr_family) {
case AF_INET:
/* RFC1918 private addresses
* 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 */
addr4 = ntohl (*((const in_addr_t *) address));
return (addr4 & 0xff000000) == 0x0a000000
|| (addr4 & 0xfff00000) == 0xac100000
|| (addr4 & 0xffff0000) == 0xc0a80000;
case AF_INET6:
return IN6_IS_ADDR_SITELOCAL (address);
default:
g_return_val_if_reached (FALSE);
}
}
/*****************************************************************************/
static gboolean
_parse_legacy_addr4 (const char *text, in_addr_t *out_addr, GError **error)
{
gs_free char *s_free = NULL;
struct in_addr a1;
guint8 bin[sizeof (a1)];
char *s;
int i;
if (inet_aton (text, &a1) != 1) {
g_set_error_literal (error,
NM_UTILS_ERROR,
NM_UTILS_ERROR_INVALID_ARGUMENT,
"address invalid according to inet_aton()");
return FALSE;
}
/* OK, inet_aton() accepted the format. That's good, because we want
* to accept IPv4 addresses in octal format, like 255.255.000.000.
* That's what "legacy" means here. inet_pton() doesn't accept those.
*
* But inet_aton() also ignores trailing garbage and formats with fewer than
* 4 digits. That is just too crazy and we don't do that. Perform additional checks
* and reject some forms that inet_aton() accepted.
*
* Note that we still should (of course) accept everything that inet_pton()
* accepts. However this code never gets called if inet_pton() succeeds
* (see below, aside the assertion code). */
if (NM_STRCHAR_ANY (text, ch, ( !(ch >= '0' && ch <= '9')
&& !NM_IN_SET (ch, '.', 'x')))) {
/* We only accepts '.', digits, and 'x' for "0x". */
g_set_error_literal (error,
NM_UTILS_ERROR,
NM_UTILS_ERROR_INVALID_ARGUMENT,
"contains an invalid character");
return FALSE;
}
s = nm_memdup_maybe_a (300, text, strlen (text) + 1, &s_free);
for (i = 0; i < G_N_ELEMENTS (bin); i++) {
char *current_token = s;
gint32 v;
s = strchr (s, '.');
if (s) {
s[0] = '\0';
s++;
}
if ((i == G_N_ELEMENTS (bin) - 1) != (s == NULL)) {
/* Exactly for the last digit, we expect to have no more following token.
* But this isn't the case. Abort. */
g_set_error (error,
NM_UTILS_ERROR,
NM_UTILS_ERROR_INVALID_ARGUMENT,
"wrong number of tokens (index %d, token '%s')",
i, s);
return FALSE;
}
v = _nm_utils_ascii_str_to_int64 (current_token, 0, 0, 0xFF, -1);
if (v == -1) {
int errsv = errno;
/* we do accept octal and hex (even with leading "0x"). But something
* about this token is wrong. */
g_set_error (error,
NM_UTILS_ERROR,
NM_UTILS_ERROR_INVALID_ARGUMENT,
"invalid token '%s': %s (%d)",
current_token,
nm_strerror_native (errsv),
errsv);
return FALSE;
}
bin[i] = v;
}
if (memcmp (bin, &a1, sizeof (bin)) != 0) {
/* our parsing did not agree with what inet_aton() gave. Something
* is wrong. Abort. */
g_set_error (error,
NM_UTILS_ERROR,
NM_UTILS_ERROR_INVALID_ARGUMENT,
"inet_aton() result 0x%08x differs from computed value 0x%02hhx%02hhx%02hhx%02hhx",
a1.s_addr,
bin[0], bin[1], bin[2], bin[3]);
return FALSE;
}
*out_addr = a1.s_addr;
return TRUE;
}
gboolean
nm_utils_parse_inaddr_bin_full (int addr_family,
gboolean accept_legacy,
const char *text,
int *out_addr_family,
gpointer out_addr)
{
NMIPAddr addrbin;
g_return_val_if_fail (text, FALSE);
if (addr_family == AF_UNSPEC) {
g_return_val_if_fail (!out_addr || out_addr_family, FALSE);
addr_family = strchr (text, ':') ? AF_INET6 : AF_INET;
} else
g_return_val_if_fail (NM_IN_SET (addr_family, AF_INET, AF_INET6), FALSE);
if (inet_pton (addr_family, text, &addrbin) != 1) {
if ( accept_legacy
&& addr_family == AF_INET
&& _parse_legacy_addr4 (text, &addrbin.addr4, NULL)) {
/* The address is in some legacy format which inet_aton() accepts, but not inet_pton().
* Most likely octal digits (leading zeros). We accept the address. */
} else
return FALSE;
}
#if NM_MORE_ASSERTS > 10
if (addr_family == AF_INET) {
gs_free_error GError *error = NULL;
in_addr_t a;
/* The legacy parser should accept everything that inet_pton() accepts too. Meaning,
* it should strictly parse *more* formats. And of course, parse it the same way. */
if (!_parse_legacy_addr4 (text, &a, &error)) {
char buf[INET_ADDRSTRLEN];
g_error ("unexpected assertion failure: could parse \"%s\" as %s, but not accepted by legacy parser: %s",
text, _nm_utils_inet4_ntop (addrbin.addr4, buf), error->message);
}
nm_assert (addrbin.addr4 == a);
}
#endif
NM_SET_OUT (out_addr_family, addr_family);
if (out_addr)
nm_ip_addr_set (addr_family, out_addr, &addrbin);
return TRUE;
}
gboolean
nm_utils_parse_inaddr (int addr_family,
const char *text,
char **out_addr)
{
NMIPAddr addrbin;
char addrstr_buf[MAX (INET_ADDRSTRLEN, INET6_ADDRSTRLEN)];
g_return_val_if_fail (text, FALSE);
if (addr_family == AF_UNSPEC)
addr_family = strchr (text, ':') ? AF_INET6 : AF_INET;
else
g_return_val_if_fail (NM_IN_SET (addr_family, AF_INET, AF_INET6), FALSE);
if (inet_pton (addr_family, text, &addrbin) != 1)
return FALSE;
NM_SET_OUT (out_addr, g_strdup (inet_ntop (addr_family, &addrbin, addrstr_buf, sizeof (addrstr_buf))));
return TRUE;
}
gboolean
nm_utils_parse_inaddr_prefix_bin (int addr_family,
const char *text,
int *out_addr_family,
gpointer out_addr,
int *out_prefix)
{
gs_free char *addrstr_free = NULL;
int prefix = -1;
const char *slash;
const char *addrstr;
NMIPAddr addrbin;
g_return_val_if_fail (text, FALSE);
if (addr_family == AF_UNSPEC) {
g_return_val_if_fail (!out_addr || out_addr_family, FALSE);
addr_family = strchr (text, ':') ? AF_INET6 : AF_INET;
} else
g_return_val_if_fail (NM_IN_SET (addr_family, AF_INET, AF_INET6), FALSE);
slash = strchr (text, '/');
if (slash)
addrstr = addrstr_free = g_strndup (text, slash - text);
else
addrstr = text;
if (inet_pton (addr_family, addrstr, &addrbin) != 1)
return FALSE;
if (slash) {
/* For IPv4, `ip addr add` supports the prefix-length as a netmask. We don't
* do that. */
prefix = _nm_utils_ascii_str_to_int64 (slash + 1, 10,
0,
addr_family == AF_INET ? 32 : 128,
-1);
if (prefix == -1)
return FALSE;
}
NM_SET_OUT (out_addr_family, addr_family);
if (out_addr)
nm_ip_addr_set (addr_family, out_addr, &addrbin);
NM_SET_OUT (out_prefix, prefix);
return TRUE;
}
gboolean
nm_utils_parse_inaddr_prefix (int addr_family,
const char *text,
char **out_addr,
int *out_prefix)
{
NMIPAddr addrbin;
char addrstr_buf[MAX (INET_ADDRSTRLEN, INET6_ADDRSTRLEN)];
if (!nm_utils_parse_inaddr_prefix_bin (addr_family, text, &addr_family, &addrbin, out_prefix))
return FALSE;
NM_SET_OUT (out_addr, g_strdup (inet_ntop (addr_family, &addrbin, addrstr_buf, sizeof (addrstr_buf))));
return TRUE;
}
/*****************************************************************************/
gboolean
nm_utils_ipaddr_is_valid (int addr_family,
const char *str_addr)
{
nm_assert (NM_IN_SET (addr_family, AF_UNSPEC, AF_INET, AF_INET6));
return str_addr
&& nm_utils_parse_inaddr_bin (addr_family,
str_addr,
NULL,
NULL);
}
gboolean
nm_utils_ipaddr_is_normalized (int addr_family,
const char *str_addr)
{
NMIPAddr addr;
char sbuf[NM_UTILS_INET_ADDRSTRLEN];
nm_assert (NM_IN_SET (addr_family, AF_UNSPEC, AF_INET, AF_INET6));
if (!str_addr)
return FALSE;
if (!nm_utils_parse_inaddr_bin (addr_family,
str_addr,
&addr_family,
&addr))
return FALSE;
nm_utils_inet_ntop (addr_family, &addr, sbuf);
return nm_streq (sbuf, str_addr);
}
/*****************************************************************************/
/**
* nm_g_ascii_strtoll()
* @nptr: the string to parse
* @endptr: the pointer on the first invalid chars
* @base: the base.
*
* This wraps g_ascii_strtoll() and should in almost all cases behave identical
* to it.
*
* However, it seems there are situations where g_ascii_strtoll() might set
* errno to some unexpected value EAGAIN. Possibly this is related to creating
* the C locale during
*
* #ifdef USE_XLOCALE
* return strtoll_l (nptr, endptr, base, get_C_locale ());
*
* This wrapper tries to workaround that condition.
*/
gint64
nm_g_ascii_strtoll (const char *nptr,
char **endptr,
guint base)
{
int try_count = 2;
gint64 v;
const int errsv_orig = errno;
int errsv;
nm_assert (nptr);
nm_assert (base == 0u || (base >= 2u && base <= 36u));
again:
errno = 0;
v = g_ascii_strtoll (nptr, endptr, base);
errsv = errno;
if (errsv == 0) {
if (errsv_orig != 0)
errno = errsv_orig;
return v;
}
if ( errsv == ERANGE
&& NM_IN_SET (v, G_MININT64, G_MAXINT64))
return v;
if ( errsv == EINVAL
&& v == 0
&& nptr
&& nptr[0] == '\0')
return v;
if (try_count-- > 0)
goto again;
#if NM_MORE_ASSERTS
g_critical ("g_ascii_strtoll() for \"%s\" failed with errno=%d (%s) and v=%"G_GINT64_FORMAT,
nptr,
errsv,
nm_strerror_native (errsv),
v);
#endif
return v;
}
/* See nm_g_ascii_strtoll() */
guint64
nm_g_ascii_strtoull (const char *nptr,
char **endptr,
guint base)
{
int try_count = 2;
guint64 v;
const int errsv_orig = errno;
int errsv;
nm_assert (nptr);
nm_assert (base == 0u || (base >= 2u && base <= 36u));
again:
errno = 0;
v = g_ascii_strtoull (nptr, endptr, base);
errsv = errno;
if (errsv == 0) {
if (errsv_orig != 0)
errno = errsv_orig;
return v;
}
if ( errsv == ERANGE
&& NM_IN_SET (v, G_MAXUINT64))
return v;
if ( errsv == EINVAL
&& v == 0
&& nptr
&& nptr[0] == '\0')
return v;
if (try_count-- > 0)
goto again;
#if NM_MORE_ASSERTS
g_critical ("g_ascii_strtoull() for \"%s\" failed with errno=%d (%s) and v=%"G_GUINT64_FORMAT,
nptr,
errsv,
nm_strerror_native (errsv),
v);
#endif
return v;
}
/* see nm_g_ascii_strtoll(). */
double
nm_g_ascii_strtod (const char *nptr,
char **endptr)
{
int try_count = 2;
double v;
int errsv;
nm_assert (nptr);
again:
v = g_ascii_strtod (nptr, endptr);
errsv = errno;
if (errsv == 0)
return v;
if (errsv == ERANGE)
return v;
if (try_count-- > 0)
goto again;
#if NM_MORE_ASSERTS
g_critical ("g_ascii_strtod() for \"%s\" failed with errno=%d (%s) and v=%f",
nptr,
errsv,
nm_strerror_native (errsv),
v);
#endif
/* Not really much else to do. Return the parsed value and leave errno set
* to the unexpected value. */
return v;
}
/* _nm_utils_ascii_str_to_int64:
*
* A wrapper for g_ascii_strtoll, that checks whether the whole string
* can be successfully converted to a number and is within a given
* range. On any error, @fallback will be returned and %errno will be set
* to a non-zero value. On success, %errno will be set to zero, check %errno
* for errors. Any trailing or leading (ascii) white space is ignored and the
* functions is locale independent.
*
* The function is guaranteed to return a value between @min and @max
* (inclusive) or @fallback. Also, the parsing is rather strict, it does
* not allow for any unrecognized characters, except leading and trailing
* white space.
**/
gint64
_nm_utils_ascii_str_to_int64 (const char *str, guint base, gint64 min, gint64 max, gint64 fallback)
{
gint64 v;
const char *s = NULL;
str = nm_str_skip_leading_spaces (str);
if (!str || !str[0]) {
errno = EINVAL;
return fallback;
}
errno = 0;
v = nm_g_ascii_strtoll (str, (char **) &s, base);
if (errno != 0)
return fallback;
if (s[0] != '\0') {
s = nm_str_skip_leading_spaces (s);
if (s[0] != '\0') {
errno = EINVAL;
return fallback;
}
}
if (v > max || v < min) {
errno = ERANGE;
return fallback;
}
return v;
}
guint64
_nm_utils_ascii_str_to_uint64 (const char *str, guint base, guint64 min, guint64 max, guint64 fallback)
{
guint64 v;
const char *s = NULL;
if (str) {
while (g_ascii_isspace (str[0]))
str++;
}
if (!str || !str[0]) {
errno = EINVAL;
return fallback;
}
errno = 0;
v = nm_g_ascii_strtoull (str, (char **) &s, base);
if (errno != 0)
return fallback;
if (s[0] != '\0') {
while (g_ascii_isspace (s[0]))
s++;
if (s[0] != '\0') {
errno = EINVAL;
return fallback;
}
}
if (v > max || v < min) {
errno = ERANGE;
return fallback;
}
if ( v != 0
&& str[0] == '-') {
/* As documented, g_ascii_strtoull() accepts negative values, and returns their
* absolute value. We don't. */
errno = ERANGE;
return fallback;
}
return v;
}
/*****************************************************************************/
int
nm_strcmp_with_data (gconstpointer a, gconstpointer b, gpointer user_data)
{
const char *s1 = a;
const char *s2 = b;
return strcmp (s1, s2);
}
/* like nm_strcmp_p(), suitable for g_ptr_array_sort_with_data().
* g_ptr_array_sort() just casts nm_strcmp_p() to a function of different
* signature. I guess, in glib there are knowledgeable people that ensure
* that this additional argument doesn't cause problems due to different ABI
* for every architecture that glib supports.
* For NetworkManager, we'd rather avoid such stunts.
**/
int
nm_strcmp_p_with_data (gconstpointer a, gconstpointer b, gpointer user_data)
{
const char *s1 = *((const char **) a);
const char *s2 = *((const char **) b);
return strcmp (s1, s2);
}
int
nm_strcmp0_p_with_data (gconstpointer a, gconstpointer b, gpointer user_data)
{
const char *s1 = *((const char **) a);
const char *s2 = *((const char **) b);
return nm_strcmp0 (s1, s2);
}
int
nm_cmp_uint32_p_with_data (gconstpointer p_a, gconstpointer p_b, gpointer user_data)
{
const guint32 a = *((const guint32 *) p_a);
const guint32 b = *((const guint32 *) p_b);
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
int
nm_cmp_int2ptr_p_with_data (gconstpointer p_a, gconstpointer p_b, gpointer user_data)
{
/* p_a and p_b are two pointers to a pointer, where the pointer is
* interpreted as a integer using GPOINTER_TO_INT().
*
* That is the case of a hash-table that uses GINT_TO_POINTER() to
* convert integers as pointers, and the resulting keys-as-array
* array. */
const int a = GPOINTER_TO_INT (*((gconstpointer *) p_a));
const int b = GPOINTER_TO_INT (*((gconstpointer *) p_b));
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
/*****************************************************************************/
const char *
nm_utils_dbus_path_get_last_component (const char *dbus_path)
{
if (dbus_path) {
dbus_path = strrchr (dbus_path, '/');
if (dbus_path)
return dbus_path + 1;
}
return NULL;
}
static gint64
_dbus_path_component_as_num (const char *p)
{
gint64 n;
/* no odd stuff. No leading zeros, only a non-negative, decimal integer.
*
* Otherwise, there would be multiple ways to encode the same number "10"
* and "010". That is just confusing. A number has no leading zeros,
* if it has, it's not a number (as far as we are concerned here). */
if (p[0] == '0') {
if (p[1] != '\0')
return -1;
else
return 0;
}
if (!(p[0] >= '1' && p[0] <= '9'))
return -1;
if (!NM_STRCHAR_ALL (&p[1], ch, (ch >= '0' && ch <= '9')))
return -1;
n = _nm_utils_ascii_str_to_int64 (p, 10, 0, G_MAXINT64, -1);
nm_assert (n == -1 || nm_streq0 (p, nm_sprintf_bufa (100, "%"G_GINT64_FORMAT, n)));
return n;
}
int
nm_utils_dbus_path_cmp (const char *dbus_path_a, const char *dbus_path_b)
{
const char *l_a, *l_b;
gsize plen;
gint64 n_a, n_b;
/* compare function for two D-Bus paths. It behaves like
* strcmp(), except, if both paths have the same prefix,
* and both end in a (positive) number, then the paths
* will be sorted by number. */
NM_CMP_SELF (dbus_path_a, dbus_path_b);
/* if one or both paths have no slash (and no last component)
* compare the full paths directly. */
if ( !(l_a = nm_utils_dbus_path_get_last_component (dbus_path_a))
|| !(l_b = nm_utils_dbus_path_get_last_component (dbus_path_b)))
goto comp_full;
/* check if both paths have the same prefix (up to the last-component). */
plen = l_a - dbus_path_a;
if (plen != (l_b - dbus_path_b))
goto comp_full;
NM_CMP_RETURN (strncmp (dbus_path_a, dbus_path_b, plen));
n_a = _dbus_path_component_as_num (l_a);
n_b = _dbus_path_component_as_num (l_b);
if (n_a == -1 && n_b == -1)
goto comp_l;
/* both components must be convertiable to a number. If they are not,
* (and only one of them is), then we must always strictly sort numeric parts
* after non-numeric components. If we wouldn't, we wouldn't have
* a total order.
*
* An example of a not total ordering would be:
* "8" < "010" (numeric)
* "0x" < "8" (lexical)
* "0x" > "010" (lexical)
* We avoid this, by forcing that a non-numeric entry "0x" always sorts
* before numeric entries.
*
* Additionally, _dbus_path_component_as_num() would also reject "010" as
* not a valid number.
*/
if (n_a == -1)
return -1;
if (n_b == -1)
return 1;
NM_CMP_DIRECT (n_a, n_b);
nm_assert (nm_streq (dbus_path_a, dbus_path_b));
return 0;
comp_full:
NM_CMP_DIRECT_STRCMP0 (dbus_path_a, dbus_path_b);
return 0;
comp_l:
NM_CMP_DIRECT_STRCMP0 (l_a, l_b);
nm_assert (nm_streq (dbus_path_a, dbus_path_b));
return 0;
}
/*****************************************************************************/
static void
_char_lookup_table_set_one (guint8 lookup[static 256],
char ch)
{
lookup[(guint8) ch] = 1;
}
static void
_char_lookup_table_set_all (guint8 lookup[static 256],
const char *candidates)
{
while (candidates[0] != '\0')
_char_lookup_table_set_one (lookup, (candidates++)[0]);
}
static void
_char_lookup_table_init (guint8 lookup[static 256],
const char *candidates)
{
memset (lookup, 0, 256);
if (candidates)
_char_lookup_table_set_all (lookup, candidates);
}
static gboolean
_char_lookup_has (const guint8 lookup[static 256],
char ch)
{
nm_assert (lookup[(guint8) '\0'] == 0);
return lookup[(guint8) ch] != 0;
}
static gboolean
_char_lookup_has_all (const guint8 lookup[static 256],
const char *candidates)
{
if (candidates) {
while (candidates[0] != '\0') {
if (!_char_lookup_has (lookup, (candidates++)[0]))
return FALSE;
}
}
return TRUE;
}
/**
* nm_utils_strsplit_set_full:
* @str: the string to split.
* @delimiters: the set of delimiters.
* @flags: additional flags for controlling the operation.
*
* This is a replacement for g_strsplit_set() which avoids copying
* each word once (the entire strv array), but instead copies it once
* and all words point into that internal copy.
*
* Note that for @str %NULL and "", this always returns %NULL too. That differs
* from g_strsplit_set(), which would return an empty strv array for "".
* This never returns an empty array.
*
* Returns: %NULL if @str is %NULL or "".
* If @str only contains delimiters and %NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY
* is not set, it also returns %NULL.
* Otherwise, a %NULL terminated strv array containing the split words.
* (delimiter characters are removed).
* The strings to which the result strv array points to are allocated
* after the returned result itself. Don't free the strings themself,
* but free everything with g_free().
* It is however safe and allowed to modify the individual strings in-place,
* like "g_strstrip((char *) iter[0])".
*/
const char **
nm_utils_strsplit_set_full (const char *str,
const char *delimiters,
NMUtilsStrsplitSetFlags flags)
{
const char **ptr;
gsize num_tokens;
gsize i_token;
gsize str_len_p1;
const char *c_str;
char *s;
guint8 ch_lookup[256];
const gboolean f_escaped = NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_ESCAPED);
const gboolean f_allow_escaping = f_escaped || NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_ALLOW_ESCAPING);
const gboolean f_preserve_empty = NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY);
const gboolean f_strstrip = NM_FLAGS_HAS (flags, NM_UTILS_STRSPLIT_SET_FLAGS_STRSTRIP);
if (!str)
return NULL;
if (!delimiters) {
nm_assert_not_reached ();
delimiters = " \t\n";
}
_char_lookup_table_init (ch_lookup, delimiters);
nm_assert ( !f_allow_escaping
|| !_char_lookup_has (ch_lookup, '\\'));
if (!f_preserve_empty) {
while (_char_lookup_has (ch_lookup, str[0]))
str++;
}
if (!str[0]) {
/* We return %NULL here, also with NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY.
* That makes nm_utils_strsplit_set_full() with NM_UTILS_STRSPLIT_SET_FLAGS_PRESERVE_EMPTY
* different from g_strsplit_set(), which would in this case return an empty array.
* If you need to handle %NULL, and "" specially, then check the input string first. */
return NULL;
}
#define _char_is_escaped(str_start, str_cur) \
({ \
const char *const _str_start = (str_start); \
const char *const _str_cur = (str_cur); \
const char *_str_i = (_str_cur); \
\
while ( _str_i > _str_start \
&& _str_i[-1] == '\\') \
_str_i--; \
(((_str_cur - _str_i) % 2) != 0); \
})
num_tokens = 1;
c_str = str;
while (TRUE) {
while (G_LIKELY (!_char_lookup_has (ch_lookup, c_str[0]))) {
if (c_str[0] == '\0')
goto done1;
c_str++;
}
/* we assume escapings are not frequent. After we found
* this delimiter, check whether it was escaped by counting
* the backslashed before. */
if ( f_allow_escaping
&& _char_is_escaped (str, c_str)) {
/* the delimiter is escaped. This was not an accepted delimiter. */
c_str++;
continue;
}
c_str++;
/* if we drop empty tokens, then we now skip over all consecutive delimiters. */
if (!f_preserve_empty) {
while (_char_lookup_has (ch_lookup, c_str[0]))
c_str++;
if (c_str[0] == '\0')
break;
}
num_tokens++;
}
done1:
nm_assert (c_str[0] == '\0');
str_len_p1 = (c_str - str) + 1;
nm_assert (str[str_len_p1 - 1] == '\0');
ptr = g_malloc ((sizeof (const char *) * (num_tokens + 1)) + str_len_p1);
s = (char *) &ptr[num_tokens + 1];
memcpy (s, str, str_len_p1);
i_token = 0;
while (TRUE) {
nm_assert (i_token < num_tokens);
ptr[i_token++] = s;
if (s[0] == '\0') {
nm_assert (f_preserve_empty);
goto done2;
}
nm_assert ( f_preserve_empty
|| !_char_lookup_has (ch_lookup, s[0]));
while (!_char_lookup_has (ch_lookup, s[0])) {
if (G_UNLIKELY ( s[0] == '\\'
&& f_allow_escaping)) {
s++;
if (s[0] == '\0')
goto done2;
s++;
} else if (s[0] == '\0')
goto done2;
else
s++;
}
nm_assert (_char_lookup_has (ch_lookup, s[0]));
s[0] = '\0';
s++;
if (!f_preserve_empty) {
while (_char_lookup_has (ch_lookup, s[0]))
s++;
if (s[0] == '\0')
goto done2;
}
}
done2:
nm_assert (i_token == num_tokens);
ptr[i_token] = NULL;
if (f_strstrip) {
gsize i;
i_token = 0;
for (i = 0; ptr[i]; i++) {
s = (char *) nm_str_skip_leading_spaces (ptr[i]);
if (s[0] != '\0') {
char *s_last;
s_last = &s[strlen (s) - 1];
while ( s_last > s
&& g_ascii_isspace (s_last[0])
&& ( ! f_allow_escaping
|| !_char_is_escaped (s, s_last)))
(s_last--)[0] = '\0';
}
if ( !f_preserve_empty
&& s[0] == '\0')
continue;
ptr[i_token++] = s;
}
if (i_token == 0) {
g_free (ptr);
return NULL;
}
ptr[i_token] = NULL;
}
if (f_escaped) {
gsize i, j;
/* We no longer need ch_lookup for its original purpose. Modify it, so it
* can detect the delimiters, '\\', and (optionally) whitespaces. */
_char_lookup_table_set_one (ch_lookup, '\\');
if (f_strstrip)
_char_lookup_table_set_all (ch_lookup, NM_ASCII_SPACES);
for (i_token = 0; ptr[i_token]; i_token++) {
s = (char *) ptr[i_token];
j = 0;
for (i = 0; s[i] != '\0'; ) {
if ( s[i] == '\\'
&& _char_lookup_has (ch_lookup, s[i + 1]))
i++;
s[j++] = s[i++];
}
s[j] = '\0';
}
}
return ptr;
}
/*****************************************************************************/
const char *
nm_utils_escaped_tokens_escape_full (const char *str,
const char *delimiters,
const char *delimiters_as_needed,
NMUtilsEscapedTokensEscapeFlags flags,
char **out_to_free)
{
guint8 ch_lookup[256];
guint8 ch_lookup_as_needed[256];
gboolean has_ch_lookup_as_needed = FALSE;
char *ret;
gsize str_len;
gsize alloc_len;
gsize n_escapes;
gsize i, j;
gboolean escape_leading_space;
gboolean escape_trailing_space;
gboolean escape_backslash_as_needed;
nm_assert ( !delimiters_as_needed
|| ( delimiters_as_needed[0]
&& NM_FLAGS_HAS (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_BACKSLASH_AS_NEEDED)));
if (!str || str[0] == '\0') {
*out_to_free = NULL;
return str;
}
str_len = strlen (str);
_char_lookup_table_init (ch_lookup, delimiters);
if ( !delimiters
|| NM_FLAGS_HAS (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_SPACES)) {
flags &= ~( NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_LEADING_SPACE
| NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_TRAILING_SPACE);
_char_lookup_table_set_all (ch_lookup, NM_ASCII_SPACES);
}
if (NM_FLAGS_HAS (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_BACKSLASH_ALWAYS)) {
_char_lookup_table_set_one (ch_lookup, '\\');
escape_backslash_as_needed = FALSE;
} else if (_char_lookup_has (ch_lookup, '\\'))
escape_backslash_as_needed = FALSE;
else {
escape_backslash_as_needed = NM_FLAGS_HAS (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_BACKSLASH_AS_NEEDED);
if (escape_backslash_as_needed) {
if ( NM_FLAGS_ANY (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_LEADING_SPACE
| NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_TRAILING_SPACE)
&& !_char_lookup_has_all (ch_lookup, NM_ASCII_SPACES)) {
/* ESCAPE_LEADING_SPACE and ESCAPE_TRAILING_SPACE implies that we escape backslash
* before whitespaces. */
if (!has_ch_lookup_as_needed) {
has_ch_lookup_as_needed = TRUE;
_char_lookup_table_init (ch_lookup_as_needed, NULL);
}
_char_lookup_table_set_all (ch_lookup_as_needed, NM_ASCII_SPACES);
}
if ( delimiters_as_needed
&& !_char_lookup_has_all (ch_lookup, delimiters_as_needed)) {
if (!has_ch_lookup_as_needed) {
has_ch_lookup_as_needed = TRUE;
_char_lookup_table_init (ch_lookup_as_needed, NULL);
}
_char_lookup_table_set_all (ch_lookup_as_needed, delimiters_as_needed);
}
}
}
escape_leading_space = NM_FLAGS_HAS (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_LEADING_SPACE)
&& g_ascii_isspace (str[0])
&& !_char_lookup_has (ch_lookup, str[0]);
if (str_len == 1)
escape_trailing_space = FALSE;
else {
escape_trailing_space = NM_FLAGS_HAS (flags, NM_UTILS_ESCAPED_TOKENS_ESCAPE_FLAGS_ESCAPE_TRAILING_SPACE)
&& g_ascii_isspace (str[str_len - 1])
&& !_char_lookup_has (ch_lookup, str[str_len - 1]);
}
n_escapes = 0;
for (i = 0; str[i] != '\0'; i++) {
if (_char_lookup_has (ch_lookup, str[i]))
n_escapes++;
else if ( str[i] == '\\'
&& escape_backslash_as_needed
&& ( _char_lookup_has (ch_lookup, str[i + 1])
|| NM_IN_SET (str[i + 1], '\0', '\\')
|| ( has_ch_lookup_as_needed
&& _char_lookup_has (ch_lookup_as_needed, str[i + 1]))))
n_escapes++;
}
if (escape_leading_space)
n_escapes++;
if (escape_trailing_space)
n_escapes++;
if (n_escapes == 0u) {
*out_to_free = NULL;
return str;
}
alloc_len = str_len + n_escapes + 1u;
ret = g_new (char, alloc_len);
j = 0;
i = 0;
if (escape_leading_space) {
ret[j++] = '\\';
ret[j++] = str[i++];
}
for (; str[i] != '\0'; i++) {
if (_char_lookup_has (ch_lookup, str[i]))
ret[j++] = '\\';
else if ( str[i] == '\\'
&& escape_backslash_as_needed
&& ( _char_lookup_has (ch_lookup, str[i + 1])
|| NM_IN_SET (str[i + 1], '\0', '\\')
|| ( has_ch_lookup_as_needed
&& _char_lookup_has (ch_lookup_as_needed, str[i + 1]))))
ret[j++] = '\\';
ret[j++] = str[i];
}
if (escape_trailing_space) {
nm_assert ( !_char_lookup_has (ch_lookup, ret[j - 1])
&& g_ascii_isspace (ret[j - 1]));
ret[j] = ret[j - 1];
ret[j - 1] = '\\';
j++;
}
nm_assert (j == alloc_len - 1);
ret[j] = '\0';
nm_assert (strlen (ret) == j);
*out_to_free = ret;
return ret;
}
/**
* nm_utils_escaped_tokens_options_split:
* @str: the src string. This string will be modified in-place.
* The output values will point into @str.
* @out_key: (allow-none): the returned output key. This will always be set to @str
* itself. @str will be modified to contain only the unescaped, truncated
* key name.
* @out_val: returns the parsed (and unescaped) value or %NULL, if @str contains
* no '=' delimiter.
*
* Honors backslash escaping to parse @str as "key=value" pairs. Optionally, if no '='
* is present, @out_val will be returned as %NULL. Backslash can be used to escape
* '=', ',', '\\', and ascii whitespace. Other backslash sequences are taken verbatim.
*
* For keys, '=' obviously must be escaped. For values, that is optional because an
* unescaped '=' is just taken verbatim. For example, in a key, the sequence "\\="
* must be escaped as "\\\\\\=". For the value, that works too, but "\\\\=" is also
* accepted.
*
* Unescaped Space around the key and value are also removed. Space in general must
* not be escaped, unless they are at the beginning or the end of key/value.
*/
void
nm_utils_escaped_tokens_options_split (char *str,
const char **out_key,
const char **out_val)
{
const char *val = NULL;
gsize i;
gsize j;
gsize last_space_idx;
gboolean last_space_has;
nm_assert (str);
i = 0;
while (g_ascii_isspace (str[i]))
i++;
j = 0;
last_space_idx = 0;
last_space_has = FALSE;
while (str[i] != '\0') {
if (g_ascii_isspace (str[i])) {
if (!last_space_has) {
last_space_has = TRUE;
last_space_idx = j;
}
} else {
if (str[i] == '\\') {
if ( NM_IN_SET (str[i + 1u], '\\', ',', '=')
|| g_ascii_isspace (str[i + 1u]))
i++;
} else if (str[i] == '=') {
/* Encounter an unescaped '=' character. When we still parse the key, this
* is the separator we were waiting for. If we are parsing the value,
* we take the character verbatim. */
if (!val) {
if (last_space_has) {
str[last_space_idx] = '\0';
j = last_space_idx + 1;
last_space_has = FALSE;
} else
str[j++] = '\0';
val = &str[j];
i++;
while (g_ascii_isspace (str[i]))
i++;
continue;
}
}
last_space_has = FALSE;
}
str[j++] = str[i++];
}
if (last_space_has)
str[last_space_idx] = '\0';
else
str[j] = '\0';
*out_key = str;
*out_val = val;
}
/*****************************************************************************/
/**
* nm_utils_strv_find_first:
* @list: the strv list to search
* @len: the length of the list, or a negative value if @list is %NULL terminated.
* @needle: the value to search for. The search is done using strcmp().
*
* Searches @list for @needle and returns the index of the first match (based
* on strcmp()).
*
* For convenience, @list has type 'char**' instead of 'const char **'.
*
* Returns: index of first occurrence or -1 if @needle is not found in @list.
*/
gssize
nm_utils_strv_find_first (char **list, gssize len, const char *needle)
{
gssize i;
if (len > 0) {
g_return_val_if_fail (list, -1);
if (!needle) {
/* if we search a list with known length, %NULL is a valid @needle. */
for (i = 0; i < len; i++) {
if (!list[i])
return i;
}
} else {
for (i = 0; i < len; i++) {
if (list[i] && !strcmp (needle, list[i]))
return i;
}
}
} else if (len < 0) {
g_return_val_if_fail (needle, -1);
if (list) {
for (i = 0; list[i]; i++) {
if (strcmp (needle, list[i]) == 0)
return i;
}
}
}
return -1;
}
char **
_nm_utils_strv_cleanup (char **strv,
gboolean strip_whitespace,
gboolean skip_empty,
gboolean skip_repeated)
{
guint i, j;
if (!strv || !*strv)
return strv;
if (strip_whitespace) {
/* we only modify the strings pointed to by @strv if @strip_whitespace is
* requested. Otherwise, the strings themselves are untouched. */
for (i = 0; strv[i]; i++)
g_strstrip (strv[i]);
}
if (!skip_empty && !skip_repeated)
return strv;
j = 0;
for (i = 0; strv[i]; i++) {
if ( (skip_empty && !*strv[i])
|| (skip_repeated && nm_utils_strv_find_first (strv, j, strv[i]) >= 0))
g_free (strv[i]);
else
strv[j++] = strv[i];
}
strv[j] = NULL;
return strv;
}
/*****************************************************************************/
int
_nm_utils_ascii_str_to_bool (const char *str,
int default_value)
{
gs_free char *str_free = NULL;
if (!str)
return default_value;
str = nm_strstrip_avoid_copy_a (300, str, &str_free);
if (str[0] == '\0')
return default_value;
if ( !g_ascii_strcasecmp (str, "true")
|| !g_ascii_strcasecmp (str, "yes")
|| !g_ascii_strcasecmp (str, "on")
|| !g_ascii_strcasecmp (str, "1"))
return TRUE;
if ( !g_ascii_strcasecmp (str, "false")
|| !g_ascii_strcasecmp (str, "no")
|| !g_ascii_strcasecmp (str, "off")
|| !g_ascii_strcasecmp (str, "0"))
return FALSE;
return default_value;
}
/*****************************************************************************/
NM_CACHED_QUARK_FCN ("nm-utils-error-quark", nm_utils_error_quark)
void
nm_utils_error_set_cancelled (GError **error,
gboolean is_disposing,
const char *instance_name)
{
if (is_disposing) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_CANCELLED_DISPOSING,
"Disposing %s instance",
instance_name && *instance_name ? instance_name : "source");
} else {
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_CANCELLED,
"Request cancelled");
}
}
gboolean
nm_utils_error_is_cancelled_or_disposing (GError *error)
{
if (error) {
if (error->domain == G_IO_ERROR)
return NM_IN_SET (error->code, G_IO_ERROR_CANCELLED);
if (error->domain == NM_UTILS_ERROR)
return NM_IN_SET (error->code, NM_UTILS_ERROR_CANCELLED_DISPOSING);
}
return FALSE;
}
gboolean
nm_utils_error_is_notfound (GError *error)
{
if (error) {
if (error->domain == G_IO_ERROR)
return NM_IN_SET (error->code, G_IO_ERROR_NOT_FOUND);
if (error->domain == G_FILE_ERROR)
return NM_IN_SET (error->code, G_FILE_ERROR_NOENT);
}
return FALSE;
}
/*****************************************************************************/
/**
* nm_g_object_set_property:
* @object: the target object
* @property_name: the property name
* @value: the #GValue to set
* @error: (allow-none): optional error argument
*
* A reimplementation of g_object_set_property(), but instead
* returning an error instead of logging a warning. All g_object_set*()
* versions in glib require you to not pass invalid types or they will
* log a g_warning() -- without reporting an error. We don't want that,
* so we need to hack error checking around it.
*
* Returns: whether the value was successfully set.
*/
gboolean
nm_g_object_set_property (GObject *object,
const char *property_name,
const GValue *value,
GError **error)
{
GParamSpec *pspec;
nm_auto_unset_gvalue GValue tmp_value = G_VALUE_INIT;
GObjectClass *klass;
g_return_val_if_fail (G_IS_OBJECT (object), FALSE);
g_return_val_if_fail (property_name != NULL, FALSE);
g_return_val_if_fail (G_IS_VALUE (value), FALSE);
g_return_val_if_fail (!error || !*error, FALSE);
/* g_object_class_find_property() does g_param_spec_get_redirect_target(),
* where we differ from a plain g_object_set_property(). */
pspec = g_object_class_find_property (G_OBJECT_GET_CLASS (object), property_name);
if (!pspec) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("object class '%s' has no property named '%s'"),
G_OBJECT_TYPE_NAME (object),
property_name);
return FALSE;
}
if (!(pspec->flags & G_PARAM_WRITABLE)) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("property '%s' of object class '%s' is not writable"),
pspec->name,
G_OBJECT_TYPE_NAME (object));
return FALSE;
}
if ((pspec->flags & G_PARAM_CONSTRUCT_ONLY)) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("construct property \"%s\" for object '%s' can't be set after construction"),
pspec->name, G_OBJECT_TYPE_NAME (object));
return FALSE;
}
klass = g_type_class_peek (pspec->owner_type);
if (klass == NULL) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("'%s::%s' is not a valid property name; '%s' is not a GObject subtype"),
g_type_name (pspec->owner_type), pspec->name, g_type_name (pspec->owner_type));
return FALSE;
}
/* provide a copy to work from, convert (if necessary) and validate */
g_value_init (&tmp_value, pspec->value_type);
if (!g_value_transform (value, &tmp_value)) {
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("unable to set property '%s' of type '%s' from value of type '%s'"),
pspec->name,
g_type_name (pspec->value_type),
G_VALUE_TYPE_NAME (value));
return FALSE;
}
if ( g_param_value_validate (pspec, &tmp_value)
&& !(pspec->flags & G_PARAM_LAX_VALIDATION)) {
gs_free char *contents = g_strdup_value_contents (value);
g_set_error (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("value \"%s\" of type '%s' is invalid or out of range for property '%s' of type '%s'"),
contents,
G_VALUE_TYPE_NAME (value),
pspec->name,
g_type_name (pspec->value_type));
return FALSE;
}
g_object_set_property (object, property_name, &tmp_value);
return TRUE;
}
#define _set_property(object, property_name, gtype, gtype_set, value, error) \
G_STMT_START { \
nm_auto_unset_gvalue GValue gvalue = { 0 }; \
\
g_value_init (&gvalue, gtype); \
gtype_set (&gvalue, (value)); \
return nm_g_object_set_property ((object), (property_name), &gvalue, (error)); \
} G_STMT_END
gboolean
nm_g_object_set_property_string (GObject *object,
const char *property_name,
const char *value,
GError **error)
{
_set_property (object, property_name, G_TYPE_STRING, g_value_set_string, value, error);
}
gboolean
nm_g_object_set_property_string_static (GObject *object,
const char *property_name,
const char *value,
GError **error)
{
_set_property (object, property_name, G_TYPE_STRING, g_value_set_static_string, value, error);
}
gboolean
nm_g_object_set_property_string_take (GObject *object,
const char *property_name,
char *value,
GError **error)
{
_set_property (object, property_name, G_TYPE_STRING, g_value_take_string, value, error);
}
gboolean
nm_g_object_set_property_boolean (GObject *object,
const char *property_name,
gboolean value,
GError **error)
{
_set_property (object, property_name, G_TYPE_BOOLEAN, g_value_set_boolean, !!value, error);
}
gboolean
nm_g_object_set_property_char (GObject *object,
const char *property_name,
gint8 value,
GError **error)
{
/* glib says about G_TYPE_CHAR:
*
* The type designated by G_TYPE_CHAR is unconditionally an 8-bit signed integer.
*
* This is always a (signed!) char. */
_set_property (object, property_name, G_TYPE_CHAR, g_value_set_schar, value, error);
}
gboolean
nm_g_object_set_property_uchar (GObject *object,
const char *property_name,
guint8 value,
GError **error)
{
_set_property (object, property_name, G_TYPE_UCHAR, g_value_set_uchar, value, error);
}
gboolean
nm_g_object_set_property_int (GObject *object,
const char *property_name,
int value,
GError **error)
{
_set_property (object, property_name, G_TYPE_INT, g_value_set_int, value, error);
}
gboolean
nm_g_object_set_property_int64 (GObject *object,
const char *property_name,
gint64 value,
GError **error)
{
_set_property (object, property_name, G_TYPE_INT64, g_value_set_int64, value, error);
}
gboolean
nm_g_object_set_property_uint (GObject *object,
const char *property_name,
guint value,
GError **error)
{
_set_property (object, property_name, G_TYPE_UINT, g_value_set_uint, value, error);
}
gboolean
nm_g_object_set_property_uint64 (GObject *object,
const char *property_name,
guint64 value,
GError **error)
{
_set_property (object, property_name, G_TYPE_UINT64, g_value_set_uint64, value, error);
}
gboolean
nm_g_object_set_property_flags (GObject *object,
const char *property_name,
GType gtype,
guint value,
GError **error)
{
nm_assert (({
nm_auto_unref_gtypeclass GTypeClass *gtypeclass = g_type_class_ref (gtype);
G_IS_FLAGS_CLASS (gtypeclass);
}));
_set_property (object, property_name, gtype, g_value_set_flags, value, error);
}
gboolean
nm_g_object_set_property_enum (GObject *object,
const char *property_name,
GType gtype,
int value,
GError **error)
{
nm_assert (({
nm_auto_unref_gtypeclass GTypeClass *gtypeclass = g_type_class_ref (gtype);
G_IS_ENUM_CLASS (gtypeclass);
}));
_set_property (object, property_name, gtype, g_value_set_enum, value, error);
}
GParamSpec *
nm_g_object_class_find_property_from_gtype (GType gtype,
const char *property_name)
{
nm_auto_unref_gtypeclass GObjectClass *gclass = NULL;
gclass = g_type_class_ref (gtype);
return g_object_class_find_property (gclass, property_name);
}
/*****************************************************************************/
/**
* nm_g_type_find_implementing_class_for_property:
* @gtype: the GObject type which has a property @pname
* @pname: the name of the property to look up
*
* This is only a helper function for printf debugging. It's not
* used in actual code. Hence, the function just asserts that
* @pname and @gtype arguments are suitable. It cannot fail.
*
* Returns: the most ancestor type of @gtype, that
* implements the property @pname. It means, it
* searches the type hierarchy to find the type
* that added @pname.
*/
GType
nm_g_type_find_implementing_class_for_property (GType gtype,
const char *pname)
{
nm_auto_unref_gtypeclass GObjectClass *klass = NULL;
GParamSpec *pspec;
g_return_val_if_fail (pname, G_TYPE_INVALID);
klass = g_type_class_ref (gtype);
g_return_val_if_fail (G_IS_OBJECT_CLASS (klass), G_TYPE_INVALID);
pspec = g_object_class_find_property (klass, pname);
g_return_val_if_fail (pspec, G_TYPE_INVALID);
gtype = G_TYPE_FROM_CLASS (klass);
while (TRUE) {
nm_auto_unref_gtypeclass GObjectClass *k = NULL;
k = g_type_class_ref (g_type_parent (gtype));
g_return_val_if_fail (G_IS_OBJECT_CLASS (k), G_TYPE_INVALID);
if (g_object_class_find_property (k, pname) != pspec)
return gtype;
gtype = G_TYPE_FROM_CLASS (k);
}
}
/*****************************************************************************/
static void
_str_buf_append_c_escape_octal (NMStrBuf *strbuf,
char ch)
{
nm_str_buf_append_c4 (strbuf,
'\\',
'0' + ((char) ((((guchar) ch) >> 6) & 07)),
'0' + ((char) ((((guchar) ch) >> 3) & 07)),
'0' + ((char) ((((guchar) ch) ) & 07)));
}
gconstpointer
nm_utils_buf_utf8safe_unescape (const char *str, NMUtilsStrUtf8SafeFlags flags, gsize *out_len, gpointer *to_free)
{
gboolean strip_spaces = NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_UNESCAPE_STRIP_SPACES);
NMStrBuf strbuf;
const char *s;
gsize len;
g_return_val_if_fail (to_free, NULL);
g_return_val_if_fail (out_len, NULL);
if (!str) {
*out_len = 0;
*to_free = NULL;
return NULL;
}
if (strip_spaces)
str = nm_str_skip_leading_spaces (str);
len = strlen (str);
s = memchr (str, '\\', len);
if (!s) {
if ( strip_spaces
&& len > 0
&& g_ascii_isspace (str[len - 1])) {
len--;
while ( len > 0
&& g_ascii_isspace (str[len - 1]))
len--;
*out_len = len;
return (*to_free = g_strndup (str, len));
}
*out_len = len;
*to_free = NULL;
return str;
}
nm_str_buf_init (&strbuf, len + 1u, FALSE);
nm_str_buf_append_len (&strbuf, str, s - str);
str = s;
for (;;) {
char ch;
guint v;
nm_assert (str[0] == '\\');
ch = (++str)[0];
if (ch == '\0') {
/* error. Trailing '\\' */
break;
}
if (ch >= '0' && ch <= '9') {
v = ch - '0';
ch = (++str)[0];
if (ch >= '0' && ch <= '7') {
v = v * 8 + (ch - '0');
ch = (++str)[0];
if (ch >= '0' && ch <= '7') {
/* technically, escape sequences larger than \3FF are out of range
* and invalid. We don't check for that, and do the same as
* g_strcompress(): silently clip the value with & 0xFF. */
v = v * 8 + (ch - '0');
++str;
}
}
ch = v;
} else {
switch (ch) {
case 'b': ch = '\b'; break;
case 'f': ch = '\f'; break;
case 'n': ch = '\n'; break;
case 'r': ch = '\r'; break;
case 't': ch = '\t'; break;
case 'v': ch = '\v'; break;
default:
/* Here we handle "\\\\", but all other unexpected escape sequences are really a bug.
* Take them literally, after removing the escape character */
break;
}
str++;
}
nm_str_buf_append_c (&strbuf, ch);
s = strchr (str, '\\');
if (!s) {
gsize l = strlen (str);
if (strip_spaces) {
while ( l > 0
&& g_ascii_isspace (str[l - 1]))
l--;
}
nm_str_buf_append_len (&strbuf, str, l);
break;
}
nm_str_buf_append_len (&strbuf, str, s - str);
str = s;
}
/* assert that no reallocation was necessary. For one, unescaping should
* never result in a longer string than the input. Also, when unescaping
* secrets, we want to ensure that we don't leak secrets in memory. */
nm_assert (strbuf.allocated == len + 1u);
return (*to_free = nm_str_buf_finalize (&strbuf,
out_len));
}
/**
* nm_utils_buf_utf8safe_escape:
* @buf: byte array, possibly in utf-8 encoding, may have NUL characters.
* @buflen: the length of @buf in bytes, or -1 if @buf is a NUL terminated
* string.
* @flags: #NMUtilsStrUtf8SafeFlags flags
* @to_free: (out): return the pointer location of the string
* if a copying was necessary.
*
* Based on the assumption, that @buf contains UTF-8 encoded bytes,
* this will return valid UTF-8 sequence, and invalid sequences
* will be escaped with backslash (C escaping, like g_strescape()).
* This is sanitize non UTF-8 characters. The result is valid
* UTF-8.
*
* The operation can be reverted with nm_utils_buf_utf8safe_unescape().
* Note that if, and only if @buf contains no NUL bytes, the operation
* can also be reverted with g_strcompress().
*
* Depending on @flags, valid UTF-8 characters are not escaped at all
* (except the escape character '\\'). This is the difference to g_strescape(),
* which escapes all non-ASCII characters. This allows to pass on
* valid UTF-8 characters as-is and can be directly shown to the user
* as UTF-8 -- with exception of the backslash escape character,
* invalid UTF-8 sequences, and other (depending on @flags).
*
* Returns: the escaped input buffer, as valid UTF-8. If no escaping
* is necessary, it returns the input @buf. Otherwise, an allocated
* string @to_free is returned which must be freed by the caller
* with g_free. The escaping can be reverted by g_strcompress().
**/
const char *
nm_utils_buf_utf8safe_escape (gconstpointer buf, gssize buflen, NMUtilsStrUtf8SafeFlags flags, char **to_free)
{
const char *const str = buf;
const char *p = NULL;
const char *s;
gboolean nul_terminated = FALSE;
NMStrBuf strbuf;
g_return_val_if_fail (to_free, NULL);
*to_free = NULL;
if (buflen == 0)
return NULL;
if (buflen < 0) {
if (!str)
return NULL;
buflen = strlen (str);
if (buflen == 0)
return str;
nul_terminated = TRUE;
}
if ( g_utf8_validate (str, buflen, &p)
&& nul_terminated) {
/* note that g_utf8_validate() does not allow NUL character inside @str. Good.
* We can treat @str like a NUL terminated string. */
if (!NM_STRCHAR_ANY (str, ch,
( ch == '\\' \
|| ( NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_CTRL) \
&& ch < ' ') \
|| ( NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_NON_ASCII) \
&& ((guchar) ch) >= 127))))
return str;
}
nm_str_buf_init (&strbuf,
buflen + 5,
NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_SECRET));
s = str;
do {
buflen -= p - s;
nm_assert (buflen >= 0);
for (; s < p; s++) {
char ch = s[0];
nm_assert (ch);
if (ch == '\\')
nm_str_buf_append_c2 (&strbuf, '\\', '\\');
else if ( ( NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_CTRL) \
&& ch < ' ') \
|| ( NM_FLAGS_HAS (flags, NM_UTILS_STR_UTF8_SAFE_FLAG_ESCAPE_NON_ASCII) \
&& ((guchar) ch) >= 127))
_str_buf_append_c_escape_octal (&strbuf, ch);
else
nm_str_buf_append_c (&strbuf, ch);
}
if (buflen <= 0)
break;
_str_buf_append_c_escape_octal (&strbuf, p[0]);
buflen--;
if (buflen == 0)
break;
s = &p[1];
(void) g_utf8_validate (s, buflen, &p);
} while (TRUE);
return (*to_free = nm_str_buf_finalize (&strbuf, NULL));
}
const char *
nm_utils_buf_utf8safe_escape_bytes (GBytes *bytes, NMUtilsStrUtf8SafeFlags flags, char **to_free)
{
gconstpointer p;
gsize l;
if (bytes)
p = g_bytes_get_data (bytes, &l);
else {
p = NULL;
l = 0;
}
return nm_utils_buf_utf8safe_escape (p, l, flags, to_free);
}
/*****************************************************************************/
const char *
nm_utils_str_utf8safe_unescape (const char *str, NMUtilsStrUtf8SafeFlags flags, char **to_free)
{
const char *res;
gsize len;
g_return_val_if_fail (to_free, NULL);
res = nm_utils_buf_utf8safe_unescape (str, flags, &len, (gpointer *) to_free);
nm_assert ( (!res && len == 0)
|| (strlen (res) <= len));
return res;
}
/**
* nm_utils_str_utf8safe_escape:
* @str: NUL terminated input string, possibly in utf-8 encoding
* @flags: #NMUtilsStrUtf8SafeFlags flags
* @to_free: (out): return the pointer location of the string
* if a copying was necessary.
*
* Returns the possible non-UTF-8 NUL terminated string @str
* and uses backslash escaping (C escaping, like g_strescape())
* to sanitize non UTF-8 characters. The result is valid
* UTF-8.
*
* The operation can be reverted with g_strcompress() or
* nm_utils_str_utf8safe_unescape().
*
* Depending on @flags, valid UTF-8 characters are not escaped at all
* (except the escape character '\\'). This is the difference to g_strescape(),
* which escapes all non-ASCII characters. This allows to pass on
* valid UTF-8 characters as-is and can be directly shown to the user
* as UTF-8 -- with exception of the backslash escape character,
* invalid UTF-8 sequences, and other (depending on @flags).
*
* Returns: the escaped input string, as valid UTF-8. If no escaping
* is necessary, it returns the input @str. Otherwise, an allocated
* string @to_free is returned which must be freed by the caller
* with g_free. The escaping can be reverted by g_strcompress().
**/
const char *
nm_utils_str_utf8safe_escape (const char *str, NMUtilsStrUtf8SafeFlags flags, char **to_free)
{
return nm_utils_buf_utf8safe_escape (str, -1, flags, to_free);
}
/**
* nm_utils_str_utf8safe_escape_cp:
* @str: NUL terminated input string, possibly in utf-8 encoding
* @flags: #NMUtilsStrUtf8SafeFlags flags
*
* Like nm_utils_str_utf8safe_escape(), except the returned value
* is always a copy of the input and must be freed by the caller.
*
* Returns: the escaped input string in UTF-8 encoding. The returned
* value should be freed with g_free().
* The escaping can be reverted by g_strcompress().
**/
char *
nm_utils_str_utf8safe_escape_cp (const char *str, NMUtilsStrUtf8SafeFlags flags)
{
char *s;
nm_utils_str_utf8safe_escape (str, flags, &s);
return s ?: g_strdup (str);
}
char *
nm_utils_str_utf8safe_unescape_cp (const char *str, NMUtilsStrUtf8SafeFlags flags)
{
char *s;
str = nm_utils_str_utf8safe_unescape (str, flags, &s);
return s ?: g_strdup (str);
}
char *
nm_utils_str_utf8safe_escape_take (char *str, NMUtilsStrUtf8SafeFlags flags)
{
char *str_to_free;
nm_utils_str_utf8safe_escape (str, flags, &str_to_free);
if (str_to_free) {
g_free (str);
return str_to_free;
}
return str;
}
/*****************************************************************************/
/* taken from systemd's fd_wait_for_event(). Note that the timeout
* is here in nano-seconds, not micro-seconds. */
int
nm_utils_fd_wait_for_event (int fd, int event, gint64 timeout_nsec)
{
struct pollfd pollfd = {
.fd = fd,
.events = event,
};
struct timespec ts, *pts;
int r;
if (timeout_nsec < 0)
pts = NULL;
else {
ts.tv_sec = (time_t) (timeout_nsec / NM_UTILS_NSEC_PER_SEC);
ts.tv_nsec = (long int) (timeout_nsec % NM_UTILS_NSEC_PER_SEC);
pts = &ts;
}
r = ppoll (&pollfd, 1, pts, NULL);
if (r < 0)
return -NM_ERRNO_NATIVE (errno);
if (r == 0)
return 0;
return pollfd.revents;
}
/* taken from systemd's loop_read() */
ssize_t
nm_utils_fd_read_loop (int fd, void *buf, size_t nbytes, bool do_poll)
{
uint8_t *p = buf;
ssize_t n = 0;
g_return_val_if_fail (fd >= 0, -EINVAL);
g_return_val_if_fail (buf, -EINVAL);
/* If called with nbytes == 0, let's call read() at least
* once, to validate the operation */
if (nbytes > (size_t) SSIZE_MAX)
return -EINVAL;
do {
ssize_t k;
k = read (fd, p, nbytes);
if (k < 0) {
int errsv = errno;
if (errsv == EINTR)
continue;
if (errsv == EAGAIN && do_poll) {
/* We knowingly ignore any return value here,
* and expect that any error/EOF is reported
* via read() */
(void) nm_utils_fd_wait_for_event (fd, POLLIN, -1);
continue;
}
return n > 0 ? n : -NM_ERRNO_NATIVE (errsv);
}
if (k == 0)
return n;
g_assert ((size_t) k <= nbytes);
p += k;
nbytes -= k;
n += k;
} while (nbytes > 0);
return n;
}
/* taken from systemd's loop_read_exact() */
int
nm_utils_fd_read_loop_exact (int fd, void *buf, size_t nbytes, bool do_poll)
{
ssize_t n;
n = nm_utils_fd_read_loop (fd, buf, nbytes, do_poll);
if (n < 0)
return (int) n;
if ((size_t) n != nbytes)
return -EIO;
return 0;
}
/*****************************************************************************/
NMUtilsNamedValue *
nm_utils_named_values_from_str_dict_with_sort (GHashTable *hash,
guint *out_len,
GCompareDataFunc compare_func,
gpointer user_data)
{
GHashTableIter iter;
NMUtilsNamedValue *values;
guint i, len;
if ( !hash
|| !(len = g_hash_table_size (hash))) {
NM_SET_OUT (out_len, 0);
return NULL;
}
i = 0;
values = g_new (NMUtilsNamedValue, len + 1);
g_hash_table_iter_init (&iter, hash);
while (g_hash_table_iter_next (&iter,
(gpointer *) &values[i].name,
(gpointer *) &values[i].value_ptr))
i++;
nm_assert (i == len);
values[i].name = NULL;
values[i].value_ptr = NULL;
if (compare_func)
nm_utils_named_value_list_sort (values, len, compare_func, user_data);
NM_SET_OUT (out_len, len);
return values;
}
gssize
nm_utils_named_value_list_find (const NMUtilsNamedValue *arr,
gsize len,
const char *name,
gboolean sorted)
{
gsize i;
nm_assert (name);
#if NM_MORE_ASSERTS > 5
{
for (i = 0; i < len; i++) {
const NMUtilsNamedValue *v = &arr[i];
nm_assert (v->name);
if ( sorted
&& i > 0)
nm_assert (strcmp (arr[i - 1].name, v->name) < 0);
}
}
nm_assert ( !sorted
|| nm_utils_named_value_list_is_sorted (arr, len, FALSE, NULL, NULL));
#endif
if (sorted) {
return nm_utils_array_find_binary_search (arr,
sizeof (NMUtilsNamedValue),
len,
&name,
nm_strcmp_p_with_data,
NULL);
}
for (i = 0; i < len; i++) {
if (nm_streq (arr[i].name, name))
return i;
}
return ~((gssize) len);
}
gboolean
nm_utils_named_value_list_is_sorted (const NMUtilsNamedValue *arr,
gsize len,
gboolean accept_duplicates,
GCompareDataFunc compare_func,
gpointer user_data)
{
gsize i;
int c_limit;
if (len == 0)
return TRUE;
g_return_val_if_fail (arr, FALSE);
if (!compare_func)
compare_func = nm_strcmp_p_with_data;
c_limit = accept_duplicates ? 0 : -1;
for (i = 1; i < len; i++) {
int c;
c = compare_func (&arr[i - 1], &arr[i], user_data);
if (c > c_limit)
return FALSE;
}
return TRUE;
}
void
nm_utils_named_value_list_sort (NMUtilsNamedValue *arr,
gsize len,
GCompareDataFunc compare_func,
gpointer user_data)
{
if (len == 0)
return;
g_return_if_fail (arr);
if (len == 1)
return;
g_qsort_with_data (arr,
len,
sizeof (NMUtilsNamedValue),
compare_func ?: nm_strcmp_p_with_data,
user_data);
}
/*****************************************************************************/
gpointer *
nm_utils_hash_keys_to_array (GHashTable *hash,
GCompareDataFunc compare_func,
gpointer user_data,
guint *out_len)
{
guint len;
gpointer *keys;
/* by convention, we never return an empty array. In that
* case, always %NULL. */
if ( !hash
|| g_hash_table_size (hash) == 0) {
NM_SET_OUT (out_len, 0);
return NULL;
}
keys = g_hash_table_get_keys_as_array (hash, &len);
if ( len > 1
&& compare_func) {
g_qsort_with_data (keys,
len,
sizeof (gpointer),
compare_func,
user_data);
}
NM_SET_OUT (out_len, len);
return keys;
}
gpointer *
nm_utils_hash_values_to_array (GHashTable *hash,
GCompareDataFunc compare_func,
gpointer user_data,
guint *out_len)
{
GHashTableIter iter;
gpointer value;
gpointer *arr;
guint i, len;
if ( !hash
|| (len = g_hash_table_size (hash)) == 0u) {
NM_SET_OUT (out_len, 0);
return NULL;
}
arr = g_new (gpointer, ((gsize) len) + 1);
i = 0;
g_hash_table_iter_init (&iter, hash);
while (g_hash_table_iter_next (&iter, NULL, (gpointer *) &value))
arr[i++] = value;
nm_assert (i == len);
arr[len] = NULL;
if ( len > 1
&& compare_func) {
g_qsort_with_data (arr,
len,
sizeof (gpointer),
compare_func,
user_data);
}
NM_SET_OUT (out_len, len);
return arr;
}
gboolean
nm_utils_hashtable_same_keys (const GHashTable *a,
const GHashTable *b)
{
GHashTableIter h;
const char *k;
if (a == b)
return TRUE;
if (!a || !b)
return FALSE;
if (g_hash_table_size ((GHashTable *) a) != g_hash_table_size ((GHashTable *) b))
return FALSE;
g_hash_table_iter_init (&h, (GHashTable *) a);
while (g_hash_table_iter_next (&h, (gpointer) &k, NULL)) {
if (!g_hash_table_contains ((GHashTable *) b, k))
return FALSE;
}
#if NM_MORE_ASSERTS > 5
g_hash_table_iter_init (&h, (GHashTable *) b);
while (g_hash_table_iter_next (&h, (gpointer) &k, NULL))
nm_assert (g_hash_table_contains ((GHashTable *) a, k));
#endif
return TRUE;
}
char **
nm_utils_strv_make_deep_copied (const char **strv)
{
gsize i;
/* it takes a strv list, and copies each
* strings. Note that this updates @strv *in-place*
* and returns it. */
if (!strv)
return NULL;
for (i = 0; strv[i]; i++)
strv[i] = g_strdup (strv[i]);
return (char **) strv;
}
char **
nm_utils_strv_make_deep_copied_n (const char **strv, gsize len)
{
gsize i;
/* it takes a strv array with len elements, and copies each
* strings. Note that this updates @strv *in-place*
* and returns it. */
if (!strv)
return NULL;
for (i = 0; i < len; i++)
strv[i] = g_strdup (strv[i]);
return (char **) strv;
}
/**
* @strv: the strv array to copy. It may be %NULL if @len
* is negative or zero (in which case %NULL will be returned).
* @len: the length of strings in @str. If negative, strv is assumed
* to be a NULL terminated array.
* @deep_copied: if %TRUE, clones the individual strings. In that case,
* the returned array must be freed with g_strfreev(). Otherwise, the
* strings themself are not copied. You must take care of who owns the
* strings yourself.
*
* Like g_strdupv(), with two differences:
*
* - accepts a @len parameter for non-null terminated strv array.
*
* - this never returns an empty strv array, but always %NULL if
* there are no strings.
*
* Note that if @len is non-negative, then it still must not
* contain any %NULL pointers within the first @len elements.
* Otherwise you would leak elements if you try to free the
* array with g_strfreev(). Allowing that would be error prone.
*
* Returns: (transfer full): a clone of the strv array. Always
* %NULL terminated. Depending on @deep_copied, the strings are
* cloned or not.
*/
char **
nm_utils_strv_dup (gpointer strv,
gssize len,
gboolean deep_copied)
{
gsize i, l;
char **v;
const char *const *const src = strv;
if (len < 0)
l = NM_PTRARRAY_LEN (src);
else
l = len;
if (l == 0) {
/* this function never returns an empty strv array. If you
* need that, handle it yourself. */
return NULL;
}
v = g_new (char *, l + 1);
for (i = 0; i < l; i++) {
if (G_UNLIKELY (!src[i])) {
/* NULL strings are not allowed. Clear the remainder of the array
* and return it (with assertion failure). */
l++;
for (; i < l; i++)
v[i] = NULL;
g_return_val_if_reached (v);
}
if (deep_copied)
v[i] = g_strdup (src[i]);
else
v[i] = (char *) src[i];
}
v[l] = NULL;
return v;
}
/*****************************************************************************/
gssize
nm_utils_ptrarray_find_binary_search (gconstpointer *list,
gsize len,
gconstpointer needle,
GCompareDataFunc cmpfcn,
gpointer user_data,
gssize *out_idx_first,
gssize *out_idx_last)
{
gssize imin, imax, imid, i2min, i2max, i2mid;
int cmp;
g_return_val_if_fail (list || !len, ~((gssize) 0));
g_return_val_if_fail (cmpfcn, ~((gssize) 0));
imin = 0;
if (len > 0) {
imax = len - 1;
while (imin <= imax) {
imid = imin + (imax - imin) / 2;
cmp = cmpfcn (list[imid], needle, user_data);
if (cmp == 0) {
/* we found a matching entry at index imid.
*
* Does the caller request the first/last index as well (in case that
* there are multiple entries which compare equal). */
if (out_idx_first) {
i2min = imin;
i2max = imid + 1;
while (i2min <= i2max) {
i2mid = i2min + (i2max - i2min) / 2;
cmp = cmpfcn (list[i2mid], needle, user_data);
if (cmp == 0)
i2max = i2mid -1;
else {
nm_assert (cmp < 0);
i2min = i2mid + 1;
}
}
*out_idx_first = i2min;
}
if (out_idx_last) {
i2min = imid + 1;
i2max = imax;
while (i2min <= i2max) {
i2mid = i2min + (i2max - i2min) / 2;
cmp = cmpfcn (list[i2mid], needle, user_data);
if (cmp == 0)
i2min = i2mid + 1;
else {
nm_assert (cmp > 0);
i2max = i2mid - 1;
}
}
*out_idx_last = i2min - 1;
}
return imid;
}
if (cmp < 0)
imin = imid + 1;
else
imax = imid - 1;
}
}
/* return the inverse of @imin. This is a negative number, but
* also is ~imin the position where the value should be inserted. */
imin = ~imin;
NM_SET_OUT (out_idx_first, imin);
NM_SET_OUT (out_idx_last, imin);
return imin;
}
/*****************************************************************************/
/**
* nm_utils_array_find_binary_search:
* @list: the list to search. It must be sorted according to @cmpfcn ordering.
* @elem_size: the size in bytes of each element in the list
* @len: the number of elements in @list
* @needle: the value that is searched
* @cmpfcn: the compare function. The elements @list are passed as first
* argument to @cmpfcn, while @needle is passed as second. Usually, the
* needle is the same data type as inside the list, however, that is
* not necessary, as long as @cmpfcn takes care to cast the two arguments
* accordingly.
* @user_data: optional argument passed to @cmpfcn
*
* Performs binary search for @needle in @list. On success, returns the
* (non-negative) index where the compare function found the searched element.
* On success, it returns a negative value. Note that the return negative value
* is the bitwise inverse of the position where the element should be inserted.
*
* If the list contains multiple matching elements, an arbitrary index is
* returned.
*
* Returns: the index to the element in the list, or the (negative, bitwise inverted)
* position where it should be.
*/
gssize
nm_utils_array_find_binary_search (gconstpointer list,
gsize elem_size,
gsize len,
gconstpointer needle,
GCompareDataFunc cmpfcn,
gpointer user_data)
{
gssize imin, imax, imid;
int cmp;
g_return_val_if_fail (list || !len, ~((gssize) 0));
g_return_val_if_fail (cmpfcn, ~((gssize) 0));
g_return_val_if_fail (elem_size > 0, ~((gssize) 0));
imin = 0;
if (len == 0)
return ~imin;
imax = len - 1;
while (imin <= imax) {
imid = imin + (imax - imin) / 2;
cmp = cmpfcn (&((const char *) list)[elem_size * imid], needle, user_data);
if (cmp == 0)
return imid;
if (cmp < 0)
imin = imid + 1;
else
imax = imid - 1;
}
/* return the inverse of @imin. This is a negative number, but
* also is ~imin the position where the value should be inserted. */
return ~imin;
}
/*****************************************************************************/
/**
* nm_utils_hash_table_equal:
* @a: one #GHashTable
* @b: other #GHashTable
* @treat_null_as_empty: if %TRUE, when either @a or @b is %NULL, it is
* treated like an empty hash. It means, a %NULL hash will compare equal
* to an empty hash.
* @equal_func: the equality function, for comparing the values.
* If %NULL, the values are not compared. In that case, the function
* only checks, if both dictionaries have the same keys -- according
* to @b's key equality function.
* Note that the values of @a will be passed as first argument
* to @equal_func.
*
* Compares two hash tables, whether they have equal content.
* This only makes sense, if @a and @b have the same key types and
* the same key compare-function.
*
* Returns: %TRUE, if both dictionaries have the same content.
*/
gboolean
nm_utils_hash_table_equal (const GHashTable *a,
const GHashTable *b,
gboolean treat_null_as_empty,
NMUtilsHashTableEqualFunc equal_func)
{
guint n;
GHashTableIter iter;
gconstpointer key, v_a, v_b;
if (a == b)
return TRUE;
if (!treat_null_as_empty) {
if (!a || !b)
return FALSE;
}
n = a ? g_hash_table_size ((GHashTable *) a) : 0;
if (n != (b ? g_hash_table_size ((GHashTable *) b) : 0))
return FALSE;
if (n > 0) {
g_hash_table_iter_init (&iter, (GHashTable *) a);
while (g_hash_table_iter_next (&iter, (gpointer *) &key, (gpointer *) &v_a)) {
if (!g_hash_table_lookup_extended ((GHashTable *) b, key, NULL, (gpointer *) &v_b))
return FALSE;
if ( equal_func
&& !equal_func (v_a, v_b))
return FALSE;
}
}
return TRUE;
}
/*****************************************************************************/
/**
* nm_utils_get_start_time_for_pid:
* @pid: the process identifier
* @out_state: return the state character, like R, S, Z. See `man 5 proc`.
* @out_ppid: parent process id
*
* Originally copied from polkit source (src/polkit/polkitunixprocess.c)
* and adjusted.
*
* Returns: the timestamp when the process started (by parsing /proc/$PID/stat).
* If an error occurs (e.g. the process does not exist), 0 is returned.
*
* The returned start time counts since boot, in the unit HZ (with HZ usually being (1/100) seconds)
**/
guint64
nm_utils_get_start_time_for_pid (pid_t pid, char *out_state, pid_t *out_ppid)
{
guint64 start_time;
char filename[256];
gs_free char *contents = NULL;
size_t length;
gs_free const char **tokens = NULL;
char *p;
char state = ' ';
gint64 ppid = 0;
start_time = 0;
contents = NULL;
g_return_val_if_fail (pid > 0, 0);
G_STATIC_ASSERT_EXPR (sizeof (GPid) >= sizeof (pid_t));
nm_sprintf_buf (filename, "/proc/%"G_PID_FORMAT"/stat", (GPid) pid);
if (!g_file_get_contents (filename, &contents, &length, NULL))
goto fail;
/* start time is the token at index 19 after the '(process name)' entry - since only this
* field can contain the ')' character, search backwards for this to avoid malicious
* processes trying to fool us
*/
p = strrchr (contents, ')');
if (!p)
goto fail;
p += 2; /* skip ') ' */
if (p - contents >= (int) length)
goto fail;
state = p[0];
tokens = nm_utils_strsplit_set (p, " ");
if (NM_PTRARRAY_LEN (tokens) < 20)
goto fail;
if (out_ppid) {
ppid = _nm_utils_ascii_str_to_int64 (tokens[1], 10, 1, G_MAXINT, 0);
if (ppid == 0)
goto fail;
}
start_time = _nm_utils_ascii_str_to_int64 (tokens[19], 10, 1, G_MAXINT64, 0);
if (start_time == 0)
goto fail;
NM_SET_OUT (out_state, state);
NM_SET_OUT (out_ppid, ppid);
return start_time;
fail:
NM_SET_OUT (out_state, ' ');
NM_SET_OUT (out_ppid, 0);
return 0;
}
/*****************************************************************************/
/**
* _nm_utils_strv_sort:
* @strv: pointer containing strings that will be sorted
* in-place, %NULL is allowed, unless @len indicates
* that there are more elements.
* @len: the number of elements in strv. If negative,
* strv must be a NULL terminated array and the length
* will be calculated first. If @len is a positive
* number, @strv is allowed to contain %NULL strings
* too.
*
* Ascending sort of the array @strv inplace, using plain strcmp() string
* comparison.
*/
void
_nm_utils_strv_sort (const char **strv, gssize len)
{
GCompareDataFunc cmp;
gsize l;
if (len < 0) {
l = NM_PTRARRAY_LEN (strv);
cmp = nm_strcmp_p_with_data;
} else {
l = len;
cmp = nm_strcmp0_p_with_data;
}
if (l <= 1)
return;
nm_assert (l <= (gsize) G_MAXINT);
g_qsort_with_data (strv,
l,
sizeof (const char *),
cmp,
NULL);
}
/**
* _nm_utils_strv_cmp_n:
* @strv1: a string array
* @len1: the length of @strv1, or -1 for NULL terminated array.
* @strv2: a string array
* @len2: the length of @strv2, or -1 for NULL terminated array.
*
* Note that
* - len == -1 && strv == NULL
* is treated like a %NULL argument and compares differently from
* other arrays.
*
* Note that an empty array can be represented as
* - len == -1 && strv && !strv[0]
* - len == 0 && !strv
* - len == 0 && strv
* These 3 forms all compare equal.
* It also means, if length is 0, then it is permissible for strv to be %NULL.
*
* The strv arrays may contain %NULL strings (if len is positive).
*
* Returns: 0 if the arrays are equal (using strcmp).
**/
int
_nm_utils_strv_cmp_n (const char *const*strv1,
gssize len1,
const char *const*strv2,
gssize len2)
{
gsize n, n2;
if (len1 < 0) {
if (!strv1)
return (len2 < 0 && !strv2) ? 0 : -1;
n = NM_PTRARRAY_LEN (strv1);
} else
n = len1;
if (len2 < 0) {
if (!strv2)
return 1;
n2 = NM_PTRARRAY_LEN (strv2);
} else
n2 = len2;
NM_CMP_DIRECT (n, n2);
for (; n > 0; n--, strv1++, strv2++)
NM_CMP_DIRECT_STRCMP0 (*strv1, *strv2);
return 0;
}
/*****************************************************************************/
/**
* nm_utils_g_slist_find_str:
* @list: the #GSList with NUL terminated strings to search
* @needle: the needle string to look for.
*
* Search the list for @needle and return the first found match
* (or %NULL if not found). Uses strcmp() for finding the first matching
* element.
*
* Returns: the #GSList element with @needle as string value or
* %NULL if not found.
*/
GSList *
nm_utils_g_slist_find_str (const GSList *list,
const char *needle)
{
nm_assert (needle);
for (; list; list = list->next) {
nm_assert (list->data);
if (nm_streq (list->data, needle))
return (GSList *) list;
}
return NULL;
}
/**
* nm_utils_g_slist_strlist_cmp:
* @a: the left #GSList of strings
* @b: the right #GSList of strings to compare.
*
* Compares two string lists. The data elements are compared with
* strcmp(), alloing %NULL elements.
*
* Returns: 0, 1, or -1, depending on how the lists compare.
*/
int
nm_utils_g_slist_strlist_cmp (const GSList *a, const GSList *b)
{
while (TRUE) {
if (!a)
return !b ? 0 : -1;
if (!b)
return 1;
NM_CMP_DIRECT_STRCMP0 (a->data, b->data);
a = a->next;
b = b->next;
}
}
char *
nm_utils_g_slist_strlist_join (const GSList *a, const char *separator)
{
GString *str = NULL;
if (!a)
return NULL;
for (; a; a = a->next) {
if (!str)
str = g_string_new (NULL);
else
g_string_append (str, separator);
g_string_append (str, a->data);
}
return g_string_free (str, FALSE);
}
/*****************************************************************************/
gpointer
_nm_utils_user_data_pack (int nargs, gconstpointer *args)
{
int i;
gpointer *data;
nm_assert (nargs > 0);
nm_assert (args);
data = g_slice_alloc (((gsize) nargs) * sizeof (gconstpointer));
for (i = 0; i < nargs; i++)
data[i] = (gpointer) args[i];
return data;
}
void
_nm_utils_user_data_unpack (gpointer user_data, int nargs, ...)
{
gpointer *data = user_data;
va_list ap;
int i;
nm_assert (data);
nm_assert (nargs > 0);
va_start (ap, nargs);
for (i = 0; i < nargs; i++) {
gpointer *dst;
dst = va_arg (ap, gpointer *);
nm_assert (dst);
*dst = data[i];
}
va_end (ap);
g_slice_free1 (((gsize) nargs) * sizeof (gconstpointer), data);
}
/*****************************************************************************/
typedef struct {
gpointer callback_user_data;
GCancellable *cancellable;
GSource *source;
NMUtilsInvokeOnIdleCallback callback;
gulong cancelled_id;
} InvokeOnIdleData;
static gboolean
_nm_utils_invoke_on_idle_cb_idle (gpointer user_data)
{
InvokeOnIdleData *data = user_data;
nm_clear_g_signal_handler (data->cancellable, &data->cancelled_id);
data->callback (data->callback_user_data, data->cancellable);
nm_g_object_unref (data->cancellable);
g_source_destroy (data->source);
nm_g_slice_free (data);
return G_SOURCE_REMOVE;
}
static void
_nm_utils_invoke_on_idle_cb_cancelled (GCancellable *cancellable,
InvokeOnIdleData *data)
{
/* on cancellation, we invoke the callback synchronously. */
nm_clear_g_signal_handler (data->cancellable, &data->cancelled_id);
nm_clear_g_source_inst (&data->source);
data->callback (data->callback_user_data, data->cancellable);
nm_g_object_unref (data->cancellable);
nm_g_slice_free (data);
}
static void
_nm_utils_invoke_on_idle_start (gboolean use_timeout,
guint timeout_msec,
GCancellable *cancellable,
NMUtilsInvokeOnIdleCallback callback,
gpointer callback_user_data)
{
InvokeOnIdleData *data;
GSource *source;
g_return_if_fail (callback);
data = g_slice_new (InvokeOnIdleData);
*data = (InvokeOnIdleData) {
.callback = callback,
.callback_user_data = callback_user_data,
.cancellable = nm_g_object_ref (cancellable),
.cancelled_id = 0,
};
if (cancellable) {
if (g_cancellable_is_cancelled (cancellable)) {
/* the cancellable is already cancelled. We ignore the timeout
* and always schedule an idle action. */
use_timeout = FALSE;
} else {
/* if we are passed a non-cancelled cancellable, we register to the "cancelled"
* signal an invoke the callback synchronously (from the signal handler).
*
* We don't do that,
* - if the cancellable is already cancelled (because we don't want to invoke
* the callback synchronously from the caller).
* - if we have no cancellable at hand. */
data->cancelled_id = g_signal_connect (cancellable,
"cancelled",
G_CALLBACK (_nm_utils_invoke_on_idle_cb_cancelled),
data);
}
}
if (use_timeout) {
source = nm_g_timeout_source_new (timeout_msec,
G_PRIORITY_DEFAULT,
_nm_utils_invoke_on_idle_cb_idle,
data,
NULL);
} else {
source = nm_g_idle_source_new (G_PRIORITY_DEFAULT,
_nm_utils_invoke_on_idle_cb_idle,
data,
NULL);
}
/* use the current thread default context. */
g_source_attach (source,
g_main_context_get_thread_default ());
data->source = source;
}
void
nm_utils_invoke_on_idle (GCancellable *cancellable,
NMUtilsInvokeOnIdleCallback callback,
gpointer callback_user_data)
{
_nm_utils_invoke_on_idle_start (FALSE, 0, cancellable, callback, callback_user_data);
}
void
nm_utils_invoke_on_timeout (guint timeout_msec,
GCancellable *cancellable,
NMUtilsInvokeOnIdleCallback callback,
gpointer callback_user_data)
{
_nm_utils_invoke_on_idle_start (TRUE, timeout_msec, cancellable, callback, callback_user_data);
}
/*****************************************************************************/
int
nm_utils_getpagesize (void)
{
static volatile int val = 0;
long l;
int v;
v = g_atomic_int_get (&val);
if (G_UNLIKELY (v == 0)) {
l = sysconf (_SC_PAGESIZE);
g_return_val_if_fail (l > 0 && l < G_MAXINT, 4*1024);
v = (int) l;
if (!g_atomic_int_compare_and_exchange (&val, 0, v)) {
v = g_atomic_int_get (&val);
g_return_val_if_fail (v > 0, 4*1024);
}
}
nm_assert (v > 0);
#if NM_MORE_ASSERTS > 5
nm_assert (v == getpagesize ());
nm_assert (v == sysconf (_SC_PAGESIZE));
#endif
return v;
}
gboolean
nm_utils_memeqzero (gconstpointer data, gsize length)
{
const unsigned char *p = data;
int len;
/* Taken from https://github.com/rustyrussell/ccan/blob/9d2d2c49f053018724bcc6e37029da10b7c3d60d/ccan/mem/mem.c#L92,
* CC-0 licensed. */
/* Check first 16 bytes manually */
for (len = 0; len < 16; len++) {
if (!length)
return TRUE;
if (*p)
return FALSE;
p++;
length--;
}
/* Now we know that's zero, memcmp with self. */
return memcmp (data, p, length) == 0;
}
/**
* nm_utils_bin2hexstr_full:
* @addr: pointer of @length bytes. If @length is zero, this may
* also be %NULL.
* @length: number of bytes in @addr. May also be zero, in which
* case this will return an empty string.
* @delimiter: either '\0', otherwise the output string will have the
* given delimiter character between each two hex numbers.
* @upper_case: if TRUE, use upper case ASCII characters for hex.
* @out: if %NULL, the function will allocate a new buffer of
* either (@length*2+1) or (@length*3) bytes, depending on whether
* a @delimiter is specified. In that case, the allocated buffer will
* be returned and must be freed by the caller.
* If not %NULL, the buffer must already be preallocated and contain
* at least (@length*2+1) or (@length*3) bytes, depending on the delimiter.
* If @length is zero, then of course at least one byte will be allocated
* or @out (if given) must contain at least room for the trailing NUL byte.
*
* Returns: the binary value converted to a hex string. If @out is given,
* this always returns @out. If @out is %NULL, a newly allocated string
* is returned. This never returns %NULL, for buffers of length zero
* an empty string is returend.
*/
char *
nm_utils_bin2hexstr_full (gconstpointer addr,
gsize length,
char delimiter,
gboolean upper_case,
char *out)
{
const guint8 *in = addr;
const char *LOOKUP = upper_case ? "0123456789ABCDEF" : "0123456789abcdef";
char *out0;
if (out)
out0 = out;
else {
out0 = out = g_new (char, length == 0
? 1u
: ( delimiter == '\0'
? length * 2u + 1u
: length * 3u));
}
/* @out must contain at least @length*3 bytes if @delimiter is set,
* otherwise, @length*2+1. */
if (length > 0) {
nm_assert (in);
for (;;) {
const guint8 v = *in++;
*out++ = LOOKUP[v >> 4];
*out++ = LOOKUP[v & 0x0F];
length--;
if (!length)
break;
if (delimiter)
*out++ = delimiter;
}
}
*out = '\0';
return out0;
}
guint8 *
nm_utils_hexstr2bin_full (const char *hexstr,
gboolean allow_0x_prefix,
gboolean delimiter_required,
const char *delimiter_candidates,
gsize required_len,
guint8 *buffer,
gsize buffer_len,
gsize *out_len)
{
const char *in = hexstr;
guint8 *out = buffer;
gboolean delimiter_has = TRUE;
guint8 delimiter = '\0';
gsize len;
nm_assert (hexstr);
nm_assert (buffer);
nm_assert (required_len > 0 || out_len);
if ( allow_0x_prefix
&& in[0] == '0'
&& in[1] == 'x')
in += 2;
while (TRUE) {
const guint8 d1 = in[0];
guint8 d2;
int i1, i2;
i1 = nm_utils_hexchar_to_int (d1);
if (i1 < 0)
goto fail;
/* If there's no leading zero (ie "aa:b:cc") then fake it */
d2 = in[1];
if ( d2
&& (i2 = nm_utils_hexchar_to_int (d2)) >= 0) {
*out++ = (i1 << 4) + i2;
d2 = in[2];
if (!d2)
break;
in += 2;
} else {
/* Fake leading zero */
*out++ = i1;
if (!d2) {
if (!delimiter_has) {
/* when using no delimiter, there must be pairs of hex chars */
goto fail;
}
break;
}
in += 1;
}
if (--buffer_len == 0)
goto fail;
if (delimiter_has) {
if (d2 != delimiter) {
if (delimiter)
goto fail;
if (delimiter_candidates) {
while (delimiter_candidates[0]) {
if (delimiter_candidates++[0] == d2)
delimiter = d2;
}
}
if (!delimiter) {
if (delimiter_required)
goto fail;
delimiter_has = FALSE;
continue;
}
}
in++;
}
}
len = out - buffer;
if ( required_len == 0
|| len == required_len) {
NM_SET_OUT (out_len, len);
return buffer;
}
fail:
NM_SET_OUT (out_len, 0);
return NULL;
}
guint8 *
nm_utils_hexstr2bin_alloc (const char *hexstr,
gboolean allow_0x_prefix,
gboolean delimiter_required,
const char *delimiter_candidates,
gsize required_len,
gsize *out_len)
{
guint8 *buffer;
gsize buffer_len, len;
g_return_val_if_fail (hexstr, NULL);
nm_assert (required_len > 0 || out_len);
if ( allow_0x_prefix
&& hexstr[0] == '0'
&& hexstr[1] == 'x')
hexstr += 2;
if (!hexstr[0])
goto fail;
if (required_len > 0)
buffer_len = required_len;
else
buffer_len = strlen (hexstr) / 2 + 3;
buffer = g_malloc (buffer_len);
if (nm_utils_hexstr2bin_full (hexstr,
FALSE,
delimiter_required,
delimiter_candidates,
required_len,
buffer,
buffer_len,
&len)) {
NM_SET_OUT (out_len, len);
return buffer;
}
g_free (buffer);
fail:
NM_SET_OUT (out_len, 0);
return NULL;
}
/*****************************************************************************/
GVariant *
nm_utils_gvariant_vardict_filter (GVariant *src,
gboolean (*filter_fcn) (const char *key,
GVariant *val,
char **out_key,
GVariant **out_val,
gpointer user_data),
gpointer user_data)
{
GVariantIter iter;
GVariantBuilder builder;
const char *key;
GVariant *val;
g_return_val_if_fail (src && g_variant_is_of_type (src, G_VARIANT_TYPE_VARDICT), NULL);
g_return_val_if_fail (filter_fcn, NULL);
g_variant_builder_init (&builder, G_VARIANT_TYPE_VARDICT);
g_variant_iter_init (&iter, src);
while (g_variant_iter_next (&iter, "{&sv}", &key, &val)) {
_nm_unused gs_unref_variant GVariant *val_free = val;
gs_free char *key2 = NULL;
gs_unref_variant GVariant *val2 = NULL;
if (filter_fcn (key,
val,
&key2,
&val2,
user_data)) {
g_variant_builder_add (&builder,
"{sv}",
key2 ?: key,
val2 ?: val);
}
}
return g_variant_builder_end (&builder);
}
static gboolean
_gvariant_vardict_filter_drop_one (const char *key,
GVariant *val,
char **out_key,
GVariant **out_val,
gpointer user_data)
{
return !nm_streq (key, user_data);
}
GVariant *
nm_utils_gvariant_vardict_filter_drop_one (GVariant *src,
const char *key)
{
return nm_utils_gvariant_vardict_filter (src,
_gvariant_vardict_filter_drop_one,
(gpointer) key);
}
/*****************************************************************************/
static gboolean
debug_key_matches (const char *key,
const char *token,
guint length)
{
/* may not call GLib functions: see note in g_parse_debug_string() */
for (; length; length--, key++, token++) {
char k = (*key == '_') ? '-' : g_ascii_tolower (*key );
char t = (*token == '_') ? '-' : g_ascii_tolower (*token);
if (k != t)
return FALSE;
}
return *key == '\0';
}
/**
* nm_utils_parse_debug_string:
* @string: the string to parse
* @keys: the debug keys
* @nkeys: number of entries in @keys
*
* Similar to g_parse_debug_string(), but does not special
* case "help" or "all".
*
* Returns: the flags
*/
guint
nm_utils_parse_debug_string (const char *string,
const GDebugKey *keys,
guint nkeys)
{
guint i;
guint result = 0;
const char *q;
if (string == NULL)
return 0;
while (*string) {
q = strpbrk (string, ":;, \t");
if (!q)
q = string + strlen (string);
for (i = 0; i < nkeys; i++) {
if (debug_key_matches (keys[i].key, string, q - string))
result |= keys[i].value;
}
string = q;
if (*string)
string++;
}
return result;
}
/*****************************************************************************/
GSource *
nm_g_idle_source_new (int priority,
GSourceFunc func,
gpointer user_data,
GDestroyNotify destroy_notify)
{
GSource *source;
source = g_idle_source_new ();
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, func, user_data, destroy_notify);
return source;
}
GSource *
nm_g_timeout_source_new (guint timeout_msec,
int priority,
GSourceFunc func,
gpointer user_data,
GDestroyNotify destroy_notify)
{
GSource *source;
source = g_timeout_source_new (timeout_msec);
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, func, user_data, destroy_notify);
return source;
}
GSource *
nm_g_unix_signal_source_new (int signum,
int priority,
GSourceFunc handler,
gpointer user_data,
GDestroyNotify notify)
{
GSource *source;
source = g_unix_signal_source_new (signum);
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, handler, user_data, notify);
return source;
}
GSource *
nm_g_unix_fd_source_new (int fd,
GIOCondition io_condition,
int priority,
gboolean (*source_func) (int fd,
GIOCondition condition,
gpointer user_data),
gpointer user_data,
GDestroyNotify destroy_notify)
{
GSource *source;
source = g_unix_fd_source_new (fd, io_condition);
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, G_SOURCE_FUNC (source_func), user_data, destroy_notify);
return source;
}
/*****************************************************************************/
#define _CTX_LOG(fmt, ...) \
G_STMT_START { \
if (FALSE) { \
gint64 _ts = g_get_monotonic_time () / 100; \
\
g_printerr (">>>> [%"G_GINT64_FORMAT".%05"G_GINT64_FORMAT"] [src:%p]: " fmt "\n", \
_ts / 10000, \
_ts % 10000, \
(ctx_src), \
##__VA_ARGS__); \
} \
} G_STMT_END
typedef struct {
int fd;
guint events;
guint registered_events;
union {
int one;
int *many;
} idx;
gpointer tag;
bool stale:1;
bool has_many_idx:1;
} PollData;
typedef struct {
GSource source;
GMainContext *context;
GHashTable *fds;
GPollFD *fds_arr;
int fds_len;
int max_priority;
bool acquired:1;
} CtxIntegSource;
static void
_poll_data_free (gpointer user_data)
{
PollData *poll_data = user_data;
if (poll_data->has_many_idx)
g_free (poll_data->idx.many);
nm_g_slice_free (poll_data);
}
static void
_ctx_integ_source_reacquire (CtxIntegSource *ctx_src)
{
if (G_LIKELY ( ctx_src->acquired
&& g_main_context_is_owner (ctx_src->context)))
return;
/* the parent context now iterates on a different thread.
* We need to release and reacquire the inner context. */
if (ctx_src->acquired)
g_main_context_release (ctx_src->context);
if (G_UNLIKELY (!g_main_context_acquire (ctx_src->context))) {
/* Nobody is supposed to reacquire the context while we use it. This is a bug
* of the user. */
ctx_src->acquired = FALSE;
g_return_if_reached ();
}
ctx_src->acquired = TRUE;
}
static gboolean
_ctx_integ_source_prepare (GSource *source,
int *out_timeout)
{
CtxIntegSource *ctx_src = ((CtxIntegSource *) source);
int max_priority;
int timeout = -1;
gboolean any_ready;
int fds_allocated;
int fds_len_old;
gs_free GPollFD *fds_arr_old = NULL;
GHashTableIter h_iter;
PollData *poll_data;
gboolean fds_changed;
int i;
_CTX_LOG ("prepare...");
_ctx_integ_source_reacquire (ctx_src);
any_ready = g_main_context_prepare (ctx_src->context, &max_priority);
fds_arr_old = g_steal_pointer (&ctx_src->fds_arr);
fds_len_old = ctx_src->fds_len;
fds_allocated = NM_MAX (1, fds_len_old); /* there is at least the wakeup's FD */
ctx_src->fds_arr = g_new (GPollFD, fds_allocated);
while ((ctx_src->fds_len = g_main_context_query (ctx_src->context,
max_priority,
&timeout,
ctx_src->fds_arr,
fds_allocated)) > fds_allocated) {
fds_allocated = ctx_src->fds_len;
g_free (ctx_src->fds_arr);
ctx_src->fds_arr = g_new (GPollFD, fds_allocated);
}
fds_changed = FALSE;
if (fds_len_old != ctx_src->fds_len)
fds_changed = TRUE;
else {
for (i = 0; i < ctx_src->fds_len; i++) {
if ( fds_arr_old[i].fd != ctx_src->fds_arr[i].fd
|| fds_arr_old[i].events != ctx_src->fds_arr[i].events) {
fds_changed = TRUE;
break;
}
}
}
if (G_UNLIKELY (fds_changed)) {
g_hash_table_iter_init (&h_iter, ctx_src->fds);
while (g_hash_table_iter_next (&h_iter, (gpointer *) &poll_data, NULL))
poll_data->stale = TRUE;
for (i = 0; i < ctx_src->fds_len; i++) {
const GPollFD *fd = &ctx_src->fds_arr[i];
poll_data = g_hash_table_lookup (ctx_src->fds, &fd->fd);
if (G_UNLIKELY (!poll_data)) {
poll_data = g_slice_new (PollData);
*poll_data = (PollData) {
.fd = fd->fd,
.idx.one = i,
.has_many_idx = FALSE,
.events = fd->events,
.registered_events = 0,
.tag = NULL,
.stale = FALSE,
};
g_hash_table_add (ctx_src->fds, poll_data);
nm_assert (poll_data == g_hash_table_lookup (ctx_src->fds, &fd->fd));
continue;
}
if (G_LIKELY (poll_data->stale)) {
if (poll_data->has_many_idx) {
g_free (poll_data->idx.many);
poll_data->has_many_idx = FALSE;
}
poll_data->events = fd->events;
poll_data->idx.one = i;
poll_data->stale = FALSE;
continue;
}
/* How odd. We have duplicate FDs. In fact, currently g_main_context_query() always
* coalesces the FDs and this cannot happen. However, that is not documented behavior,
* so we should not rely on that. So we need to keep a list of indexes... */
poll_data->events |= fd->events;
if (!poll_data->has_many_idx) {
int idx0;
idx0 = poll_data->idx.one;
poll_data->has_many_idx = TRUE;
poll_data->idx.many = g_new (int, 4);
poll_data->idx.many[0] = 2; /* number allocated */
poll_data->idx.many[1] = 2; /* number used */
poll_data->idx.many[2] = idx0;
poll_data->idx.many[3] = i;
} else {
if (poll_data->idx.many[0] == poll_data->idx.many[1]) {
poll_data->idx.many[0] *= 2;
poll_data->idx.many = g_realloc (poll_data->idx.many, sizeof (int) * (2 + poll_data->idx.many[0]));
}
poll_data->idx.many[2 + poll_data->idx.many[1]] = i;
poll_data->idx.many[1]++;
}
}
g_hash_table_iter_init (&h_iter, ctx_src->fds);
while (g_hash_table_iter_next (&h_iter, (gpointer *) &poll_data, NULL)) {
if (poll_data->stale) {
nm_assert (poll_data->tag);
nm_assert (poll_data->events == poll_data->registered_events);
_CTX_LOG ("prepare: remove poll fd=%d, events=0x%x", poll_data->fd, poll_data->events);
g_source_remove_unix_fd (&ctx_src->source, poll_data->tag);
g_hash_table_iter_remove (&h_iter);
continue;
}
if (!poll_data->tag) {
_CTX_LOG ("prepare: add poll fd=%d, events=0x%x", poll_data->fd, poll_data->events);
poll_data->registered_events = poll_data->events;
poll_data->tag = g_source_add_unix_fd (&ctx_src->source, poll_data->fd, poll_data->registered_events);
continue;
}
if (poll_data->registered_events != poll_data->events) {
_CTX_LOG ("prepare: update poll fd=%d, events=0x%x", poll_data->fd, poll_data->events);
poll_data->registered_events = poll_data->events;
g_source_modify_unix_fd (&ctx_src->source, poll_data->tag, poll_data->registered_events);
}
}
}
NM_SET_OUT (out_timeout, timeout);
ctx_src->max_priority = max_priority;
_CTX_LOG ("prepare: done, any-ready=%d, timeout=%d, max-priority=%d", any_ready, timeout, max_priority);
/* we always need to poll, because we have some file descriptors. */
return FALSE;
}
static gboolean
_ctx_integ_source_check (GSource *source)
{
CtxIntegSource *ctx_src = ((CtxIntegSource *) source);
GHashTableIter h_iter;
gboolean some_ready;
PollData *poll_data;
nm_assert (ctx_src->context);
_CTX_LOG ("check");
_ctx_integ_source_reacquire (ctx_src);
g_hash_table_iter_init (&h_iter, ctx_src->fds);
while (g_hash_table_iter_next (&h_iter, (gpointer *) &poll_data, NULL)) {
guint revents;
revents = g_source_query_unix_fd (&ctx_src->source, poll_data->tag);
if (G_UNLIKELY (poll_data->has_many_idx)) {
int num = poll_data->idx.many[1];
int *p_idx = &poll_data->idx.many[2];
for (; num > 0; num--, p_idx++)
ctx_src->fds_arr[*p_idx].revents = revents;
} else
ctx_src->fds_arr[poll_data->idx.one].revents = revents;
}
some_ready = g_main_context_check (ctx_src->context,
ctx_src->max_priority,
ctx_src->fds_arr,
ctx_src->fds_len);
_CTX_LOG ("check (some-ready=%d)...", some_ready);
return some_ready;
}
static gboolean
_ctx_integ_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
CtxIntegSource *ctx_src = ((CtxIntegSource *) source);
nm_assert (ctx_src->context);
_ctx_integ_source_reacquire (ctx_src);
_CTX_LOG ("dispatch");
g_main_context_dispatch (ctx_src->context);
return G_SOURCE_CONTINUE;
}
static void
_ctx_integ_source_finalize (GSource *source)
{
CtxIntegSource *ctx_src = ((CtxIntegSource *) source);
GHashTableIter h_iter;
PollData *poll_data;
g_return_if_fail (ctx_src->context);
_CTX_LOG ("finalize...");
g_hash_table_iter_init (&h_iter, ctx_src->fds);
while (g_hash_table_iter_next (&h_iter, (gpointer *) &poll_data, NULL)) {
nm_assert (poll_data->tag);
_CTX_LOG ("prepare: remove poll fd=%d, events=0x%x", poll_data->fd, poll_data->events);
g_source_remove_unix_fd (&ctx_src->source, poll_data->tag);
g_hash_table_iter_remove (&h_iter);
}
nm_clear_pointer (&ctx_src->fds, g_hash_table_unref);
nm_clear_g_free (&ctx_src->fds_arr);
ctx_src->fds_len = 0;
if (ctx_src->acquired) {
ctx_src->acquired = FALSE;
g_main_context_release (ctx_src->context);
}
nm_clear_pointer (&ctx_src->context, g_main_context_unref);
}
static GSourceFuncs ctx_integ_source_funcs = {
.prepare = _ctx_integ_source_prepare,
.check = _ctx_integ_source_check,
.dispatch = _ctx_integ_source_dispatch,
.finalize = _ctx_integ_source_finalize,
};
/**
* nm_utils_g_main_context_create_integrate_source:
* @inner_context: the inner context that will be integrated to an
* outer #GMainContext.
*
* By integrating the inner context with an outer context, when iterating the outer
* context sources on the inner context will be dispatched. Note that while the
* created source exists, the @inner_context will be acquired. The user gets restricted
* what to do with the inner context. In particular while the inner context is integrated,
* the user should not acquire the inner context again or explicitly iterate it. What
* the user of course still can (and wants to) do is attaching new sources to the inner
* context.
*
* Note that GSource has a priority. While each context dispatches events based on
* their source's priorities, the outer context dispatches to the inner context
* only with one priority (the priority of the created source). That is, the sources
* from the two contexts are kept separate and are not sorted by their priorities.
*
* Returns: a newly created GSource that should be attached to the
* outer context.
*/
GSource *
nm_utils_g_main_context_create_integrate_source (GMainContext *inner_context)
{
CtxIntegSource *ctx_src;
g_return_val_if_fail (inner_context, NULL);
if (!g_main_context_acquire (inner_context)) {
/* We require to acquire the context while it's integrated. We need to keep it acquired
* for the entire duration.
*
* This is also necessary because g_source_attach() only wakes up the context, if
* the context is currently acquired. */
g_return_val_if_reached (NULL);
}
ctx_src = (CtxIntegSource *) g_source_new (&ctx_integ_source_funcs, sizeof (CtxIntegSource));
g_source_set_name (&ctx_src->source, "ContextIntegrateSource");
ctx_src->context = g_main_context_ref (inner_context);
ctx_src->fds = g_hash_table_new_full (nm_pint_hash, nm_pint_equals, _poll_data_free, NULL);
ctx_src->fds_len = 0;
ctx_src->fds_arr = NULL;
ctx_src->acquired = TRUE;
ctx_src->max_priority = G_MAXINT;
_CTX_LOG ("create new integ-source for %p", inner_context);
return &ctx_src->source;
}
gboolean
nm_utils_ifname_valid_kernel (const char *name, GError **error)
{
int i;
/* This function follows kernel's interface validation
* function dev_valid_name() in net/core/dev.c.
*/
if (!name) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name is missing"));
return FALSE;
}
if (name[0] == '\0') {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name is too short"));
return FALSE;
}
if ( name[0] == '.'
&& ( name[1] == '\0'
|| ( name[1] == '.'
&& name[2] == '\0'))) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name is reserved"));
return FALSE;
}
for (i = 0; i < IFNAMSIZ; i++) {
char ch = name[i];
if (ch == '\0')
return TRUE;
if ( NM_IN_SET (ch, '/', ':')
|| g_ascii_isspace (ch)) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name contains an invalid character"));
return FALSE;
}
}
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name is longer than 15 characters"));
return FALSE;
}
/*****************************************************************************/
static gboolean
_nm_utils_ifname_valid_kernel (const char *name, GError **error)
{
if (!nm_utils_ifname_valid_kernel (name, error))
return FALSE;
if (strchr (name, '%')) {
/* Kernel's dev_valid_name() accepts (almost) any binary up to 15 chars.
* However, '%' is treated special as a format specifier. Try
*
* ip link add 'dummy%dx' type dummy
*
* Don't allow that for "connection.interface-name", which either
* matches an existing netdev name (thus, it cannot have a '%') or
* is used to configure a name (in which case we don't want kernel
* to replace the format specifier). */
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("'%%' is not allowed in interface names"));
return FALSE;
}
if (NM_IN_STRSET (name, "all",
"default",
"bonding_masters")) {
/* Certain names are not allowed. The "all" and "default" names are reserved
* due to their directories in "/proc/sys/net/ipv4/conf/" and "/proc/sys/net/ipv6/conf/".
*
* Also, there is "/sys/class/net/bonding_masters" file.
*/
nm_utils_error_set (error, NM_UTILS_ERROR_UNKNOWN,
_("'%s' is not allowed as interface name"), name);
return FALSE;
}
return TRUE;
}
static gboolean
_nm_utils_ifname_valid_ovs (const char *name, GError **error)
{
const char *ch;
/* OVS actually accepts a wider range of chars (all printable UTF-8 chars),
NetworkManager restricts this to ASCII char as it's a safer option for
now since OVS is not well documented on this matter.
*/
for (ch = name; *ch; ++ch) {
if ( *ch == '\\'
|| *ch == '/'
|| !g_ascii_isgraph (*ch)) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name must be alphanumerical with "
"no forward or backward slashes"));
return FALSE;
}
};
return TRUE;
}
gboolean
nm_utils_ifname_valid (const char* name,
NMUtilsIfaceType type,
GError **error)
{
g_return_val_if_fail (!error || !(*error), FALSE);
if (!name || !(name[0])) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name must not be empty"));
return FALSE;
}
if (!g_utf8_validate (name, -1, NULL)) {
g_set_error_literal (error, NM_UTILS_ERROR, NM_UTILS_ERROR_UNKNOWN,
_("interface name must be UTF-8 encoded"));
return FALSE;
}
switch (type) {
case NMU_IFACE_KERNEL:
return _nm_utils_ifname_valid_kernel (name, error);
case NMU_IFACE_OVS:
return _nm_utils_ifname_valid_ovs (name, error);
case NMU_IFACE_OVS_AND_KERNEL:
return _nm_utils_ifname_valid_kernel (name, error)
&& _nm_utils_ifname_valid_ovs (name, error);
case NMU_IFACE_ANY: {
gs_free_error GError *local = NULL;
if (_nm_utils_ifname_valid_kernel (name, error ? &local : NULL))
return TRUE;
if (_nm_utils_ifname_valid_ovs (name, NULL))
return TRUE;
if (error)
g_propagate_error (error, g_steal_pointer (&local));
return FALSE;
}
}
g_return_val_if_reached (FALSE);
}
/*****************************************************************************/
void
_nm_str_buf_ensure_size (NMStrBuf *strbuf,
gsize new_size,
gboolean reserve_exact)
{
_nm_str_buf_assert (strbuf);
/* Currently this only supports strictly growing the buffer. */
nm_assert (new_size > strbuf->_priv_allocated);
if (!reserve_exact) {
new_size = nm_utils_get_next_realloc_size (!strbuf->_priv_do_bzero_mem,
new_size);
}
strbuf->_priv_str = nm_secret_mem_realloc (strbuf->_priv_str,
strbuf->_priv_do_bzero_mem,
strbuf->_priv_allocated,
new_size);
strbuf->_priv_allocated = new_size;
}
void
nm_str_buf_append_printf (NMStrBuf *strbuf,
const char *format,
...)
{
va_list args;
gsize available;
int l;
_nm_str_buf_assert (strbuf);
available = strbuf->_priv_allocated - strbuf->_priv_len;
va_start (args, format);
l = g_vsnprintf (&strbuf->_priv_str[strbuf->_priv_len],
available,
format,
args);
va_end (args);
nm_assert (l >= 0);
nm_assert (l < G_MAXINT);
if ((gsize) l > available) {
gsize l2 = ((gsize) l) + 1u;
nm_str_buf_maybe_expand (strbuf, l2, FALSE);
va_start (args, format);
l = g_vsnprintf (&strbuf->_priv_str[strbuf->_priv_len],
l2,
format,
args);
va_end (args);
nm_assert (l >= 0);
nm_assert ((gsize) l == l2 - 1u);
}
strbuf->_priv_len += (gsize) l;
}
/*****************************************************************************/
/**
* nm_indirect_g_free:
* @arg: a pointer to a pointer that is to be freed.
*
* This does the same as nm_clear_g_free(arg) (g_clear_pointer (arg, g_free)).
* This is for example useful when you have a GArray with pointers and a
* clear function to free them. g_array_set_clear_func()'s destroy notify
* function gets a pointer to the array location, so we have to follow
* the first pointer.
*/
void
nm_indirect_g_free (gpointer arg)
{
gpointer *p = arg;
nm_clear_g_free (p);
}