teleport/lib/service/signals.go

538 lines
17 KiB
Go
Raw Normal View History

Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
/*
Copyright 2017-2019 Gravitational, Inc.
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package service
import (
"context"
"encoding/json"
"net"
"os"
"os/exec"
"os/signal"
"strings"
"syscall"
"time"
"github.com/gravitational/teleport/lib/defaults"
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
"github.com/gravitational/teleport/lib/utils"
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
"github.com/gravitational/trace"
"github.com/sirupsen/logrus"
)
// printShutdownStatus prints running services until shut down
func (process *TeleportProcess) printShutdownStatus(ctx context.Context) {
t := time.NewTicker(defaults.HighResReportingPeriod)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
defer t.Stop()
for {
select {
case <-ctx.Done():
return
case <-t.C:
process.log.Infof("Waiting for services: %v to finish.", process.Supervisor.Services())
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
}
}
// WaitForSignals waits for system signals and processes them.
// Should not be called twice by the process.
func (process *TeleportProcess) WaitForSignals(ctx context.Context) error {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
sigC := make(chan os.Signal, 1024)
Fix remaining staticcheck findings in lib/... Fixed findings: ``` lib/sshutils/server_test.go:163:2: SA4006: this value of `clt` is never used (staticcheck) clt, err := ssh.Dial("tcp", srv.Addr(), &cc) ^ lib/sshutils/server_test.go:91:3: SA5001: should check returned error before deferring ch.Close() (staticcheck) defer ch.Close() ^ lib/shell/shell_test.go:33:2: SA4006: this value of `shell` is never used (staticcheck) shell, err = GetLoginShell("non-existent-user") ^ lib/cgroup/cgroup_test.go:111:2: SA9003: empty branch (staticcheck) if err != nil { ^ lib/cgroup/cgroup_test.go:119:2: SA5001: should check returned error before deferring service.Close() (staticcheck) defer service.Close() ^ lib/client/keystore_test.go:138:2: SA4006: this value of `keyCopy` is never used (staticcheck) keyCopy, err = s.store.GetKey("host.a", "bob") ^ lib/client/api.go:1604:3: SA4004: the surrounding loop is unconditionally terminated (staticcheck) return makeProxyClient(sshClient, m), nil ^ lib/backend/test/suite.go:156:2: SA4006: this value of `err` is never used (staticcheck) result, err = s.B.GetRange(ctx, prefix("/prefix/c/c1"), backend.RangeEnd(prefix("/prefix/c/cz")), backend.NoLimit) ^ lib/utils/timeout_test.go:84:2: SA1019: t.Dial is deprecated: Use DialContext instead, which allows the transport to cancel dials as soon as they are no longer needed. If both are set, DialContext takes priority. (staticcheck) t.Dial = func(network string, addr string) (net.Conn, error) { ^ lib/utils/websocketwriter.go:83:3: SA4006: this value of `err` is never used (staticcheck) utf8, err = w.encoder.String(string(data)) ^ lib/utils/loadbalancer_test.go:134:2: SA4006: this value of `out` is never used (staticcheck) out, err = Roundtrip(frontend.String()) ^ lib/utils/loadbalancer_test.go:209:2: SA4006: this value of `out` is never used (staticcheck) out, err = RoundtripWithConn(conn) ^ lib/srv/forward/sshserver.go:582:3: SA4004: the surrounding loop is unconditionally terminated (staticcheck) return ^ lib/service/service.go:347:4: SA4006: this value of `err` is never used (staticcheck) i, err = auth.GenerateIdentity(process.localAuth, id, principals, dnsNames) ^ lib/service/signals.go:60:3: SA1016: syscall.SIGKILL cannot be trapped (did you mean syscall.SIGTERM?) (staticcheck) syscall.SIGKILL, // fast shutdown ^ lib/config/configuration_test.go:184:2: SA4006: this value of `conf` is never used (staticcheck) conf, err = ReadFromFile(s.configFileBadContent) ^ lib/config/configuration.go:129:2: SA5001: should check returned error before deferring reader.Close() (staticcheck) defer reader.Close() ^ lib/kube/kubeconfig/kubeconfig_test.go:227:2: SA4006: this value of `err` is never used (staticcheck) tlsCert, err := ca.GenerateCertificate(tlsca.CertificateRequest{ ^ lib/srv/sess.go:720:3: SA4006: this value of `err` is never used (staticcheck) result, err := s.term.Wait() ^ lib/multiplexer/multiplexer_test.go:169:11: SA1006: printf-style function with dynamic format string and no further arguments should use print-style function instead (staticcheck) _, err = fmt.Fprintf(conn, proxyLine.String()) ^ lib/multiplexer/multiplexer_test.go:221:11: SA1006: printf-style function with dynamic format string and no further arguments should use print-style function instead (staticcheck) _, err = fmt.Fprintf(conn, proxyLine.String()) ^ ```
2020-04-27 21:32:59 +00:00
// Note: SIGKILL can't be trapped.
signal.Notify(sigC,
syscall.SIGQUIT, // graceful shutdown
syscall.SIGTERM, // fast shutdown
syscall.SIGINT, // fast shutdown
syscall.SIGUSR1, // log process diagnostic info
syscall.SIGUSR2, // initiate process restart procedure
syscall.SIGHUP, // graceful restart procedure
syscall.SIGCHLD, // collect child status
)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
doneContext, cancel := context.WithCancel(ctx)
defer cancel()
serviceErrorsC := make(chan Event, 10)
process.WaitForEvent(ctx, ServiceExitedWithErrorEvent, serviceErrorsC)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// Block until a signal is received or handler got an error.
// Notice how this handler is serialized - it will only receive
// signals in sequence and will not run in parallel.
for {
select {
case signal := <-sigC:
switch signal {
case syscall.SIGQUIT:
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
go process.printShutdownStatus(doneContext)
process.Shutdown(ctx)
process.log.Infof("All services stopped, exiting.")
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
return nil
case syscall.SIGTERM, syscall.SIGKILL, syscall.SIGINT:
process.log.Infof("Got signal %q, exiting immediately.", signal)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
process.Close()
return nil
case syscall.SIGUSR1:
// All programs placed diagnostics on the standard output.
// This had always caused trouble when the output was redirected into a file, but became intolerable
// when the output was sent to an unsuspecting process.
// Nevertheless, unwilling to violate the simplicity of the standard-input-standard-output model,
// people tolerated this state of affairs through v6. Shortly thereafter Dennis Ritchie cut the Gordian
// knot by introducing the standard error file.
// That was not quite enough. With pipelines diagnostics could come from any of several programs running simultaneously.
// Diagnostics needed to identify themselves.
// - Doug McIllroy, "A Research UNIX Reader: Annotated Excerpts from the Programmers Manual, 1971-1986"
process.log.Infof("Got signal %q, logging diagostic info to stderr.", signal)
writeDebugInfo(os.Stderr)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
case syscall.SIGUSR2:
process.log.Infof("Got signal %q, forking a new process.", signal)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
if err := process.forkChild(); err != nil {
process.log.Warningf("Failed to fork: %v", err)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
} else {
process.log.Infof("Successfully started new process.")
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
case syscall.SIGHUP:
process.log.Infof("Got signal %q, performing graceful restart.", signal)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
if err := process.forkChild(); err != nil {
process.log.Warningf("Failed to fork: %v", err)
continue
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
process.log.Infof("Successfully started new process, shutting down gracefully.")
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
go process.printShutdownStatus(doneContext)
process.Shutdown(ctx)
process.log.Infof("All services stopped, exiting.")
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
return nil
case syscall.SIGCHLD:
process.collectStatuses()
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
default:
process.log.Infof("Ignoring %q.", signal)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
case <-process.ReloadContext().Done():
process.log.Infof("Exiting signal handler: process has started internal reload.")
return ErrTeleportReloading
case <-process.ExitContext().Done():
process.log.Infof("Someone else has closed context, exiting.")
return nil
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
case <-ctx.Done():
process.Close()
if err := process.Wait(); err != nil {
process.log.Warnf("Error waiting for all services to exit: %v", err)
}
process.log.Info("Got request to shutdown, context is closing")
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
return nil
case event := <-serviceErrorsC:
se, ok := event.Payload.(ExitEventPayload)
if !ok {
process.log.Warningf("Failed to decode service exit event, %T", event.Payload)
continue
}
if se.Service.IsCritical() {
process.log.Errorf("Critical service %v has exited with error %v, aborting.", se.Service, se.Error)
if err := process.Close(); err != nil {
process.log.Errorf("Error when shutting down teleport %v.", err)
}
return trace.Wrap(se.Error)
}
process.log.Warningf("Non-critical service %v has exited with error %v, continuing to operate.", se.Service, se.Error)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
}
}
// ErrTeleportReloading is returned when signal waiter exits
// because the teleport process has initiaded shutdown
var ErrTeleportReloading = &trace.CompareFailedError{Message: "teleport process is reloading"}
// ErrTeleportExited means that teleport has exited
var ErrTeleportExited = &trace.CompareFailedError{Message: "teleport process has shutdown"}
func (process *TeleportProcess) writeToSignalPipe(signalPipe *os.File, message string) error {
messageSignalled, cancel := context.WithCancel(context.Background())
// Below the cancel is called second time, but it's ok.
// After the first call, subsequent calls to a CancelFunc do nothing.
defer cancel()
go func() {
_, err := signalPipe.Write([]byte(message))
if err != nil {
process.log.Debugf("Failed to write to pipe: %v.", trace.DebugReport(err))
return
}
cancel()
}()
select {
case <-time.After(signalPipeTimeout):
return trace.BadParameter("Failed to write to parent process pipe.")
case <-messageSignalled.Done():
process.log.Infof("Signalled success to parent process.")
}
return nil
}
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// closeImportedDescriptors closes imported but unused file descriptors,
// what could happen if service has updated configuration
func (process *TeleportProcess) closeImportedDescriptors(prefix string) error {
process.Lock()
defer process.Unlock()
var errors []error
for i := range process.importedDescriptors {
d := process.importedDescriptors[i]
if strings.HasPrefix(d.Type, prefix) {
process.log.Infof("Closing imported but unused descriptor %v %v.", d.Type, d.Address)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
errors = append(errors, d.File.Close())
}
}
return trace.NewAggregate(errors...)
}
// importOrCreateListener imports listener passed by the parent process (happens during live reload)
// or creates a new listener if there was no listener registered
func (process *TeleportProcess) importOrCreateListener(typ listenerType, address string) (net.Listener, error) {
l, err := process.importListener(typ, address)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
if err == nil {
process.log.Infof("Using file descriptor %v %v passed by the parent process.", typ, address)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
return l, nil
}
if !trace.IsNotFound(err) {
return nil, trace.Wrap(err)
}
process.log.Infof("Service %v is creating new listener on %v.", typ, address)
return process.createListener(typ, address)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
func (process *TeleportProcess) importSignalPipe() (*os.File, error) {
process.Lock()
defer process.Unlock()
for i := range process.importedDescriptors {
d := process.importedDescriptors[i]
if d.Type == signalPipeName {
process.importedDescriptors = append(process.importedDescriptors[:i], process.importedDescriptors[i+1:]...)
return d.File, nil
}
}
return nil, trace.NotFound("no file descriptor %v was found", signalPipeName)
}
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// importListener imports listener passed by the parent process, if no listener is found
// returns NotFound, otherwise removes the file from the list
func (process *TeleportProcess) importListener(typ listenerType, address string) (net.Listener, error) {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
process.Lock()
defer process.Unlock()
for i := range process.importedDescriptors {
d := process.importedDescriptors[i]
if d.Type == string(typ) && d.Address == address {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
l, err := d.ToListener()
if err != nil {
return nil, trace.Wrap(err)
}
process.importedDescriptors = append(process.importedDescriptors[:i], process.importedDescriptors[i+1:]...)
process.registeredListeners = append(process.registeredListeners, registeredListener{typ: typ, address: address, listener: l})
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
return l, nil
}
}
return nil, trace.NotFound("no file descriptor for type %v and address %v has been imported", typ, address)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
// createListener creates listener and adds to a list of tracked listeners
func (process *TeleportProcess) createListener(typ listenerType, address string) (net.Listener, error) {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
listener, err := net.Listen("tcp", address)
if err != nil {
return nil, trace.Wrap(err)
}
process.Lock()
defer process.Unlock()
r := registeredListener{typ: typ, address: address, listener: listener}
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
process.registeredListeners = append(process.registeredListeners, r)
return listener, nil
}
// ExportFileDescriptors exports file descriptors to be passed to child process
func (process *TeleportProcess) ExportFileDescriptors() ([]FileDescriptor, error) {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
var out []FileDescriptor
process.Lock()
defer process.Unlock()
for _, r := range process.registeredListeners {
file, err := utils.GetListenerFile(r.listener)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
if err != nil {
return nil, trace.Wrap(err)
}
out = append(out, FileDescriptor{File: file, Type: string(r.typ), Address: r.address})
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
return out, nil
}
// importFileDescriptors imports file descriptors from environment if there are any
func importFileDescriptors(log logrus.FieldLogger) ([]FileDescriptor, error) {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// These files may be passed in by the parent process
filesString := os.Getenv(teleportFilesEnvVar)
if filesString == "" {
return nil, nil
}
files, err := filesFromString(filesString)
if err != nil {
return nil, trace.BadParameter("child process has failed to read files, error %q", err)
}
if len(files) != 0 {
log.Infof("Child has been passed files: %v", files)
}
return files, nil
}
// registeredListener is a listener registered
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// within teleport process, can be passed to child process
type registeredListener struct {
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// Type is a listener type, e.g. auth:ssh
typ listenerType
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// Address is an address listener is serving on, e.g. 127.0.0.1:3025
address string
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// Listener is a file listener object
listener net.Listener
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
// FileDescriptor is a file descriptor associated
// with a listener
type FileDescriptor struct {
// Type is a listener type, e.g. auth:ssh
Type string
// Address is an address of the listener, e.g. 127.0.0.1:3025
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
Address string
// File is a file descriptor associated with the listener
File *os.File
}
func (fd *FileDescriptor) ToListener() (net.Listener, error) {
listener, err := net.FileListener(fd.File)
if err != nil {
return nil, err
}
fd.File.Close()
return listener, nil
}
type fileDescriptor struct {
Address string `json:"addr"`
Type string `json:"type"`
FileFD int `json:"fd"`
FileName string `json:"fileName"`
}
// filesToString serializes file descriptors as well as accompanying information (like socket host and port)
func filesToString(files []FileDescriptor) (string, error) {
out := make([]fileDescriptor, len(files))
for i, f := range files {
out[i] = fileDescriptor{
// Once files will be passed to the child process and their FDs will change.
// The first three passed files are stdin, stdout and stderr, every next file will have the index + 3
// That's why we rearrange the FDs for child processes to get the correct file descriptors.
FileFD: i + 3,
FileName: f.File.Name(),
Address: f.Address,
Type: f.Type,
}
}
bytes, err := json.Marshal(out)
if err != nil {
return "", err
}
return string(bytes), nil
}
const teleportFilesEnvVar = "TELEPORT_OS_FILES"
func execPath() (string, error) {
name, err := exec.LookPath(os.Args[0])
if err != nil {
return "", err
}
if _, err = os.Stat(name); nil != err {
return "", err
}
return name, err
}
// filesFromString de-serializes the file descriptors and turns them in the os.Files
func filesFromString(in string) ([]FileDescriptor, error) {
var out []fileDescriptor
if err := json.Unmarshal([]byte(in), &out); err != nil {
return nil, err
}
files := make([]FileDescriptor, len(out))
for i, o := range out {
files[i] = FileDescriptor{
File: os.NewFile(uintptr(o.FileFD), o.FileName),
Address: o.Address,
Type: o.Type,
}
}
return files, nil
}
const (
signalPipeName = "teleport-signal-pipe"
// signalPipeTimeout is a time parent process is expecting
// the child process to initialize and write back,
// or child process is blocked on write to the pipe
signalPipeTimeout = 2 * time.Minute
)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
func (process *TeleportProcess) forkChild() error {
readPipe, writePipe, err := os.Pipe()
if err != nil {
return trace.ConvertSystemError(err)
}
defer readPipe.Close()
defer writePipe.Close()
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
path, err := execPath()
if err != nil {
return trace.Wrap(err)
}
workingDir, err := os.Getwd()
if nil != err {
return err
}
log := process.log.WithFields(logrus.Fields{"path": path, "workingDir": workingDir})
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
log.Info("Forking child.")
listenerFiles, err := process.ExportFileDescriptors()
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
if err != nil {
return trace.Wrap(err)
}
listenerFiles = append(listenerFiles, FileDescriptor{
File: writePipe,
Type: signalPipeName,
Address: "127.0.0.1:0",
})
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
// These files will be passed to the child process
files := []*os.File{os.Stdin, os.Stdout, os.Stderr}
for _, f := range listenerFiles {
files = append(files, f.File)
}
// Serialize files to JSON string representation
vals, err := filesToString(listenerFiles)
if err != nil {
return trace.Wrap(err)
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
}
log.Infof("Passing %s to child", vals)
os.Setenv(teleportFilesEnvVar, vals)
p, err := os.StartProcess(path, os.Args, &os.ProcAttr{
Dir: workingDir,
Env: os.Environ(),
Files: files,
Sys: &syscall.SysProcAttr{},
})
if err != nil {
return trace.ConvertSystemError(err)
}
process.pushForkedPID(p.Pid)
log.WithFields(logrus.Fields{"pid": p.Pid}).Infof("Forked new child process.")
messageReceived, cancel := context.WithCancel(context.TODO())
defer cancel()
go func() {
data := make([]byte, 1024)
len, err := readPipe.Read(data)
if err != nil {
log.Debugf("Failed to read from pipe")
return
}
log.Infof("Received message from pid %v: %v", p.Pid, string(data[:len]))
cancel()
}()
select {
case <-time.After(signalPipeTimeout):
return trace.BadParameter("Failed waiting from process")
case <-messageReceived.Done():
log.WithFields(logrus.Fields{"pid": p.Pid}).Infof("Child process signals success.")
}
Teleport signal handling and live reload. This commit introduces signal handling. Parent teleport process is now capable of forking the child process and passing listeners file descriptors to the child. Parent process then can gracefully shutdown by tracking the amount of current connections and closing listeners once the amount goes to 0. Here are the signals handled: * USR2 signal will cause the parent to fork a child process and pass listener file descriptors to it. Child process will close unused file descriptors and will bind to the used ones. At this moment two processes - the parent and the forked child process will be serving requests. After looking at the traffic and the log files, administrator can either shut down the parent process or the child process if the child process is not functioning as expected. * TERM, INT signals will trigger graceful process shutdown. Auth, node and proxy processes will wait until the amount of active connections goes down to 0 and will exit after that. * KILL, QUIT signals will cause immediate non-graceful shutdown. * HUP signal combines USR2 and TERM signals in a convenient way: parent process will fork a child process and self-initate graceful shutdown. This is a more convenient than USR2/TERM sequence, but less agile and robust as if the connection to the parent process drops, but the new process exits with error, administrators can lock themselves out of the environment. Additionally, boltdb backend has to be phased out, as it does not support read/writes by two concurrent processes. This had required refactoring of the dir backend to use file locking to allow inter-process collaboration on read/write operations.
2018-02-08 02:32:50 +00:00
return nil
}
// collectStatuses attempts to collect exit statuses from
// forked teleport child processes.
// If forked teleport process exited with an error during graceful
// restart, parent process has to collect the child process status
// otherwise the child process will become a zombie process.
// Call Wait4(-1) is trying to collect status of any child
// leads to warnings in logs, because other parts of the program could
// have tried to collect the status of this process.
// Instead this logic tries to collect statuses of the processes
// forked during restart procedure.
func (process *TeleportProcess) collectStatuses() {
pids := process.getForkedPIDs()
if len(pids) == 0 {
return
}
for _, pid := range pids {
var wait syscall.WaitStatus
rpid, err := syscall.Wait4(pid, &wait, syscall.WNOHANG, nil)
if err != nil {
process.log.Errorf("Wait call failed: %v.", err)
continue
}
if rpid == pid {
process.popForkedPID(pid)
process.log.Warningf("Forked teleport process %v has exited with status: %v.", pid, wait.ExitStatus())
}
}
}
func (process *TeleportProcess) pushForkedPID(pid int) {
process.Lock()
defer process.Unlock()
process.forkedPIDs = append(process.forkedPIDs, pid)
}
func (process *TeleportProcess) popForkedPID(pid int) {
process.Lock()
defer process.Unlock()
for i, p := range process.forkedPIDs {
if p == pid {
process.forkedPIDs = append(process.forkedPIDs[:i], process.forkedPIDs[i+1:]...)
return
}
}
}
func (process *TeleportProcess) getForkedPIDs() []int {
process.Lock()
defer process.Unlock()
if len(process.forkedPIDs) == 0 {
return nil
}
out := make([]int, len(process.forkedPIDs))
copy(out, process.forkedPIDs)
return out
}