vendor dependencies

This commit is contained in:
Sasha Klizhentas 2017-08-25 11:12:40 -07:00
parent 393c67f04b
commit ee80f947e0
10 changed files with 1270 additions and 1 deletions

8
Gopkg.lock generated
View file

@ -321,6 +321,12 @@
packages = ["connlimit","ratelimit","utils"]
revision = "5725fecc9a4f3aa6fdc3ffd29cef771241809add"
[[projects]]
name = "github.com/vulcand/predicate"
packages = ["."]
revision = "939c094524d124c55fa8afe0e077701db4a865e2"
version = "v1.0.0"
[[projects]]
name = "github.com/xeipuuv/gojsonpointer"
packages = ["."]
@ -388,6 +394,6 @@
[solve-meta]
analyzer-name = "dep"
analyzer-version = 1
inputs-digest = "b95b2baa7e996bc32da399192180a50cf289a0b9718f85b57e14a86f46e25048"
inputs-digest = "451ff02b1741edaebc95ff6dde7beabbe4d721e179cba379452fa312df4a9f7a"
solver-name = "gps-cdcl"
solver-version = 1

View file

@ -20,6 +20,10 @@
# name = "github.com/x/y"
# version = "2.4.0"
[[constraint]]
name = "github.com/vulcand/predicate"
version = "v1.0.0"
[[constraint]]
name = "github.com/docker/docker"
revision = "1009e6a40b295187e038b67e184e9c0384d95538"

24
vendor/github.com/vulcand/predicate/.gitignore generated vendored Normal file
View file

@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof

202
vendor/github.com/vulcand/predicate/LICENSE generated vendored Normal file
View file

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

13
vendor/github.com/vulcand/predicate/Makefile generated vendored Normal file
View file

@ -0,0 +1,13 @@
test: clean
go test -v ./... -cover
clean:
find . -name flymake_* -delete
cover: clean
go test -v . -coverprofile=/tmp/coverage.out
go tool cover -html=/tmp/coverage.out
sloccount:
find . -name "*.go" -print0 | xargs -0 wc -l

53
vendor/github.com/vulcand/predicate/README.md generated vendored Normal file
View file

@ -0,0 +1,53 @@
Predicate
=========
Predicate package used to create interpreted mini languages with Go syntax - mostly to define
various predicates for configuration, e.g.
```
Latency() > 40 || ErrorRate() > 0.5.
```
Here's an example of fully functional predicate language to deal with division remainders:
```go
// takes number and returns true or false
type numberPredicate func(v int) bool
// Converts one number to another
type numberMapper func(v int) int
// Function that creates predicate to test if the remainder is 0
func divisibleBy(divisor int) numberPredicate {
return func(v int) bool {
return v%divisor == 0
}
}
// Function - logical operator AND that combines predicates
func numberAND(a, b numberPredicate) numberPredicate {
return func(v int) bool {
return a(v) && b(v)
}
}
func main(){
// Create a new parser and define the supported operators and methods
p, err := NewParser(Def{
Operators: Operators{
AND: numberAND,
},
Functions: map[string]interface{}{
"DivisibleBy": divisibleBy,
},
})
pr, err := p.Parse("DivisibleBy(2) && DivisibleBy(3)")
if err == nil {
fmt.Fatalf("Error: %v", err)
}
pr.(numberPredicate)(2) // false
pr.(numberPredicate)(3) // false
pr.(numberPredicate)(6) // true
}
```

150
vendor/github.com/vulcand/predicate/lib.go generated vendored Normal file
View file

@ -0,0 +1,150 @@
/*
Copyright 2016 Vulcand Authors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package predicate
import (
"reflect"
"strings"
"github.com/gravitational/trace"
)
// GetStringMapValue is a helper function that returns property
// from map[string]string or map[string][]string
// the function returns empty value in case if key not found
// In case if map is nil, returns empty value as well
func GetStringMapValue(mapVal, keyVal interface{}) (interface{}, error) {
key, ok := keyVal.(string)
if !ok {
return nil, trace.BadParameter("only string keys are supported")
}
switch m := mapVal.(type) {
case map[string][]string:
if len(m) == 0 {
// to return nil with a proper type
var n []string
return n, nil
}
return m[key], nil
case map[string]string:
if len(m) == 0 {
return "", nil
}
return m[key], nil
default:
return nil, trace.BadParameter("type %T is not supported", m)
}
}
// BoolPredicate is a function without arguments that returns
// boolean value when called
type BoolPredicate func() bool
// Equals can compare complex objects, e.g. arrays of strings
// and strings together
func Equals(a interface{}, b interface{}) BoolPredicate {
return func() bool {
switch aval := a.(type) {
case string:
bval, ok := b.(string)
return ok && aval == bval
case []string:
bval, ok := b.([]string)
if !ok {
return false
}
if len(aval) != len(bval) {
return false
}
for i := range aval {
if aval[i] != bval[i] {
return false
}
}
return true
default:
return false
}
}
}
// Contains checks if string slice contains a string
// Contains([]string{"a", "b"}, "b") -> true
func Contains(a interface{}, b interface{}) BoolPredicate {
return func() bool {
aval, ok := a.([]string)
if !ok {
return false
}
bval, ok := b.(string)
if !ok {
return false
}
for _, v := range aval {
if v == bval {
return true
}
}
return false
}
}
// And is a boolean predicate that calls two boolean predicates
// and returns result of && operation on their return values
func And(a, b BoolPredicate) BoolPredicate {
return func() bool {
return a() && b()
}
}
// Or is a boolean predicate that calls two boolean predicates
// and returns result of || operation on their return values
func Or(a, b BoolPredicate) BoolPredicate {
return func() bool {
return a() || b()
}
}
// GetFieldByTag returns a field from the object based on the tag
func GetFieldByTag(ival interface{}, tagName string, fieldNames []string) (interface{}, error) {
if len(fieldNames) == 0 {
return nil, trace.BadParameter("missing field names")
}
val := reflect.ValueOf(ival)
if val.Kind() == reflect.Interface || val.Kind() == reflect.Ptr {
val = val.Elem()
}
if val.Kind() != reflect.Struct {
return nil, trace.NotFound("field name %v is not found", strings.Join(fieldNames, "."))
}
fieldName := fieldNames[0]
rest := fieldNames[1:]
valType := val.Type()
for i := 0; i < valType.NumField(); i++ {
tagValue := valType.Field(i).Tag.Get(tagName)
parts := strings.Split(tagValue, ",")
if parts[0] == fieldName {
value := val.Field(i).Interface()
if len(rest) == 0 {
return value, nil
}
return GetFieldByTag(value, tagName, rest)
}
}
return nil, trace.NotFound("field name %v is not found", strings.Join(fieldNames, "."))
}

256
vendor/github.com/vulcand/predicate/parse.go generated vendored Normal file
View file

@ -0,0 +1,256 @@
package predicate
import (
"fmt"
"go/ast"
"go/parser"
"go/token"
"reflect"
"strconv"
"strings"
"github.com/gravitational/trace"
)
func NewParser(d Def) (Parser, error) {
return &predicateParser{d: d}, nil
}
type predicateParser struct {
d Def
}
func (p *predicateParser) Parse(in string) (interface{}, error) {
expr, err := parser.ParseExpr(in)
if err != nil {
return nil, err
}
return p.parseNode(expr)
}
func (p *predicateParser) parseNode(node ast.Node) (interface{}, error) {
switch n := node.(type) {
case *ast.BasicLit:
return literalToValue(n)
case *ast.BinaryExpr:
x, err := p.parseNode(n.X)
if err != nil {
return nil, err
}
y, err := p.parseNode(n.Y)
if err != nil {
return nil, err
}
return p.joinPredicates(n.Op, x, y)
case *ast.CallExpr:
// We expect function that will return predicate
name, err := getIdentifier(n.Fun)
if err != nil {
return nil, err
}
fn, err := p.getFunction(name)
if err != nil {
return nil, err
}
arguments, err := p.evaluateArguments(n.Args)
if err != nil {
return nil, err
}
return callFunction(fn, arguments)
case *ast.ParenExpr:
return p.parseNode(n.X)
}
return nil, trace.BadParameter("unsupported %T", node)
}
func (p *predicateParser) evaluateArguments(nodes []ast.Expr) ([]interface{}, error) {
out := make([]interface{}, len(nodes))
for i, n := range nodes {
val, err := p.evaluateExpr(n)
if err != nil {
return nil, trace.Wrap(err)
}
out[i] = val
}
return out, nil
}
func (p *predicateParser) evaluateExpr(n ast.Expr) (interface{}, error) {
switch l := n.(type) {
case *ast.BasicLit:
val, err := literalToValue(l)
if err != nil {
return nil, err
}
return val, nil
case *ast.IndexExpr:
if p.d.GetProperty == nil {
return nil, trace.NotFound("properties are not supported")
}
mapVal, err := p.evaluateExpr(l.X)
if err != nil {
return nil, trace.Wrap(err)
}
keyVal, err := p.evaluateExpr(l.Index)
if err != nil {
return nil, trace.Wrap(err)
}
val, err := p.d.GetProperty(mapVal, keyVal)
if err != nil {
return nil, trace.Wrap(err)
}
return val, nil
case *ast.SelectorExpr:
fields, err := evaluateSelector(l, []string{})
if err != nil {
return nil, trace.Wrap(err)
}
if p.d.GetIdentifier == nil {
return nil, trace.NotFound("%v is not defined", strings.Join(fields, "."))
}
val, err := p.d.GetIdentifier(fields)
if err != nil {
return nil, trace.Wrap(err)
}
return val, nil
case *ast.Ident:
if p.d.GetIdentifier == nil {
return nil, trace.NotFound("%v is not defined", l.Name)
}
val, err := p.d.GetIdentifier([]string{l.Name})
if err != nil {
return nil, trace.Wrap(err)
}
return val, nil
default:
return nil, trace.BadParameter("%T is not supported", n)
}
}
// evaluateSelector recursively evaluates the selector field and returns a list
// of properties at the end
func evaluateSelector(sel *ast.SelectorExpr, fields []string) ([]string, error) {
fields = append([]string{sel.Sel.Name}, fields...)
switch l := sel.X.(type) {
case *ast.SelectorExpr:
return evaluateSelector(l, fields)
case *ast.Ident:
fields = append([]string{l.Name}, fields...)
return fields, nil
default:
return nil, trace.BadParameter("unsupported selector type: %T", l)
}
}
func (p *predicateParser) getFunction(name string) (interface{}, error) {
v, ok := p.d.Functions[name]
if !ok {
return nil, trace.BadParameter("unsupported function: %s", name)
}
return v, nil
}
func (p *predicateParser) joinPredicates(op token.Token, a, b interface{}) (interface{}, error) {
joinFn, err := p.getJoinFunction(op)
if err != nil {
return nil, err
}
return callFunction(joinFn, []interface{}{a, b})
}
func (p *predicateParser) getJoinFunction(op token.Token) (interface{}, error) {
var fn interface{}
switch op {
case token.LAND:
fn = p.d.Operators.AND
case token.LOR:
fn = p.d.Operators.OR
case token.GTR:
fn = p.d.Operators.GT
case token.GEQ:
fn = p.d.Operators.GE
case token.LSS:
fn = p.d.Operators.LT
case token.LEQ:
fn = p.d.Operators.LE
case token.EQL:
fn = p.d.Operators.EQ
case token.NEQ:
fn = p.d.Operators.NEQ
}
if fn == nil {
return nil, trace.BadParameter("%v is not supported", op)
}
return fn, nil
}
func getIdentifier(node ast.Node) (string, error) {
sexpr, ok := node.(*ast.SelectorExpr)
if ok {
id, ok := sexpr.X.(*ast.Ident)
if !ok {
return "", trace.BadParameter("expected selector identifier, got: %T", sexpr.X)
}
return fmt.Sprintf("%s.%s", id.Name, sexpr.Sel.Name), nil
}
id, ok := node.(*ast.Ident)
if !ok {
return "", trace.BadParameter("expected identifier, got: %T", node)
}
return id.Name, nil
}
func literalToValue(a *ast.BasicLit) (interface{}, error) {
switch a.Kind {
case token.FLOAT:
value, err := strconv.ParseFloat(a.Value, 64)
if err != nil {
return nil, trace.BadParameter("failed to parse argument: %s, error: %s", a.Value, err)
}
return value, nil
case token.INT:
value, err := strconv.Atoi(a.Value)
if err != nil {
return nil, trace.BadParameter("failed to parse argument: %s, error: %s", a.Value, err)
}
return value, nil
case token.STRING:
value, err := strconv.Unquote(a.Value)
if err != nil {
return nil, trace.BadParameter("failed to parse argument: %s, error: %s", a.Value, err)
}
return value, nil
}
return nil, trace.BadParameter("unsupported function argument type: '%v'", a.Kind)
}
func callFunction(f interface{}, args []interface{}) (v interface{}, err error) {
defer func() {
if r := recover(); r != nil {
err = trace.BadParameter("%s", r)
}
}()
arguments := make([]reflect.Value, len(args))
for i, a := range args {
arguments[i] = reflect.ValueOf(a)
}
fn := reflect.ValueOf(f)
ret := fn.Call(arguments)
switch len(ret) {
case 1:
return ret[0].Interface(), nil
case 2:
v, e := ret[0].Interface(), ret[1].Interface()
if e == nil {
return v, nil
}
err, ok := e.(error)
if !ok {
return nil, trace.BadParameter("expected error as a second return value, got %T", e)
}
return v, err
}
return nil, trace.BadParameter("expected at least one return argument for '%v'", fn)
}

477
vendor/github.com/vulcand/predicate/parse_test.go generated vendored Normal file
View file

@ -0,0 +1,477 @@
package predicate
import (
"fmt"
"testing"
"github.com/gravitational/trace"
"gopkg.in/check.v1"
)
func Test(t *testing.T) { check.TestingT(t) }
type PredicateSuite struct {
}
var _ = check.Suite(&PredicateSuite{})
func (s *PredicateSuite) getParser(c *check.C) Parser {
return s.getParserWithOpts(c, nil, nil)
}
func (s *PredicateSuite) getParserWithOpts(c *check.C, getID GetIdentifierFn, getProperty GetPropertyFn) Parser {
p, err := NewParser(Def{
Operators: Operators{
AND: numberAND,
OR: numberOR,
GT: numberGT,
LT: numberLT,
EQ: numberEQ,
NEQ: numberNEQ,
LE: numberLE,
GE: numberGE,
},
Functions: map[string]interface{}{
"DivisibleBy": divisibleBy,
"Remainder": numberRemainder,
"Len": stringLength,
"number.DivisibleBy": divisibleBy,
"Equals": Equals,
"Contains": Contains,
},
GetIdentifier: getID,
GetProperty: getProperty,
})
c.Assert(err, check.IsNil)
c.Assert(p, check.NotNil)
return p
}
func (s *PredicateSuite) TestSinglePredicate(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("DivisibleBy(2)")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(2))
fn := pr.(numberPredicate)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
}
func (s *PredicateSuite) TestModulePredicate(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("number.DivisibleBy(2)")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(2))
fn := pr.(numberPredicate)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
}
func (s *PredicateSuite) TestJoinAND(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("DivisibleBy(2) && DivisibleBy(3)")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(2), check.Equals, false)
c.Assert(fn(3), check.Equals, false)
c.Assert(fn(6), check.Equals, true)
}
func (s *PredicateSuite) TestJoinOR(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("DivisibleBy(2) || DivisibleBy(3)")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, true)
c.Assert(fn(5), check.Equals, false)
}
func (s *PredicateSuite) TestGT(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) > 1")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, false)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
c.Assert(fn(4), check.Equals, false)
c.Assert(fn(5), check.Equals, true)
}
func (s *PredicateSuite) TestGTE(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) >= 1")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, true)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
c.Assert(fn(4), check.Equals, true)
c.Assert(fn(5), check.Equals, true)
}
func (s *PredicateSuite) TestLT(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) < 2")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, true)
c.Assert(fn(2), check.Equals, false)
c.Assert(fn(3), check.Equals, true)
c.Assert(fn(4), check.Equals, true)
c.Assert(fn(5), check.Equals, false)
}
func (s *PredicateSuite) TestLE(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) <= 2")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, true)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, true)
c.Assert(fn(4), check.Equals, true)
c.Assert(fn(5), check.Equals, true)
}
func (s *PredicateSuite) TestEQ(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) == 2")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, false)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
c.Assert(fn(4), check.Equals, false)
c.Assert(fn(5), check.Equals, true)
}
func (s *PredicateSuite) TestNEQ(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) != 2")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, true)
c.Assert(fn(2), check.Equals, false)
c.Assert(fn(3), check.Equals, true)
c.Assert(fn(4), check.Equals, true)
c.Assert(fn(5), check.Equals, false)
}
func (s *PredicateSuite) TestParen(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("(Remainder(3) != 1) && (Remainder(3) != 0)")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(0), check.Equals, false)
c.Assert(fn(1), check.Equals, false)
c.Assert(fn(2), check.Equals, true)
}
func (s *PredicateSuite) TestStrings(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse(`Remainder(3) == Len("hi")`)
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(0), check.Equals, false)
c.Assert(fn(1), check.Equals, false)
c.Assert(fn(2), check.Equals, true)
}
func (s *PredicateSuite) TestGTFloat64(c *check.C) {
p := s.getParser(c)
pr, err := p.Parse("Remainder(3) > 1.2")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(1))
fn := pr.(numberPredicate)
c.Assert(fn(1), check.Equals, false)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
c.Assert(fn(4), check.Equals, false)
c.Assert(fn(5), check.Equals, true)
}
func (s *PredicateSuite) TestIdentifier(c *check.C) {
getID := func(fields []string) (interface{}, error) {
c.Assert(fields, check.DeepEquals, []string{"first", "second", "third"})
return 2, nil
}
p := s.getParserWithOpts(c, getID, nil)
pr, err := p.Parse("DivisibleBy(first.second.third)")
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(2))
fn := pr.(numberPredicate)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
}
func (s *PredicateSuite) TestMap(c *check.C) {
getID := func(fields []string) (interface{}, error) {
c.Assert(fields, check.DeepEquals, []string{"first", "second"})
return map[string]int{"key": 2}, nil
}
getProperty := func(mapVal, keyVal interface{}) (interface{}, error) {
m := mapVal.(map[string]int)
k := keyVal.(string)
return m[k], nil
}
p := s.getParserWithOpts(c, getID, getProperty)
pr, err := p.Parse(`DivisibleBy(first.second["key"])`)
c.Assert(err, check.IsNil)
c.Assert(pr, check.FitsTypeOf, divisibleBy(2))
fn := pr.(numberPredicate)
c.Assert(fn(2), check.Equals, true)
c.Assert(fn(3), check.Equals, false)
}
func (s *PredicateSuite) TestIdentifierAndFunction(c *check.C) {
getID := func(fields []string) (interface{}, error) {
switch fields[0] {
case "firstSlice":
return []string{"a"}, nil
case "secondSlice":
return []string{"b"}, nil
case "a":
return "a", nil
case "b":
return "b", nil
}
return nil, nil
}
p := s.getParserWithOpts(c, getID, nil)
pr, err := p.Parse("Equals(firstSlice, firstSlice)")
c.Assert(err, check.IsNil)
fn := pr.(BoolPredicate)
c.Assert(fn(), check.Equals, true)
pr, err = p.Parse("Equals(a, a)")
c.Assert(err, check.IsNil)
fn = pr.(BoolPredicate)
c.Assert(fn(), check.Equals, true)
pr, err = p.Parse("Equals(firstSlice, secondSlice)")
c.Assert(err, check.IsNil)
fn = pr.(BoolPredicate)
c.Assert(fn(), check.Equals, false)
}
func (s *PredicateSuite) TestContains(c *check.C) {
val := TestStruct{}
val.Param.Key1 = map[string][]string{"key": []string{"a", "b", "c"}}
getID := func(fields []string) (interface{}, error) {
return GetFieldByTag(val, "json", fields[1:])
}
p := s.getParserWithOpts(c, getID, GetStringMapValue)
pr, err := p.Parse(`Contains(val.param.key1["key"], "a")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, true)
pr, err = p.Parse(`Contains(val.param.key1["key"], "z")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, false)
pr, err = p.Parse(`Contains(val.param.key1["missing"], "a")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, false)
}
func (s *PredicateSuite) TestEquals(c *check.C) {
val := TestStruct{}
val.Param.Key2 = map[string]string{"key": "a"}
getID := func(fields []string) (interface{}, error) {
return GetFieldByTag(val, "json", fields[1:])
}
p := s.getParserWithOpts(c, getID, GetStringMapValue)
pr, err := p.Parse(`Equals(val.param.key2["key"], "a")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, true)
pr, err = p.Parse(`Equals(val.param.key2["key"], "b")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, false)
pr, err = p.Parse(`Contains(val.param.key2["missing"], "z")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, false)
pr, err = p.Parse(`Contains(val.param.key1["missing"], "z")`)
c.Assert(err, check.IsNil)
c.Assert(pr.(BoolPredicate)(), check.Equals, false)
}
// TestStruct is a test sturcture with json tags
type TestStruct struct {
Param struct {
Key1 map[string][]string `json:"key1,omitempty"`
Key2 map[string]string `json:"key2,omitempty"`
} `json:"param,omitempty"`
}
func (s *PredicateSuite) TestGetTagField(c *check.C) {
val := TestStruct{}
val.Param.Key1 = map[string][]string{"key": []string{"val"}}
type testCase struct {
tag string
fields []string
val interface{}
expect interface{}
err error
}
testCases := []testCase{
// nested field
{tag: "json", val: val, fields: []string{"param", "key1"}, expect: val.Param.Key1},
// pointer to struct
{tag: "json", val: &val, fields: []string{"param", "key1"}, expect: val.Param.Key1},
// not found field
{tag: "json", val: &val, fields: []string{"param", "key3"}, err: trace.NotFound("not found")},
// nil pointer
{tag: "json", val: nil, fields: []string{"param", "key1"}, err: trace.BadParameter("bad param")},
}
for i, tc := range testCases {
comment := check.Commentf("test case %v", i)
out, err := GetFieldByTag(tc.val, tc.tag, tc.fields)
if tc.err != nil {
c.Assert(err, check.FitsTypeOf, tc.err, comment)
} else {
c.Assert(err, check.IsNil, comment)
c.Assert(out, check.DeepEquals, tc.expect, comment)
}
}
}
func (s *PredicateSuite) TestUnhappyCases(c *check.C) {
cases := []string{
")(", // invalid expression
"SomeFunc", // unsupported id
"Remainder(banana)", // unsupported argument
"Remainder(1, 2)", // unsupported arguments count
"Remainder(Len)", // unsupported argument
`Remainder(Len("Ho"))`, // unsupported argument
"Bla(1)", // unknown method call
"0.2 && Remainder(1)", // unsupported value
`Len("Ho") && 0.2`, // unsupported value
"func(){}()", // function call
"Remainder(3) >> 3", // unsupported operator
`Remainder(3) > "banana"`, // unsupported comparison type
}
p := s.getParser(c)
for _, expr := range cases {
pr, err := p.Parse(expr)
c.Assert(err, check.NotNil)
c.Assert(pr, check.IsNil)
}
}
type numberPredicate func(v int) bool
type numberMapper func(v int) int
func divisibleBy(divisor int) numberPredicate {
return func(v int) bool {
return v%divisor == 0
}
}
func numberAND(a, b numberPredicate) numberPredicate {
return func(v int) bool {
return a(v) && b(v)
}
}
func numberOR(a, b numberPredicate) numberPredicate {
return func(v int) bool {
return a(v) || b(v)
}
}
func numberRemainder(divideBy int) numberMapper {
return func(v int) int {
return v % divideBy
}
}
func numberGT(m numberMapper, value interface{}) (numberPredicate, error) {
switch value.(type) {
case int:
case float64:
default:
return nil, fmt.Errorf("GT: unsupported argument type: %T", value)
}
return func(v int) bool {
switch val := value.(type) {
case int:
return m(v) > val
case float64:
return m(v) > int(val)
default:
return true
}
}, nil
}
func numberGE(m numberMapper, value int) (numberPredicate, error) {
return func(v int) bool {
return m(v) >= value
}, nil
}
func numberLE(m numberMapper, value int) (numberPredicate, error) {
return func(v int) bool {
return m(v) <= value
}, nil
}
func numberLT(m numberMapper, value int) numberPredicate {
return func(v int) bool {
return m(v) < value
}
}
func numberEQ(m numberMapper, value int) numberPredicate {
return func(v int) bool {
return m(v) == value
}
}
func numberNEQ(m numberMapper, value int) numberPredicate {
return func(v int) bool {
return m(v) != value
}
}
func stringLength(v string) int {
return len(v)
}

84
vendor/github.com/vulcand/predicate/predicate.go generated vendored Normal file
View file

@ -0,0 +1,84 @@
/*
Predicate package used to create interpreted mini languages with Go syntax - mostly to define
various predicates for configuration, e.g. Latency() > 40 || ErrorRate() > 0.5.
Here's an example of fully functional predicate language to deal with division remainders:
// takes number and returns true or false
type numberPredicate func(v int) bool
// Converts one number to another
type numberMapper func(v int) int
// Function that creates predicate to test if the remainder is 0
func divisibleBy(divisor int) numberPredicate {
return func(v int) bool {
return v%divisor == 0
}
}
// Function - logical operator AND that combines predicates
func numberAND(a, b numberPredicate) numberPredicate {
return func(v int) bool {
return a(v) && b(v)
}
}
p, err := NewParser(Def{
Operators: Operators{
AND: numberAND,
},
Functions: map[string]interface{}{
"DivisibleBy": divisibleBy,
},
})
pr, err := p.Parse("DivisibleBy(2) && DivisibleBy(3)")
if err == nil {
fmt.Fatalf("Error: %v", err)
}
pr.(numberPredicate)(2) // false
pr.(numberPredicate)(3) // false
pr.(numberPredicate)(6) // true
*/
package predicate
// Def contains supported operators (e.g. LT, GT) and functions passed in as a map.
type Def struct {
Operators Operators
// Function matching is case sensitive, e.g. Len is different from len
Functions map[string]interface{}
// GetIdentifier returns value of any identifier passed in
// in the form []string{"id", "field", "subfield"}
GetIdentifier GetIdentifierFn
// GetProperty returns property from a map
GetProperty GetPropertyFn
}
// GetIdentifierFn function returns identifier based on selector
// e.g. id.field.subfield will be passed as.
// GetIdentifierFn([]string{"id", "field", "subfield"})
type GetIdentifierFn func(selector []string) (interface{}, error)
// GetPropertyFn reuturns property from a mapVal by key keyVal
type GetPropertyFn func(mapVal, keyVal interface{}) (interface{}, error)
// Operators contain functions for equality and logical comparison.
type Operators struct {
EQ interface{}
NEQ interface{}
LT interface{}
GT interface{}
LE interface{}
GE interface{}
OR interface{}
AND interface{}
}
// Parser takes the string with expression and calls the operators and functions.
type Parser interface {
Parse(string) (interface{}, error)
}