postgis/doc/postgis.xml
2003-08-18 19:45:20 +00:00

2677 lines
106 KiB
XML
Raw Blame History

<?xml version="1.0"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V3.1//EN">
<book>
<title>PostGIS Manual</title>
<bookinfo>
<editor>
<firstname>Paul</firstname>
<surname>Ramsey</surname>
<affiliation>
<orgname><ulink url="http://www.refractions.net">Refractions Research Inc</ulink></orgname>
<address>
<street>209 - 560 Johnson Street</street>
<city>Victoria</city>
<state>British Columbia</state>
<country>Canada</country>
<email>pramsey@refractions.net</email>
</address>
</affiliation>
</editor>
<abstract>
<para>PostGIS is an extension to the PostgreSQL object-relational database system
which allows GIS (Geographic Information Systems) objects to be stored in the
database. PostGIS includes support for GiST-based R-Tree spatial indexes, and
functions for basic analysis of GIS objects.
</para>
</abstract>
</bookinfo>
<chapter>
<title>Introduction</title>
<para>PostGIS is developed by Refractions Research Inc, as a spatial database
technology research project. Refractions is a GIS and database
consulting company in Victoria, British Columbia, Canada, specializing in data
integration and custom software development. We plan on supporting and
developing PostGIS to support a range of important GIS functionality, including
full OpenGIS support, advanced topological constructs (coverages, surfaces,
networks), desktop user interface tools for viewing and editing GIS data, and
web-based access tools.
</para>
<sect1>
<title>Credits</title>
<variablelist>
<varlistentry>
<term>Dave Blasby &lt;dblasby@refractions.net&gt;</term>
<listitem>
<para>The principal developer of PostGIS. Dave maintains the server
side objects and index support, the server side analytical
functions, and the Mapserver connectivity.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Chris Hodgson &lt;chodgson@refractions.net&gt;</term>
<listitem>
<para>Maintains new functions and the 7.2 index bindings.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Paul Ramsey &lt;pramsey@refractions.net&gt;</term>
<listitem>
<para>Maintains the JDBC objects and keeps track of the
documentation and packaging.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Jeff Lounsbury &lt;jeffloun@refractions.net&gt;</term>
<listitem>
<para>Maintains the Shape loader/dumper.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1>
<title>More Information</title>
<itemizedlist>
<listitem>
<para>The latest software, documentation and news items are available
at the PostGIS web site,
<ulink url="http://postgis.refractions.net">http://postgis.refractions.net</ulink>.
</para>
</listitem>
<listitem>
<para>More information about the PostgreSQL database server is
available at the PostgreSQL main site
<ulink url="http://www.postgresql.org">http://www.postgresql.org</ulink>.
</para>
</listitem>
<listitem>
<para>More information about GiST indexing is available at the GiST
development site,
<ulink url="http://www.sai.msu.su/~megera/postgres/gist">http://www.sai.msu.su/~megera/postgres/gist</ulink>.
</para>
</listitem>
<listitem>
<para>More information about Mapserver internet map server is available at
<ulink url="http://mapserver.gis.umn.edu/">http://mapserver.gis.umn.edu</ulink>.</para></listitem><listitem><para>The "<ulink url="http://www.opengis.org/techno/specs/99-049.pdf">Simple Features for Specification for SQL</ulink>" is available at the OpenGIS Consortium web site: <ulink url="http://www.opengis.org">http://www.opengis.org</ulink>.
</para>
</listitem>
</itemizedlist>
</sect1>
</chapter>
<chapter>
<title>Installation</title>
<sect1>
<title>Requirements</title>
<para>PostGIS has the following requirements for building and usage:</para>
<itemizedlist>
<listitem>
<para>A complete configured and built PostgreSQL source code tree.
PostGIS uses definitions from the PostgreSQL configure/build process
to conform to the particular platform you are building on.
PostgreSQL is available from
<ulink url="http://www.postgresql.org">http://www.postgresql.org</ulink>.
</para>
</listitem>
<listitem>
<para>GNU C compiler (<filename>gcc</filename>). Some other ANSI C
compilers can be used to compile PostGIS, but we find far fewer
problems when compiling with <filename>gcc</filename>.
</para>
</listitem>
<listitem>
<para>GNU Make (<filename>gmake</filename> or <filename>make</filename>).
For many systems, GNU <filename>make</filename> is the default version
of make. Check the version by invoking <filename>make -v</filename>.
Other versions of <filename>make</filename> may not process the
PostGIS <filename>Makefile</filename> properly.
</para>
</listitem>
<listitem>
<para>(Optional) Proj4 reprojection library. The Proj4 library is used
to provide coordinate reprojection support within PostGIS. Proj4 is
available for download from
<ulink url="http://www.remotesensing.org/proj">http://www.remotesensing.org/proj</ulink>.
</para>
</listitem>
</itemizedlist>
</sect1>
<sect1 id="PGInstall">
<title>PostGIS</title>
<para>The PostGIS module is a extension to the PostgreSQL backend server.
As such, PostGIS 0.7 <emphasis>requires</emphasis> a full copy of the
PostgreSQL source tree in order to compile. The PostgreSQL source code
is available at
<ulink url="http://www.postgresql.org">http://www.postgresql.org</ulink>.
</para>
<para>PostGIS 0.7 can be built against PostgreSQL 7.1.x or PostgreSQL 7.2.x.
Earlier versions of PostgreSQL are <emphasis>not</emphasis> supported.
</para>
<orderedlist>
<listitem>
<para>Before you can compile the postgis server modules, you must
compile and install the PostgreSQL package.
</para>
</listitem>
<listitem>
<para>Retrieve the PostGIS source archive from
<ulink url="http://postgis.refractions.net/postgis-0.7.3.tar.gz">http://postgis.refractions.net/postgis-0.7.3.tar.gz</ulink>.
Uncompress and untar the archive in the "contrib" directory of
the PostgreSQL source tree.
</para>
<programlisting># cd [postgresql source tree]/contrib
# gzip -d -c postgis-0.7.tar.gz | tar xvf -</programlisting>
</listitem>
<listitem>
<para>Once your PostgreSQL installation is up-to-date, enter the
"postgis" directory, and edit the <filename>Makefile</filename>.
</para>
<itemizedlist>
<listitem>
<para>If you are compiling PostGIS 0.7.2 or earlier
against PostgreSQL 7.2.x, you must set the
<varname>USE_PG72</varname> variable to
<emphasis>1</emphasis>. This is done automatically by
newer version of postgis.
</para>
</listitem>
<listitem>
<para>If want support for coordinate reprojection you must
have the Proj4 library installed, and set the
<varname>USE_PROJ</varname> variable to <emphasis>1</emphasis>.
</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Run the compile and install commands.</para>
<programlisting># make
# make install</programlisting>
<para>All files are installed relative to the PostgreSQL install
directory, <filename>[prefix]</filename>.
</para>
<itemizedlist>
<listitem>
<para>Libraries are installed
<filename>[prefix]/lib/contrib</filename>.
</para>
</listitem>
<listitem>
<para>Important support files such as
<filename>postgis.sql</filename> are installed in
<filename>[prefix]/share/contrib</filename>.
</para>
</listitem>
<listitem>
<para>Loader and dumber binaries are installed in
<filename>[prefix]/bin</filename>.
</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>PostGIS requires the PL/pgSQL procedural language extension.
Before loading the <filename>postgis.sql</filename> file,
you must first enable PL/pgSQL. You should use the
<filename>createlang</filename> command. The PostgreSQL 7.1
Programmer's Guide has the details if you want to this manually
for some reason.
</para>
<programlisting># createlang plpgsql [yourdatabase]</programlisting>
</listitem>
<listitem>
<para>Now load the PostGIS object and function definitions into
your database by loading the <filename>postgis.sql</filename>
definitions file.
</para>
<programlisting># psql -d [yourdatabase] -f postgis.sql</programlisting>
<para>The PostGIS server extensions are now loaded and ready to use.</para>
</listitem>
<listitem>
<para>For a complete set of EPSG coordinate system definition
identifiers, you can also load the
<filename>spatial_ref_sys.sql</filename> definitions file and
populate the <varname>SPATIAL_REF_SYS</varname> table.
</para>
<programlisting># psql -d [yourdatabase] -f spatial_ref_sys.sql</programlisting>
</listitem>
</orderedlist>
<sect2>
<title>Upgrading</title>
<para>Upgrading PostGIS can be tricky, because the underlying C libraries
which support the object types and geometries may have changed between
versions. To avoid problems when upgrading, you will have to dump all
the tables in your database, destroy the database, create a new one,
execute the new <filename>postgis.sql</filename> file, then upload your
database dump:
</para>
<programlisting># pg_dump -t "*" -f dumpfile.sql yourdatabase
# dropdb yourdatabase
# createdb yourdatabase
# createlang plpgsql yourdatabse
# psql -f postgis.sql -d yourdatabase
# psql -f dumpfile.sql -d yourdatabase
# vacuumdb -z yourdatabase</programlisting>
<note>
<para>When upgrading from version 0.5 to 0.6+, all your geometries
will be created with an SRID of -1. To create valid OpenGIS
geometries, you will have to create a valid SRID in the
SPATIAL_REF_SYS table, and then update your geometries to
reference the SRID with the following SQL (with the appropriate
substitutions:
</para>
<programlisting>UPDATE TABLE &lt;table&gt; SET &lt;geocolumn&gt; = SetSRID(&lt;geocolumn&gt;,&lt;SRID&gt;);</programlisting>
</note>
</sect2>
<sect2>
<title>Common Problems</title>
<para>There are several things to check when your installation or
upgrade doesn't go as you expected.
</para>
<orderedlist>
<listitem>
<para>It is easiest if you untar the PostGIS
distribution into the contrib directory under the PostgreSQL
source tree. However, if this is not possible for some reason,
you can set the <filename>PGSQL_SRC</filename>environment
variable to the path to the PostgreSQL source directory. This
will allow you to compile PostGIS, but the
<filename>make install</filename> may not work, so be prepared
to copy the PostGIS library and executable files to the
appropriate locations yourself.
</para>
</listitem>
<listitem>
<para>Check that you you have installed PostgreSQL 7.1 or newer,
and that you are compiling against the same version of the
PostgreSQL source as the version of PostgreSQL that is
running. Mix-ups can occur when your (Linux) distrubution has
already installed PostgreSQL, or you have otherwise installed
PostgreSQL before and forgotten about it. PostGIS will only
work with PostgreSQL 7.1 or newer, and strange, unexpected
error messages will result if you use an older version. To
check the version of PostgreSQL which is running, connect to
the database using psql and run this query:
</para>
<programlisting>SELECT version();</programlisting>
</listitem>
</orderedlist>
<para>Also check that you have made any necessary changes to the top
of the Makefile. This includes:
</para>
<orderedlist>
<listitem>
<para>Changing the <filename>USE_PG72=0</filename> line to
<filename>USE_PG72=1</filename> if you are using PostgreSQL
7.2 or newer. If this line is incorrect, it will result in
a large number of errors being generated either when compiling,
or when executing the sql statements in the postgis.sql file.
</para>
</listitem>
<listitem>
<para>Also, if you want to be able to do coordinate
reprojections, you must install the Proj.4 library on your
system, and set the <filename>USE_PROJ</filename> variable
to 1 in the Makefile.
</para>
</listitem>
</orderedlist>
</sect2>
</sect1>
<sect1>
<title>JDBC</title>
<para>The JDBC extensions provide Java objects corresponding to the
internal PostGIS types. These objects can be used to write Java clients
which query the PostGIS database and draw or do calculations on the GIS
data in PostGIS.
</para>
<orderedlist>
<listitem>
<para>Enter the <filename>jdbc</filename> sub-directory of the
PostGIS distribution.
</para>
</listitem>
<listitem>
<para>Edit the <filename>Makefile</filename> to provide the correct
paths of your java compiler (<varname>JAVAC</varname>) and
interpreter (<varname>JAVA</varname>).
</para>
</listitem>
<listitem>
<para>Run the <filename>make</filename> command. Copy the
<filename>postgis.jar</filename> file to wherever you keep your
java libraries.
</para>
</listitem>
</orderedlist>
</sect1>
<sect1>
<title>Loader/Dumper</title>
<para>The data loader and dumper are built and installed automatically
as part of the PostGIS build. To build and install them manually:
</para>
<programlisting># cd postgis-0.7/loader
# make
# make install</programlisting>
<para>The loader is called <filename>shp2pgsql</filename> and converts
ESRI Shape files into SQL suitable for loading in PostGIS/PostgreSQL.
The dumper is called <filename>pgsql2shp</filename> and converts
PostGIS tables into ESRI shape files.
</para>
</sect1>
</chapter>
<chapter>
<title>Frequently Asked Questions</title>
<qandaset>
<qandaentry>
<question>
<para>What kind of geometric objects can I store?</para>
</question>
<answer>
<para>You can store point, line, polygon, multipoint, multiline,
multipolygon, and geometrycollections. These are specified in
the Open GIS Well Known Text Format (with 3d extentions).
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How do I insert a GIS object into the database?</para>
</question>
<answer>
<para>First, you need to create a table with a column of type
"geometry" to hold your GIS data. Connect to your database with
<filename>psql</filename> and try the following SQL:
</para>
<programlisting>CREATE TABLE gtest ( ID int4, NAME varchar(20) );
SELECT AddGeometryColumn('dbname','gtest','geom',-1,'LINESTRING',2);</programlisting>
<para>If the geometry column addition fails, you probably have not
loaded the PostGIS functions and objects into this database. See the
<link linkend="PGInstall">installation instructions</link>.
</para>
<para>Then, you can insert a geometry into the table using a SQL
insert statement. The GIS object itself is formatted using the
OpenGIS Consortium "well-known text" format:
</para>
<programlisting>INSERT INTO gtest (ID, NAME, GEOM) VALUES (1, 'First Geometry', GeometryFromText('LINESTRING(2 3,4 5,6 5,7 8)', -1));</programlisting>
<para>For more information about other GIS objects, see the
<link linkend="RefObject">object reference</link>.
</para>
<para>To view your GIS data in the table:</para>
<programlisting>SELECT id, name, AsText(geom) AS geom FROM gtest;</programlisting>
<para>The return value should look something like this:</para>
<programlisting> id | name | geom
----+----------------+-----------------------------
1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)</programlisting>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How do I construct a spatial query?</para>
</question>
<answer>
<para>There are a number of spatial operators available to
PostgreSQL, and several of them have been implemented by PostGIS
in order to provide indexing support.
</para>
<para>In order to do a spatial query with index support, you must
use the "overlap operator" (&amp;&amp;) which uses the following
important simplifying assumption: <emphasis>all features shall be
represented by their bounding boxes</emphasis>.
</para>
<para>We recognize that using bounding boxes to proxy for features is
a limiting assumption, but it is an important one in providing
spatial indexing capabilities. Commercial spatial databases use
the same assumption -- bounding boxes are important to most
spatial indexing schemes.
</para>
<para>The most important spatial operator from a user's perspective
is the "&amp;&amp;" overlap operator, which tests whether one
feature's bounding box overlaps that of another. An example of a
spatial query using &amp;&amp; is:
</para>
<programlisting>SELECT id,name FROM GTEST WHERE GEOM &amp;&amp; 'BOX3D(3 4,4 5)'::box3d</programlisting>
<para>Note that the bounding box used for querying must be
explicitly declared as a <varname>box3d</varname> using the
"::box3d" casting operation.
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How do I speed up spatial queries on large tables?</para>
</question>
<answer>
<para>Fast queries on large tables is the <emphasis>raison
d'etre</emphasis> of spatial databases (along with transaction
support) so having a good index in important.</para>
<para>To build a spatial index on a table with a
<varname>geometry</varname> column, use the "CREATE INDEX"
function as follows:
</para>
<programlisting>CREATE INDEX [indexname] ON [tablename]
USING GIST ( [geometrycolumn] gist_geometry_ops);</programlisting>
<para>The "USING GIST" option tells the server to use a GiST
(Generalized Search Tree) index. The reference to
"gist_geometry_ops" tells the server to use a particular set
of comparison operators for building the index: the
"gist_geometry_ops" are part of the PostGIS extension.
<note>
<para>For PostgreSQL version 7.1.x, you can specifically
request a "lossy" index by appending WITH (ISLOSSY) to
the index creation command. For PostgreSQL 7.2.x and
above all GiST indexes are assumed to be lossy. Lossy
indexes uses a proxy object (in the spatial case, a
bounding box) for building the index.
</para>
</note>
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How can I get my search to return things that really are inside
the search box, not just overlapping bounding boxes?
</para>
</question>
<answer>
<para>The '&amp;&amp;' operator only checks bounding box overlaps,
but you can use the "truly_inside()" function to get only those
features which <emphasis>actually</emphasis> intersect the search
box. For example, by combining the use of "&amp;&amp;" for a fast
index search and truly_inside() for an accurate final check of the
result set, you can get only those features inside the search box
(note that this <emphasis>only</emphasis> works for search boxes
right now, not any arbitrary geometry):
</para>
<programlisting>SELECT [COLUMN1],[COLUMN2],AsText([GEOMETRYCOLUMN])
FROM [TABLE] WHERE [GEOM_COLUMN] &amp;&amp; [BOX3d]
AND truly_inside([GEOM_COLUMN],[BOX3d]);</programlisting>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why aren't PostgreSQL R-Tree indexes supported?</para>
</question>
<answer>
<para>Early versions of PostGIS used the PostgreSQL R-Tree
indexes. However, PostgreSQL R-Trees have been completely
discarded since version 0.6, and spatial indexing is provided
with an R-Tree-over-GiST scheme.
</para>
<para>Our tests have shown search speed for native R-Tree and
GiST to be comparable. Native PostgreSQL R-Trees have two
limitations which make them undesirable for use with GIS
features (note that these limitations are due to the current
PostgreSQL native R-Tree implementation, not the R-Tree
concept in general):
</para>
<itemizedlist>
<listitem>
<para>R-Tree indexes in PostgreSQL cannot handle features
which are larger than 8K in size. GiST indexes can, using
the "lossy" trick of substituting the bounding box for
the feature itself.
</para>
</listitem>
<listitem>
<para>R-Tree indexes in PostgreSQL are not "null safe", so
building an index on a geometry column which contains
null geometries will fail.
</para>
</listitem>
</itemizedlist>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>Why should I use the <varname>AddGeometryColumn()</varname>
function and all the other OpenGIS stuff?
</para>
</question>
<answer>
<para>If you do not want to use the OpenGIS support functions,
you do not have to. Simply create tables as in older versions,
defining your geometry columns in the CREATE statement. All
your geometries will have SRIDs of -1, and the OpenGIS meta-data
tables will <emphasis>not</emphasis> be filled in properly.
However, this will cause most applications based on PostGIS to
fail, and it is generally suggested that you do use
<varname>AddGeometryColumn()</varname> to create geometry tables.
</para>
<para>Mapserver is one application which makes use of the
<varname>geometry_columns</varname> meta-data. Specifically,
Mapserver can use the SRID of the geometry column to do on-the-fly
reprojection of features into the correct map projection.
</para>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>What is the best way to find all objects within a radius of
another object?
</para>
</question>
<answer>
<para>To use the database most efficiently, it is best to do
radius queries which combine the radius test with a bounding
box test: the bounding box test uses the spatial index, giving
fast access to a subset of data which the radius test is then
applied to.
</para>
<para>For example, to find all objects with 100 meters of
POINT(1000 1000) the following query would work well:
</para>
<programlisting>SELECT *
FROM GEOTABLE
WHERE
GEOM &amp;&amp; GeometryFromText('BOX3D(900 900,1100 1100)',-1)
AND
Distance(GeometryFromText('POINT(1000 1000)',-1),GEOM) < 100;</programlisting>
</answer>
</qandaentry>
<qandaentry>
<question>
<para>How do I perform a coordinate reprojection as part of
a query?
</para>
</question>
<answer>
<para>To perform a reprojection, both the source and
destination coordinate systems must be defined in the
SPATIAL_REF_SYS table, and the geometries being reprojected
must already have an SRID set on them. Once that is done, a
reprojection is as simple as referring to the desired
destination SRID.
</para>
<programlisting>SELECT Transform(GEOM,4269) FROM GEOTABLE;</programlisting>
</answer>
</qandaentry>
</qandaset>
</chapter>
<chapter>
<title>Using PostGIS</title>
<sect1 id="RefObject">
<title>GIS Objects</title>
<para>The GIS objects supported by PostGIS are the "Simple Features"
defined by the OpenGIS Consortium (OGC). Note that PostGIS currently supports
the features and the representation APIs, but not the various comparison and
convolution operators given in the OGC "Simple Features for SQL"
specification.</para>
<para>Examples of the text representations of the features are as
follows:
</para>
<itemizedlist>
<listitem>
<para>POINT(0 0 0)</para>
</listitem>
<listitem>
<para>LINESTRING(0 0,1 1,1 2)</para>
</listitem>
<listitem>
<para>POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2 0,1 1 0))</para>
</listitem>
<listitem>
<para>MULTIPOINT(0 0 0,1 2 1)</para>
</listitem>
<listitem>
<para>MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))</para>
</listitem>
<listitem>
<para>MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2
0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))</para>
</listitem>
<listitem>
<para>GEOMETRYCOLLECTION(POINT(2 3 9),LINESTRING((2 3 4,3 4 5)))</para>
</listitem>
</itemizedlist>
<para>Note that in the examples above there are features with both
2-dimensional and 3-dimensional coordinates. PostGIS supports both 2d and 3d
coordinates -- if you describe a feature with 2D coordinates when you insert
it, the database will return that feature to you with 2D coordinates when you
extract it. See the sections on the <link linkend="force_2d">force_2d()</link>
and <link linkend="force_3d">force_3d()</link> functions for information on
converting features to a particular coordinate dimension representation.
</para>
<sect2>
<title>Standard versus Canonical Forms</title>
<para>The OpenGIS specification defines two standard ways of expressing
spatial objects: the Well-Known Text (WKT) form (shown in the previous
section) and the Well-Known Binary (WKB) form. Both WKT and WKB
include information about the type of the object and the coordinates
which form the object.
</para>
<para>However, the OpenGIS specification also requires that the
internal storage format of spatial objects include a spatial
referencing system identifier (SRID). The SRID is required when
creating spatial objects for insertion into the database. For
example, a valid insert statement to create and insert a spatial
object would be:
</para>
<programlisting>INSERT INTO SPATIALTABLE ( THE_GEOM, THE_NAME )
VALUES (
GeometryFromText('POINT(-126.4 45.32)', 312),
'A Place'
)</programlisting>
<para>Note that the "GeometryFromText" function requires an SRID
number.
</para>
<para>The "canonical form" of the spatial objects in PostgreSQL is a
text representation which includes all the information necessary
to construct the object. Unlike the OpenGIS standard forms, it
includes the type, coordinate, and SRID information. The canonical
form is the default form returned from a SELECT query. The example
below shows the difference between the OGC standard and PostGIS
canonical forms:
</para>
<programlisting>db=&gt; SELECT AsText(geom) AS OGCGeom FROM thetable;
OGCGeom
-------------------------------------------------
LINESTRING(-123.741378393049 48.9124018962261,-123.741587115639 48.9123981907507)
(1 row)
db=&gt; SELECT geom AS PostGISGeom FROM thetable;
PostGISGeom
-------------------------------------------------
SRID=123;LINESTRING(-123.741378393049 48.9124018962261,-123.741587115639 48.9123981907507)
(1 row)</programlisting>
</sect2>
</sect1>
<sect1>
<title>Using OpenGIS Standards</title>
<para>The OpenGIS "Simple Features Specification for SQL" defines
standard GIS object types, the functions required to manipulate them,
and a set of meta-data tables. In order to ensure that meta-data
remain consistent, operations such as creating and removing a spatial
column are carried out through special procedures defined by OpenGIS.
</para>
<para>There are two OpenGIS meta-data tables: SPATIAL_REF_SYS and
GEOMETRY_COLUMNS. The SPATIAL_REF_SYS table holds the numeric IDs and textual
descriptions of coordinate systems used in the spatial database.
</para>
<sect2>
<title>The SPATIAL_REF_SYS Table</title>
<para>The SPATIAL_REF_SYS table definition is as follows:</para>
<programlisting>CREATE TABLE SPATIAL_REF_SYS (
SRID INTEGER NOT NULL PRIMARY KEY,
AUTH_NAME VARCHAR(256),
AUTH_SRID INTEGER,
SRTEXT VARCHAR(2048),
PROJ4TEXT VARCHAR(2048)
)</programlisting>
<para>The SPATIAL_REF_SYS columns are as follows:</para>
<variablelist>
<varlistentry>
<term>SRID</term>
<listitem>
<para>An integer value that uniquely identifies the Spatial
Referencing System within the database.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AUTH_NAME</term>
<listitem>
<para>The name of the standard or standards body that is being
cited for this reference system. For example, "EPSG" would
be a valid AUTH_NAME.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AUTH_SRID</term>
<listitem>
<para>The ID of the Spatial Reference System as defined by the
Authority cited in the AUTH_NAME. In the case of EPSG, this
is where the EPSG projection code would go.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>SRTEXT</term>
<listitem>
<para>The Well-Known Text representation of the Spatial
Reference System. An example of a WKT SRS representation is:
</para>
<programlisting>PROJCS["NAD83 / UTM Zone 10N",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101]
],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]
],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-123],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1]
]</programlisting>
<para>For a listing of EPSG projection codes and their
corresponding WKT representations, see
<ulink url="http://www.opengis.org/techno/interop/EPSG2WKT.TXT">http://www.opengis.org/techno/interop/EPSG2WKT.TXT</ulink>.
For a discussion of WKT in general, see the OpenGIS
"Coordinate Transformation Services Implementation
Specification" at
<ulink url="http://www.opengis.org/techno/specs.htm">http://www.opengis.org/techno/specs.htm</ulink>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PROJ4TEXT</term>
<listitem>
<para>PostGIS uses the Proj4 library to provide coordinate
transformation capabilities. The <varname>PROJ4TEXT</varname>
column contains the Proj4 coordinate definition string for
a particular SRID. For example:
</para>
<programlisting>+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m</programlisting>
<para>For more information about, see the Proj4 web site at
<ulink url="http://www.remotesensing.org/proj">http://www.remotesensing.org/proj</ulink>.
The <filename>spatial_ref_sys.sql</filename> file contains
both <varname>SRTEXT</varname> and <varname>PROJ4TEXT</varname>
definitions for all EPSG projections.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2>
<title>The GEOMETRY_COLUMNS Table</title>
<para>The <varname>GEOMETRY_COLUMNS</varname> table definition is
as follows:
</para>
<programlisting>CREATE TABLE GEOMETRY_COLUMNS (
F_TABLE_CATALOG VARCHAR(256) NOT NULL,
F_TABLE_SCHEMA VARCHAR(256) NOT NULL,
F_TABLE_NAME VARCHAR(256) NOT NULL,
F_GEOMETRY_COLUMN VARCHAR(256) NOT NULL,
COORD_DIMENSION INTEGER NOT NULL,
SRID INTEGER NOT NULL,
TYPE VARCHAR(30) NOT NULL
)</programlisting>
<para>The columns are as follows:</para>
<variablelist>
<varlistentry>
<term>F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME</term>
<listitem>
<para>The fully qualified name of the feature table containing
the geometry column. Note that the terms "catalog" and
"schema" are Oracle-ish. There is not PostgreSQL analogue of
"catalog" so that column is left blank -- for "schema" the
database name is used.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>F_GEOMETRY_COLUMN</term>
<listitem>
<para>The name of the geometry column in the feature
table.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>COORD_DIMENSION</term>
<listitem>
<para>The spatial dimension (2 or 3 dimensional) of the
column.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>SRID</term>
<listitem>
<para>The ID of the spatial reference system used for the
coordinate geometry in this table. It is a foreign key reference to the
SPATIAL_REF_SYS.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>TYPE</term>
<listitem>
<para>The type of the spatial object. To restrict the spatial
column to a single type, use one of: POINT, LINESTRING,
POLYGON, MULTPOINT, MULTILINESTRING, MULTIPOLYGON,
GEOMETRYCOLLECTION. For heterogeneous (mixed-type)
collections, you can use "GEOMETRY" as the type.
</para>
<note>
<para>This attribute is (probably) not part of the OpenGIS
specification, but is required for ensuring type
homogeneity.
</para>
</note>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2>
<title>Creating a Spatial Table</title>
<para>Creating a table with spatial data is done in two stages:</para>
<itemizedlist>
<listitem>
<para>Create a normal non-spatial table.</para>
<para>For example: CREATE TABLE ROADS_GEOM ( ID int4, NAME
varchar(25) )
</para>
</listitem>
<listitem>
<para>Add a spatial column to the table using the OpenGIS
"AddGeometryColumn" function. The syntax is:
AddGeometryColumn(&lt;db_name&gt;, &lt;table_name&gt;,
&lt;column_name&gt;, &lt;srid&gt;, &lt;type&gt;,
&lt;dimension&gt;).
</para>
<para>For example: SELECT AddGeometryColumn('roads_db',
'roads_geom', 'geom', 423, 'LINESTRING', 2)
</para>
</listitem>
</itemizedlist>
<para>Here is an example of SQL used to create a table and add a
spatial column (assuming the db is 'parks_db' and that an SRID of 128 exists
already):
</para>
<programlisting>CREATE TABLE PARKS ( PARK_ID int4, PARK_NAME varchar(128), PARK_DATE date, PARK_TYPE varchar(2) );
SELECT AddGeometryColumn('parks_db', 'parks', 'park_geom', 128, 'MULTIPOLYGON', 2 );</programlisting>
<para>Here is another example, using the generic "geometry" type and
the undefined SRID value of -1:
</para>
<programlisting>CREATE TABLE ROADS ( ROAD_ID int4, ROAD_NAME varchar(128) );
SELECT AddGeometryColumn( 'roads_db', 'roads', 'roads_geom', -1, 'GEOMETRY', 3 );</programlisting>
</sect2>
</sect1>
<sect1>
<title>Loading GIS Data</title>
<para>Once you have created a spatial table, you are ready to upload GIS
data to the database. Currently, there are two ways to get data into a
PostGIS/PostgreSQL database: using formatted SQL statements or using the Shape
file loader/dumper.
</para>
<sect2>
<title>Using SQL</title>
<para>If you can convert your data to a text representation, then using
formatted SQL might be the easiest way to get your data into PostGIS. As with
Oracle and other SQL databases, data can be bulk loaded by piping a large text
file full of SQL "INSERT" statements into the SQL terminal monitor.
</para>
<para>A data upload file (<filename>roads.sql</filename> for example)
might look like this:
</para>
<programlisting>BEGIN;
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (1,GeometryFromText('LINESTRING(191232 243118,191108 243242)',-1),'Jeff Rd');
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (2,GeometryFromText('LINESTRING(189141 244158,189265 244817)',-1),'Geordie Rd');
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (3,GeometryFromText('LINESTRING(192783 228138,192612 229814)',-1),'Paul St');
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (4,GeometryFromText('LINESTRING(189412 252431,189631 259122)',-1),'Graeme Ave');
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (5,GeometryFromText('LINESTRING(190131 224148,190871 228134)',-1),'Phil Tce');
INSERT INTO ROADS_GEOM (ID,GEOM,NAME ) VALUES (6,GeometryFromText('LINESTRING(198231 263418,198213 268322)',-1),'Dave Cres');
COMMIT;</programlisting>
<para>The data file can be piped into PostgreSQL very easily using the
"psql" SQL terminal monitor:
</para>
<programlisting>psql -d [database] -f roads.sql</programlisting>
</sect2>
<sect2>
<title>Using the Loader</title>
<para>The <filename>shp2pgsql</filename> data loader converts ESRI Shape
files into SQL suitable for insertion into a PostGIS/PostgreSQL database.
The loader has several operating modes distinguished by command line flags:
</para>
<variablelist>
<varlistentry>
<term>-d</term>
<listitem>
<para>Drops the database table before creating a new table with
the data in the Shape file.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-a</term>
<listitem>
<para>Appends data from the Shape file into the database table.
Note that to use this option to load multiple files, the
files must have the same attributes and same data types.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-c</term>
<listitem>
<para>Creates a new table and populates it from the Shape file.
<emphasis>This is the default mode.</emphasis>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-D</term>
<listitem>
<para>Creates a new table and populates it from the Shape file.
This uses the PostgreSQL "dump" format for the output data
and is much faster to load than the default "insert" SQL format.
Use this for very large data sets.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-s &lt;SRID&gt;</term>
<listitem>
<para>Creates and populates the geometry tables with the
specified SRID.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>An example session using the loader to create an input file and
uploading it might look like this:
</para>
<programlisting># shp2pgsql shaperoads roadstable roadsdb &gt; roads.sql
# psql -d roadsdb -f roads.sql</programlisting>
<para>A conversion and upload can be done all in one step using UNIX
pipes:
</para>
<programlisting># shp2pgsql shaperoads roadstable roadsdb | psql -d roadsdb</programlisting>
</sect2>
</sect1>
<sect1>
<title>Retrieving GIS Data</title>
<para>Data can be extracted from the database using either SQL or the
Shape file loader/dumper. In the section on SQL we will discuss some of the
operators available to do comparisons and queries on spatial tables.
</para>
<sect2>
<title>Using SQL</title>
<para>The most straightforward means of pulling data out of the
database is to use a SQL select query and dump the resulting columns into a
parsable text file:
</para>
<programlisting>db=# SELECT id, AsText(geom) AS geom, name FROM ROADS_GEOM;
id | geom | name
---+-----------------------------------------+-----------
1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING(192783 228138,192612 229814) | Paul St
4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)</programlisting>
<para>However, there will be times when some kind of restriction is
necessary to cut down the number of fields returned. In the case of
attribute-based restrictions, just use the same SQL syntax as normal
with a non-spatial table. In the case of spatial restrictions, the
following operators are available/useful:
</para>
<variablelist>
<varlistentry>
<term>&amp;&amp;</term>
<listitem>
<para>This operator tells whether the bounding box of one
geometry overlaps the bounding box of another.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>~=</term>
<listitem>
<para>This operators tests whether two geometries are
geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0 0))'
is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>=</term>
<listitem>
<para>This operator is a little more naive, it only tests whether
the bounding boxes of to geometries are the same.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>Next, you can use these operators in queries. Note that when
specifying geometries and boxes on the SQL command line, you must
explicitly turn the string representations into geometries by using
the "GeometryFromText()" function. So, for example:
</para>
<programlisting>SELECT
ID, NAME
FROM ROADS_GEOM
WHERE
GEOM ~= GeometryFromText('LINESTRING(191232 243118,191108 243242)',-1);</programlisting>
<para>The above query would return the single record from the
"ROADS_GEOM" table in which the geometry was equal to that value.
</para>
<para>When using the "&amp;&amp;" operator, you can specify either a
BOX3D as the comparison feature or a GEOMETRY. When you specify a GEOMETRY,
however, its bounding box will be used for the comparison.
</para>
<programlisting>SELECT
ID, NAME
FROM ROADS_GEOM
WHERE
GEOM &amp;&amp; GeometryFromText('POLYGON((191232 243117,191232 243119,191234 243117,191232 243117))',-1);</programlisting>
<para>The above query will use the bounding box of the polygon for
comparison purposes.
</para>
<para>The most common spatial query will probably be a "frame-based"
query, used by client software, like data browsers and web mappers, to
grab a "map frame" worth of data for display. Using a "BOX3D" object
for the frame, such a query looks like this:
</para>
<programlisting>SELECT
AsText(GEOM) AS GEOM
FROM ROADS_GEOM
WHERE
GEOM &amp;&amp; GeometryFromText('BOX3D(191232 243117,191232 243119)'::box3d,-1);</programlisting>
<para>Note the use of the SRID, to specify the projection of the BOX3D.
The value -1 is used to indicate no specified SRID.
</para>
</sect2>
<sect2>
<title>Using the Dumper</title>
<para>The <filename>pgsql2shp</filename> table dumper connects directly
to the database and converts a table into a shape file. The basic
syntax is:
</para>
<programlisting>pgsql2shp [&lt;options&gt;] &lt;database&gt; &lt;table&gt;</programlisting>
<para>The commandline options are:</para>
<variablelist>
<varlistentry>
<term>-d</term>
<listitem>
<para>Write a 3-dimensional shape file. The default is to write a 2-dimensional shape file.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-f &lt;filename&gt;</term>
<listitem>
<para>Write the output to a particular filename.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-h &lt;host&gt;</term>
<listitem>
<para>The database host to connect to.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-p &lt;port&gt;</term>
<listitem>
<para>The port to connect to on the database host.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-P &lt;password&gt;</term>
<listitem>
<para>The password to use when connecting to the database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-u &lt;user&gt;</term>
<listitem>
<para>The username to use when connecting to the database.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-g &lt;geometry column&gt;</term>
<listitem>
<para>In the case of tables with multiple geometry columns, the geometry
column to use when writing the shape file.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
</sect1>
<sect1>
<title>Building Indexes</title>
<para>Indexes are what make using a spatial database for large databases
possible. Without indexing, any search for a feature would require a
"sequential scan" of every record in the database. Indexing speeds up searching
by organizing the data into a search tree which can be quickly traversed to
find a particular record. PostgreSQL supports three kinds of indexes by
default: B-Tree indexes, R-Tree indexes, and GiST indexes.
</para>
<itemizedlist>
<listitem>
<para>B-Trees are used for data which can be sorted along one axis;
for example, numbers, letters, dates. GIS data cannot be rationally sorted
along one axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing
is of no use for us.
</para>
</listitem>
<listitem>
<para>R-Trees break up data into rectangles, and sub-rectangles, and
sub-sub rectangles, etc. R-Trees are used by some spatial databases to index GIS
data, but the PostgreSQL R-Tree implementation is not as robust as the GiST
implementation.</para>
</listitem>
<listitem>
<para> GiST (Generalized Search Trees) indexes break up data into
"things to one side", "things which overlap", "things which are inside" and can
be used on a wide range of data-types, including GIS data. PostGIS uses an
R-Tree index implemented on top of GiST to index GIS data.
</para>
</listitem>
</itemizedlist>
<sect2>
<title>GiST Indexes</title>
<para>GiST stands for "Generalized Search Tree" and is a generalized
form of indexing. In addition to GIS indexing, GiST is used to speed up
searches on all kinds of irregular data structures (integer arrays, spectral
data, etc) which are not amenable to normal B-Tree indexing.
</para>
<para>Once a GIS data table exceeds a few thousand rows, you will want
to build an index to speed up spatial searches of the data (unless all your
searches are based on attributes, in which case you'll want to build a normal
index on the attribute fields).
</para>
<para>The syntax for building a GiST index on a "geometry" column is as
follows:
</para>
<programlisting>CREATE INDEX [indexname] ON [tablename]
USING GIST ( [geometryfield] GIST_GEOMETRY_OPS ); </programlisting>
<para>Building a spatial index is a computationally intensive exercise:
on tables of around 1 million rows, on a 300MHz Solaris machine, we have found
building a GiST index takes about 1 hour. After building an index, it is
important to force PostgreSQL to collect table statistics, which are
used to optimize query plans:
</para>
<programlisting>VACUUM ANALYZE;</programlisting>
<para>GiST indexes have two advantages over R-Tree indexes in
PostgreSQL. Firstly, GiST indexes are "null safe", meaning
they can index columns which include null values. Secondly, GiST
indexes support the concept of "lossiness" which is important
when dealing with GIS objects larger than the PostgreSQL 8K
page size. Lossiness allows PostgreSQL to store only the
"important" part of an object in an index -- in the case of GIS
objects, just the bounding box. GIS objects larger than 8K will
cause R-Tree indexes to fail in the process of being built.
</para>
</sect2>
<sect2>
<title>Using Indexes</title>
<para>Ordinarily, indexes invisibly speed up data access: once the
index is built, the query planner transparently decides when to use index
information to speed up a query plan. Unfortunately, the PostgreSQL query
planner does not optimize the use of GiST indexes well, so sometimes searches which should use a spatial index instead default to a sequence
scan of the whole table.
</para>
<para>If you find your spatial indexes are not being used (or your
attribute indexes, for that matter) there are a couple things you can
do:
</para>
<itemizedlist>
<listitem>
<para>Firstly, make sure you run the "VACUUM ANALYZE [tablename]"
command on the tables you are having problems with. "VACUUM ANALYZE" gathers
statistics about the number and distributions of values in a table, to provide
the query planner with better information to make decisions around index
usage. You should regularly vacuum your databases anyways -- many PostgreSQL
DBAs have "VACUUM" run as an off-peak cron job on a regular basis.
</para>
</listitem>
<listitem>
<para>If vacuuming does not work, you can force the planner to use the index
information by using the "SET =OFF" command. You should only use
this command sparingly, and only on spatially indexed queries: generally
speaking, the planner knows better than you do about when to use normal B-Tree
indexes. Once you have run your query, you should consider setting
"ENABLE_SEQSCAN" back on, so that other queries will utilize the planner as
normal.
</para>
<note>
<para>As of version 0.6, it should not be necessary to force the
planner to use the index with "ENABLE_SEQSCAN".
</para>
</note>
</listitem>
</itemizedlist>
</sect2>
</sect1>
<sect1>
<title>Complex Queries</title>
<para>The <emphasis>raison d'etre</emphasis> of spatial database functionality
is performing queries inside the database which would ordinarily require
desktop GIS functionality. Using PostGIS effectively requires knowing what
spatial functions are available, and ensuring that appropriate indexes are
in place to provide good performance.
</para>
<sect2>
<title>Taking Advantage of Indexes</title>
<para>When constructing a query it is important to remember that only the
bounding-box-based operators such as &amp;&amp; can take advatage of the
GiST spatial index. Functions such as <varname>distance()</varname>
cannot use the index to optimize their operation. For example, the
following query would be quite slow on a large table:
</para>
<programlisting>SELECT the_geom FROM geom_table
WHERE distance( the_geom, GeometryFromText( 'POINT(100000 200000)', -1 ) ) < 100</programlisting>
<para>This query is selecting all the geometries in geom_table which are within
100 units of the point (100000, 200000). It will be slow because it is
calculating the distance between each point in the table and our specified
point, ie. one <varname>distance()</varname> calculation for each row in
the table. We can avoid this by using the &amp;&amp; operator to reduce
the number of distance calculations required:
</para>
<programlisting>SELECT the_geom FROM geom_table
WHERE the_geom &amp;&amp; 'BOX3D(90900 190900, 100100 200100)'::box3d
AND distance( the_geom, GeometryFromText( 'POINT(100000 200000)', -1 ) ) < 100</programlisting>
<para>This query selects the same geometries, but it does it in a more efficient way.
Assuming there is a GiST index on the_geom, the query planner will recognize that
it can use the index to reduce the number of rows before calculating the result
of the <varname>distance()</varname> function. Notice that the
<varname>BOX3D</varname> geometry which is used in the &amp;&amp; operation is a 200 unit
square box centered on the original point - this is our "query box". The
&amp;&amp; operator uses the index to quickly reduce the result set down to
only those geometries which have bounding boxes that overlap the "query box".
Assuming that our query box is much smaller than the extents of the entire
geometry table, this will drastically reduce the number of distance calculations
that need to be done.
</para>
</sect2>
</sect1>
<sect1>
<title>Using Mapserver</title>
<para>The Minnesota Mapserver is an internet web-mapping server which conforms
to the OpenGIS Web Mapping Server specification.
</para>
<itemizedlist>
<listitem>
<para>The Mapserver homepage is at
<ulink url="http://mapserver.gis.umn.edu">http://mapserver.gis.umn.edu</ulink>.
</para>
</listitem>
<listitem>
<para>The OpenGIS Web Map Specification is at
<ulink url="http://www.opengis.org/techno/specs/01-047r2.pdf">http://www.opengis.org/techno/specs/01-047r2.pdf</ulink>.
</para>
</listitem>
</itemizedlist>
<sect2>
<title> Basic Usage</title>
<para>To use PostGIS with Mapserver, you will need to know about how to
configure Mapserver, which is beyond the scope of this documentation.
This section will cover specific PostGIS issues and configuration details.
</para>
<para>To use PostGIS with Mapserver, you will need:</para>
<itemizedlist>
<listitem>
<para>Version 0.6 or newer of PostGIS.</para>
</listitem>
<listitem>
<para>Version 3.5 or newer of Mapserver.</para>
</listitem>
</itemizedlist>
<para>Mapserver accesses PostGIS/PostgreSQL data like any other
PostgreSQL client -- using <filename>libpq</filename>. This
means that Mapserver can be installed on any machine with
network access to the PostGIS server, as long as the system
has the <filename>libpq</filename> PostgreSQL client libraries.
</para>
<orderedlist>
<listitem>
<para>Compile and install Mapserver, with whatever
options you desire, including the "--with-postgis"
configuration option.
</para>
</listitem>
<listitem>
<para>In your Mapserver map file, add a PostGIS layer.
For example:
</para>
<programlisting>LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
# Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
# Get the lines from the 'geom' column of the 'roads' table
DATA "geom from roads"
STATUS ON
TYPE LINE
# Of the lines in the extents, only render the wide highways
FILTER "type = 'highway' and numlanes &gt;= 4"
CLASS
# Make the superhighways brighter and 2 pixels wide
EXPRESSION ([numlanes] &gt;= 6)
COLOR 255 22 22
SYMBOL "solid"
SIZE 2
END
CLASS
# All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] &lt; 6)
COLOR 205 92 82
END
END</programlisting>
<para>In the example above, the PostGIS-specific
directives are as follows:
</para>
<variablelist>
<varlistentry>
<term>CONNECTIONTYPE</term>
<listitem>
<para>For PostGIS layers, this is always
"postgis".
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>CONNECTION</term>
<listitem>
<para>The database connection is governed
by the a 'connection string' which is a
standard set of keys and values like this
(with the default values in &lt;&gt;):
</para>
<para>user=&lt;username&gt; password=&lt;password&gt;
dbname=&lt;username&gt; hostname=&lt;server&gt;
port=&lt;5432&gt;
</para>
<para>An empty connection string is still valid, and
any of the key/value pairs can be omitted. At a
minimum you will generally supply the database
name and username to connect with.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DATA</term>
<listitem>
<para>The form of this parameter is "&lt;column&gt;
from &lt;tablename&gt;" where the column is the
spatial column to be rendered to the map.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>FILTER</term>
<listitem>
<para>The filter must be a valid SQL string
corresponding to the logic normally following
the "WHERE" keyword in a SQL query. So, for
example, to render only roads with 6 or more lanes,
use a filter of "num_lanes &gt;= 6".
</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
<listitem>
<para>In your spatial database, ensure you have spatial (GiST)
indexes built for any the layers you will be drawing.
</para>
<programlisting>CREATE INDEX [indexname]
ON [tablename]
USING GIST ( [geometrycolumn] GIST_GEOMETRY_OPS );</programlisting>
</listitem>
<listitem>
<para>If you will be querying your layers using Mapserver you
will also need an "oid index".
</para>
<para>Mapserver requires unique identifiers for each spatial
record when doing queries, and the PostGIS module of Mapserver
uses the PostgreSQL <varname>oid</varname> value to provide
these unique identifiers. A side-effect of this is that in
order to do fast random access of records during queries, an
index on the <varname>oid</varname> is needed.
</para>
<para>To build an "oid index", use the following SQL:</para>
<programlisting>CREATE INDEX [indexname] ON [tablename] ( oid );</programlisting>
</listitem>
</orderedlist>
</sect2>
<sect2>
<title>Advanced Usage</title>
<para>The <varname>USING</varname> pseudo-SQL clause is used to add some
information to help mapserver understand the results of more complex queries.
More specifically, when either a view or a subselect is used as the source table
(the thing to the right of "FROM" in a <varname>DATA</varname> definition)
it is more difficult for mapserver to automatically determine a unique identifier
for each row and also the SRID for the table. The <varname>USING</varname> clause
can provide mapserver with these two pieces of information as follows:
</para>
<programlisting>DATA "the_geom FROM (SELECT table1.the_geom AS the_geom, table1.oid AS oid, table2.data AS data
FROM table1 LEFT JOIN table2 ON table1.id = table2.id) AS new_table USING UNIQUE oid USING SRID=-1"</programlisting>
<variablelist>
<varlistentry>
<term>USING UNIQUE &lt;uniqueid&gt;</term>
<listitem>
<para>Mapserver requires a unique id for each row in order to identify
the row when doing map queries. Normally, it would use the oid as the
unique identifier, but views and subselects don't automatically have an
oid column. If you want to use Mapserver's query functionality,
you need to add a unique column to your view or subselect, and declare
it with <varname>USING UNIQUE</varname>.
For example, you could explicitly select one of the table's oid values
for this purpose, or any other column which is guaranteed to be
unique for the result set.
</para>
<para>
The <varname>USING</varname> statement can also be useful even for simple
<varname>DATA</varname> statements, if you are doing map queries.
It was previously recommended to add an index on the oid column of tables
used in query-able layers, in order to speed up the performance of map
queries. However, with the <varname>USING</varname> clause, it is possible
to tell mapserver to use your table's primary key as the identifier for
map queries, and then it is no longer necessary to have an additional index.
</para>
<note>
<para>"Querying a Map" is the action of clicking on a map to ask for
information about the map features in that location. Don't confuse
"map queries" with the SQL query in a <varname>DATA</varname> definition.
</para>
</note>
</listitem>
</varlistentry>
<varlistentry>
<term>USING SRID=&lt;srid&gt;</term>
<listitem>
<para>PostGIS needs to know which spatial referencing system is being used by
the geometries in order to return the correct data back to mapserver.
Normally it is possible to find this information in the "geometry_columns"
table in the PostGIS database, however, this is not possible for tables
which are created on the fly such as subselects and views.
So the <varname>USING SRID=</varname> option allows the correct SRID to be
specified in the <varname>DATA</varname> definition.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2>
<title>Examples</title>
<para>Lets start with a simple example and work our way up. Consider the following
Mapserver layer definition:
</para>
<programlisting>LAYER
CONNECTIONTYPE postgis
NAME "roads"
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM roads"
STATUS ON
TYPE LINE
CLASS
COLOR 0 0 0
END
END</programlisting>
<para>This layer will display all the road geometries in the roads table
as black lines.
</para>
<para>Now lets say we want to show only the highways until
we get zoomed in to at least a 1:100000 scale - the next two layers will
acheive this effect:
</para>
<programlisting>LAYER
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM roads"
MINSCALE 100000
STATUS ON
TYPE LINE
FILTER "road_type = 'highway'"
CLASS
COLOR 0 0 0
END
END
LAYER
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM roads"
MAXSCALE 100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS
EXPRESSION "highway"
SIZE 2
COLOR 255 0 0
END
CLASS
COLOR 0 0 0
END
END</programlisting>
<para>The first layer is used when the scale is greater than 1:100000, and
displays only the roads of type "highway" as black lines. The
<varname>FILTER</varname> option causes only roads of type "highway" to
be displayed.
</para>
<para>The second layer is used when the scale is less than 1:100000, and
will display highways as double-thick red lines, and other roads as
regular black lines.
</para>
<para>So, we have done a couple of interesting things using only mapserver
functionality, but our <varname>DATA</varname> SQL statement has remained
simple. Suppose that the name of the road is stored in another table (for
whatever reason) and we need to do a join to get it and label our roads.
</para>
<programlisting>LAYER
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM (SELECT roads.oid AS oid, roads.the_geom AS the_geom, road_names.name as name
FROM roads LEFT JOIN road_names ON roads.road_name_id = road_names.road_name_id) AS named_roads
USING UNIQUE oid USING SRID=-1"
MAXSCALE 20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS
LABEL
ANGLE auto
SIZE 8
COLOR 0 192 0
TYPE truetype
FONT arial
END
END
END</programlisting>
<para>This annotation layer adds green labels to all the roads when
the scale gets down to 1:20000 or less. It also demonstrates how to
use an SQL join in a <varname>DATA</varname> definition.
</para>
</sect2>
</sect1>
<sect1>
<title>Java Clients (JDBC)</title>
<para>Java clients can access PostGIS "geometry" objects in the
PostgreSQL database either directly as text representations or using the JDBC
extension objects bundled with PostGIS. In order to use the extension objects,
the "postgis.jar" file must be in your CLASSPATH along with the
"postgresql.jar" JDBC driver package.</para>
<programlisting>import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;
public class JavaGIS {
public static void main(String[] args)
{
java.sql.Connection conn;
try
{
/*
* Load the JDBC driver and establish a connection.
*/
Class.forName("org.postgresql.Driver");
String url = "jdbc:postgresql://localhost:5432/database";
conn = DriverManager.getConnection(url, "postgres", "");
/*
* Add the geometry types to the connection. Note that you
* must cast the connection to the pgsql-specific connection * implementation before calling the addDataType() method.
*/
((org.postgresql.Connection)conn).addDataType("geometry","org.postgis.PGgeometry");
((org.postgresql.Connection)conn).addDataType("box3d","org.postgis.PGbox3d");
/*
* Create a statement and execute a select query.
*/
Statement s = conn.createStatement();
ResultSet r = s.executeQuery("select AsText(geom) as geom,id from geomtable");
while( r.next() )
{
/*
* Retrieve the geometry as an object then cast it to the geometry type.
* Print things out.
*/
PGgeometry geom = (PGgeometry)r.getObject(1);
int id = r.getInt(2);
System.out.println("Row " + id + ":");
System.out.println(geom.toString());
}
s.close();
conn.close();
}
catch( Exception e )
{
e.printStackTrace();
}
}
}</programlisting>
<para>The "PGgeometry" object is a wrapper object which contains a
specific topological geometry object (subclasses of the abstract class
"Geometry") depending on the type: Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon.</para>
<programlisting>PGgeometry geom = (PGgeometry)r.getObject(1);
if( geom.getType() = Geometry.POLYGON )
{
Polygon pl = (Polygon)geom.getGeometry();
for( int r = 0; r &lt; pl.numRings(); r++ )
{
LinearRing rng = pl.getRing(r);
System.out.println("Ring: " + r);
for( int p = 0; p &lt; rng.numPoints(); p++ )
{
Point pt = rng.getPoint(p);
System.out.println("Point: " + p);
System.out.println(pt.toString());
}
}
}</programlisting>
<para>The JavaDoc for the extension objects provides a reference for the
various data accessor functions in the geometric objects.
</para>
</sect1>
<sect1>
<title> C Clients (libpq)</title>
<para>...</para>
<sect2>
<title>Text Cursors</title>
<para>...</para>
</sect2>
<sect2>
<title>Binary Cursors</title>
<para>...</para>
</sect2>
</sect1>
</chapter>
<chapter>
<title>PostGIS Reference</title>
<para>The functions given below are the ones which a user of PostGIS is
likely to need. There are other functions which are required support functions
to the PostGIS objects which are not of use to a general user.
</para>
<sect1>
<title>OpenGIS Functions</title>
<variablelist>
<varlistentry>
<term>AddGeometryColumn(varchar, varchar, varchar, integer, varchar, integer)</term>
<listitem>
<para>Syntax: AddGeometryColumn(&lt;db_name&gt;,
&lt;table_name&gt;, &lt;column_name&gt;, &lt;srid&gt;, &lt;type&gt;,
&lt;dimension&gt;). Adds a geometry column to an existing table of attributes.
The <varname>dbname</varname> is the name of the database instance.
The <varname>srid</varname> must be an integer value reference to an
entry in the SPATIAL_REF_SYS table. The <varname>type</varname> must
be an uppercase string corresponding to the geometry type, eg, 'POLYGON'
or 'MULTILINESTRING'.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DropGeometryColumn(varchar, varchar, varchar)</term>
<listitem>
<para>Syntax: DropGeometryColumn(&lt;db_name&gt;, &lt;table_name&gt;,
&lt;column_name&gt;). Remove a geometry column from a spatial table.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AsBinary(geometry)</term>
<listitem>
<para>Returns the geometry in the OGC "well-known-binary" format,
using the endian encoding of the server on which the database is
running. This is useful in binary cursors to pull data out of
the database without converting it to a string representation.
</para>
<para>OGC SPEC s2.1.1.1 - also see asBinary(<geometry>,'XDR') and asBinary(<geometry>,'NDR')
</listitem>
</varlistentry>
<varlistentry>
<term>Dimension(geometry)</term>
<listitem>
<para>The inherent dimension of this Geometry object, which must be less than or equal
to the coordinate dimension. OGC SPEC s2.1.1.1 - returns 0 for points, 1 for lines, 2 for polygons, and the largest dimension of the components of a GEOMETRYCOLLECTION.
</para>
<programlisting>select dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0)');
dimension
-----------
1</programlisting>
</listitem>
</varlistentry>
<varlistentry>
<term>isEmpty(geometry)</term>
<listitem>
<para>
Returns 1 (TRUE) if this Geometry is the empty geometry . If true, then this
Geometry represents the empty point set - i.e. GEOMETRYCOLLECTION(EMPTY).
</para>
<para>OGC SPEC s2.1.1.1 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>isSimple(geometry)</term>
<listitem>
<para>
Returns 1 (TRUE) if this Geometry has no anomalous geometric points, such as self
intersection or self tangency.
</para>
<para>Performed by the GEOS module</para>
<para>OGC SPEC s2.1.1.1 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>boundary(geometry)</term>
<listitem>
<para>
Returns the closure of the combinatorial boundary of this Geometry. The
combinatorial boundary is defined as described in section 3.12.3.2 of the OGC SPEC. Because the result of this function
is a closure, and hence topologically closed, the resulting boundary can be represented using
representational geometry primitives as discussed in the OGC SPEC, section 3.12.2.
</para>
<para>Performed by the GEOS module</para>
<para>OGC SPEC s2.1.1.1 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>equals(geometry)</term>
<listitem>
<para>
Returns 1 (TRUE) if this Geometry is <20>spatially equal<61> to
anotherGeometry. Use this for a 'better' answer than '='. equals ('LINESTRING(0 0, 10 10)','LINESTRING(0 0, 5 5, 10 10)') is true.
</para>
<para>Performed by the GEOS module</para>
<para>OGC SPEC s2.1.1.1 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>disjoint(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry is <20>spatially disjoint<6E> from anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 //s2.1.13.3 - a.Relate(b, <20>FF*FF****<2A>) </para>
</listitem>
</varlistentry>
<varlistentry>
<term>intersects(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry <20>spatially intersects<74> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 //s2.1.13.3 - Intersects(g1, g2 ) --> Not (Disjoint(g1, g2 )) </para>
</listitem>
</varlistentry>
<varlistentry>
<term>touches(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry <20>spatially touches<65> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3- a.Touches(b) -> (I(a) intersection I(b) = {empty set} ) and (a intersection b) not empty </para>
</listitem>
</varlistentry>
<varlistentry>
<term>crosses(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry <20>spatially crosses<65> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3 - a.Relate(b, <20>T*T******<2A>) </para>
</listitem>
</varlistentry>
<varlistentry>
<term>within(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry is <20>spatially within<69> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3 - a.Relate(b, <20>T*F**F***<2A>) </para>
</listitem>
</varlistentry>
<varlistentry>
<term>overlaps(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry is <20>spatially overlapping<6E> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>contains(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry is <20>spatially contains<6E> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3 - same as within(geometry,geometry)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>intersects(geometry,geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Geometry is <20>spatially intersects<74> anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3 - NOT disjoint(geometry,geometry)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>relate(geometry,geometry, intersectionPatternMatrix)</term>
<listitem>
<para>Returns 1 (TRUE) if this
Geometry is spatially related to anotherGeometry, by testing for intersections between the Interior,
Boundary and Exterior of the two geometries as specified by the values in the intersectionPatternMatrix.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para> NOTE: this is the "allowable" version that returns a boolean, not an integer.
<para>OGC SPEC s2.1.1.1 // s2.1.13.3 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>relate(geometry,geometry)</term>
<listitem>
<para> returns the DE-9IM (dimensionally extended nine-intersection matrix)
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para>not in OGC spec, but implied. see s2.1.13.2 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>buffer(geometry,double)</term>
<listitem>
<para> Returns a geometry that represents all points whose distance from
this Geometry is less than or equal to distance. Calculations are in the Spatial Reference System of this
Geometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>convexhull(geometry)</term>
<listitem>
<para> Returns a geometry that represents the convex hull of this Geometry.
</para>
<para>Performed by the GEOS module</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>intersection(geometry,geometry)</term>
<listitem>
<para> Returns a geometry that represents the point set
intersection of this Geometry with anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>geomunion(geometry,geometry)</term>
<listitem>
<para> Returns a geometry that represents the point set union of
this Geometry with anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para>NOTE: this is renamed from "union" because union is an SQL reserved word</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>difference(geometry,geometry)</term>
<listitem>
<para> Returns a geometry that represents the point set
difference of this Geometry with anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>difference(geometry,geometry)</term>
<listitem>
<para> Returns a geometry that represents the point set
symmetric difference of this Geometry with anotherGeometry.
</para>
<para>Performed by the GEOS module</para>
<para>Do not call with a GeometryCollection as an argument</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Envelope(geometry)</term>
<listitem>
<para>Returns a POLYGON representing the bounding box of the
geometry.
</para>
<para> OGC SPEC s2.1.1.1 - The minimum bounding box for this Geometry, returned as a Geometry. The
polygon is defined by the corner points of the bounding box ((MINX, MINY), (MAXX, MINY), (MAXX,
MAXY), (MINX, MAXY), (MINX, MINY)). </para><para>NOTE:PostGIS will add a Zmin/Zmax coordinate as well.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeometryType(geometry)</term>
<listitem>
<para>Returns the type of the geometry as a string. Eg: 'LINESTRING',
'POLYGON', 'MULTIPOINT', etc.
</para>
<para>
OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this
Geometry instance is a member. The name of the instantiable subtype of Geometry is returned as a string.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>X(geometry)</term>
<listitem>
<para>Find and return the X coordinate of the first point in the
geometry. Return NULL if there is no point in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Y(geometry)</term>
<listitem>
<para>Find and return the Y coordinate of the first point in the
geometry. Return NULL if there is no point in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Z(geometry)</term>
<listitem>
<para>Find and return the Z coordinate of the first point in the
geometry. Return NULL if there is no point in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>NumPoints(geometry)</term>
<listitem>
<para>Find and return the number of points in the first linestring
in the geometry. Return NULL if there is no linestring in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PointN(geometry,integer)</term>
<listitem>
<para>Return the N'th point in the first linestring in the
geometry. Return NULL if there is no linestring in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>ExteriorRing(geometry)</term>
<listitem>
<para>Return the exterior ring of the first polygon in the
geometry. Return NULL if there is no polygon in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>NumInteriorRings(geometry)</term>
<listitem>
<para>Return the number of interior rings of the first polygon in
the geometry. Return NULL if there is no polygon in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>InteriorRingN(geometry,integer)</term>
<listitem>
<para>Return the N'th interior ring of the first polygon in the
geometry. Return NULL if there is no polygon in the geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>IsClosed(geometry)</term>
<listitem>
<para>Returns true of the geometry start and
end points are coincident.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>IsRing(geometry)</term>
<listitem>
<para>Returns 1 (TRUE) if this Curve is closed (StartPoint ( ) = EndPoint ( )) and this Curve
is simple (does not pass through the same point more than once).
</para>
<para>performed by GEOS</para>
<para> OGC spec 2.1.5.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>NumGeometries(geometry)</term>
<listitem>
<para>If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of
geometries, otherwise return NULL.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeometryN(geometry,int)</term>
<listitem>
<para>Return the N'th geometry if the geometry is a
GEOMETRYCOLLECTION, MULTIPOINT, MULTILINESTRING or
MULTIPOLYGON. Otherwise, return NULL.
</para>
<para>0 is 1st geometry</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Distance(geometry,geometry)</term>
<listitem>
<para>Return the cartesian distance between two geometries
in projected units.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>AsText(geometry)</term>
<listitem>
<para>Return the Well-Known Text representation of the
geometry. For example: POLYGON(0 0,0 1,1 1,1 0,0 0)
</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>SRID(geometry)</term>
<listitem>
<para>Returns the integer SRID number of the spatial
reference system of the geometry.
</para>
<para>OGC SPEC s2.1.1.1</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeometryFromText(varchar, integer)</term>
<listitem>
<para>Syntax: GeometryFromText(&lt;geometry&gt;,&lt;SRID&gt;)
Convert a Well-Known Text representation of a geometry
into a geometry object.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeomFromText(varchar, integer)</term>
<listitem>
<para>As above. A synonym for GeometryFromText.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>SetSRID(geometry)</term>
<listitem>
<para>Set the SRID on a geometry to a particular integer
value. Useful in constructing bounding boxes for queries.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>EndPoint(geometry)</term>
<listitem>
<para>Returns the last point of the geometry as a point.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>StartPoint(geometry)</term>
<listitem>
<para>Returns the first point of the geometry as a point.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Centroid(geometry)</term>
<listitem>
<para>Returns the centroid of the geometry as a point.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1>
<title>Other Functions</title>
<variablelist>
<varlistentry>
<term>A &amp;&lt; B</term>
<listitem>
<para>The "&amp;&lt;" operator returns true if A's bounding box
overlaps or is to the left of B's bounding box.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A &amp;&gt; B</term>
<listitem>
<para>The "&amp;&gt;" operator returns true if A's bounding box
overlaps or is to the right of B's bounding box.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A &lt;&lt; B</term>
<listitem>
<para>The "&lt;&lt;" operator returns true if A's bounding box is
strictly to the left of B's bounding box.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A &gt;&gt; B</term>
<listitem>
<para>The "&gt;&gt;" operator returns true if A's bounding box is
strictly to the right of B's bounding box.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A ~= B</term>
<listitem>
<para>The "~=" operator is the "same as" operator. It tests actual
geometric equality of two features. So if A and B are the same feature,
vertex-by-vertex, the operator returns true.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A @ B</term>
<listitem>
<para>The "@" operator returns true if A's bounding box is
completely contained by B's bounding box.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A ~ B</term>
<listitem>
<para>The "~" operator returns true if A's bounding box
completely contains B's bounding box.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>A &amp;&amp; B</term>
<listitem>
<para>The "&amp;&amp;" operator is the "overlaps" operator. If A's
bounding boux overlaps B's bounding box the operator returns true.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>area2d(geometry)</term>
<listitem>
<para>Returns the area of the geometry if it is a polygon or
multi-polygon.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>area(geometry)</term>
<listitem>
<para>Returns the area of the geometry if it is a polygon or
multi-polygon. (same as area2(<polygon|multipolygon>)
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>asbinary(geometry,'NDR')</term>
<listitem>
<para>Returns the geometry in the OGC "well-known-binary" format,
using little-endian encoding. This is useful in binary cursors to pull data out
of the database without converting it to a string representation.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>isvalid(geometry)</term>
<listitem>
<para>returns true if this geometry is valid.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>asbinary(geometry,'XDR')</term>
<listitem>
<para>Returns the geometry in the OGC "well-known-binary" format,
using big-endian encoding. This is useful in binary cursors to pull data out of
the database without converting it to a string representation.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeomFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeometryFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PointFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a Point</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LineFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a Line</para>
</listitem>
</varlistentry>
<varlistentry>
<term>LinestringFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> from the conformance suite</para>
<para> Throws an error if the WKT is not a Line</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PolyFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a Polygon</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PolygonFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> from the conformance suite</para>
<para> Throws an error if the WKT is not a Polygon</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MPointFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a MULTIPOINT</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MLineFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a MULTILINESTRING</para>
</listitem>
</varlistentry>
<varlistentry>
<term>MPolyFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a MULTIPOLYGON</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeomCollFromText(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> Throws an error if the WKT is not a GEOMETRYCOLLECTION</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeomFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeometryFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
</listitem>
</varlistentry>
<varlistentry>
<term>PointFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a POINT </para>
</listitem>
</varlistentry>
<varlistentry>
<term>LineFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a LINESTRING </para>
</listitem>
</varlistentry>
<varlistentry>
<term>LinestringFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> from the conformance suite</para>
<para> throws an error if WKB is not a LINESTRING </para>
</listitem>
</varlistentry>
<varlistentry>
<term>PolyFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a POLYGON </para>
</listitem>
</varlistentry>
<varlistentry>
<term>PolygonFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> from the conformance suite</para>
<para> throws an error if WKB is not a POLYGON </para>
</listitem>
</varlistentry>
<varlistentry>
<term>MPointFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a MULTIPOINT </para>
</listitem>
</varlistentry>
<varlistentry>
<term>MLineFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a MULTILINESTRING </para>
</listitem>
</varlistentry>
<varlistentry>
<term>MPolyFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a MULTIPOLYGON </para>
</listitem>
</varlistentry>
<varlistentry>
<term>GeomCollFromWKB(text,[&lt;srid&gt;])</term>
<listitem>
<para>Makes a Geometry from WKB with the given SRID. If SRID is not give, it defaults to -1.</para>
<para> OGC SPEC 3.2.6.2 - option SRID is from the conformance suite</para>
<para> throws an error if WKB is not a GEOMETRYCOLLECTION </para>
</listitem>
</varlistentry>
<varlistentry>
<term>PointOnSurface(geometry)</term>
<listitem>
<para>Return a Point guaranteed to lie on the surface</para>
<para>Implemented using GEOS</para>
<para> OGC SPEC 3.2.14.2 and 3.2.18.2 - </para>
</listitem>
</varlistentry>
<varlistentry>
<term>box3d(geometry)</term>
<listitem>
<para>Returns a BOX3D representing the maximum extents of the
geometry.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>collect(geometry)</term>
<listitem>
<para>This function returns a GEOMETRYCOLLECTION object from a set
of geometries. The collect() function is an "aggregate" function in
the terminology of PostgreSQL. That means that it operators on
lists of data, in the same way the sum() and mean() functions do.
For example, "SELECT COLLECT(GEOM) FROM GEOMTABLE GROUP BY ATTRCOLUMN"
will return a separate GEOMETRYCOLLECTION for each distinct value
of ATTRCOLUMN.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>distance_spheroid(point, point, spheroid)</term>
<listitem>
<para>Returns linear distance between two lat/lon points given a
particular spheroid. See the explanation of spheroids given for
<link linkend="length_spheroid">length_spheroid()</link>.
Currently only implemented for points.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>extent(geometry)</term>
<listitem>
<para>The extent() function is an "aggregate" function in the
terminology of PostgreSQL. That means that it operators on lists of data, in
the same way the sum() and mean() functions do. For example, "SELECT
EXTENT(GEOM) FROM GEOMTABLE" will return a BOX3D giving the maximum extend of
all features in the table. Similarly, "SELECT EXTENT(GEOM) FROM GEOMTABLE GROUP
BY CATEGORY" will return one extent result for each category.</para>
</listitem>
</varlistentry><varlistentry><term>find_srid(varchar,varchar,varchar)</term><listitem><para>The syntax is find_srid(&lt;db/schema&gt;, &lt;table&gt;, &lt;column&gt;) and the function returns the integer SRID of the specified column by searching through the GEOMETRY_COLUMNS table. If the geometry column has not been properly added with the AddGeometryColumns() function, this function will not work either.</para></listitem></varlistentry>
<varlistentry>
<term>force_collection(geometry)</term>
<listitem>
<para>Converts the geometry into a GEOMETRYCOLLECTION. This is
useful for simplifying the WKB representation.</para>
</listitem>
</varlistentry>
<varlistentry id="force_2d">
<term>force_2d(geometry)</term>
<listitem>
<para>Forces the geometries into a "2-dimensional mode" so that all
output representations will only have the X and Y coordinates. This is useful
for force OGC-compliant output (since OGC only specifies 2-D
geometries).</para>
</listitem>
</varlistentry>
<varlistentry id="force_3d">
<term>force_3d(geometry)</term>
<listitem>
<para>Forces the geometries into a "3-dimensional mode" so that all
output representations will have the X, Y and Z coordinates.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>length2d(geometry)</term>
<listitem>
<para>Returns the 2-dimensional length of the geometry if it is a
linestring or multi-linestring.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>length(geometry)</term>
<listitem>
<para>The length of this Curve in its associated spatial reference.</para>
<para>synonym for length2d()</para>
<para>OGC SPEC 2.1.5.1 </para>
</listitem>
</varlistentry>
<varlistentry>
<term>length3d(geometry)</term>
<listitem>
<para>Returns the 3-dimensional length of the geometry if it is a
linestring or multi-linestring.</para>
</listitem>
</varlistentry>
<varlistentry id="length_spheroid">
<term>length_spheroid(geometry,spheroid)</term>
<listitem>
<para>Calculates the length of of a geometry on an elipsoid. This
is useful if the coordinates of the geometry are in latitude/longitude and a
length is desired without reprojection. The elipsoid is a separate database
type and can be constructed as follows:
</para>
<literallayout>SPHEROID[&lt;NAME&gt;,&lt;SEMI-MAJOR AXIS&gt;,&lt;INVERSE FLATTENING&gt;]</literallayout>
<para>Eg:</para>
<literallayout>SPHEROID["GRS_1980",6378137,298.257222101]</literallayout>
<para>An example calculation might look like this: </para>
<literallayout>SELECT
length_spheroid(
geometry_column,
'SPHEROID["GRS_1980",6378137,298.257222101]'
)
FROM geometry_table;</literallayout>
</listitem>
</varlistentry>
<varlistentry>
<term>length3d_spheroid(geometry,spheroid)</term>
<listitem>
<para>Calculates the length of of a geometry on an elipsoid, taking
the elevation into account. This is just like length_spheroid except vertical
coordinates (expressed in the same units as the spheroid axes) are used to
calculate the extra distance vertical displacement adds.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>max_distance(linestring,linestring)</term>
<listitem>
<para>Returns the largest distance between two line strings.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>mem_size(geometry)</term>
<listitem>
<para>Returns the amount of space (in bytes) the geometry
takes.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>npoints(geometry)</term>
<listitem>
<para>Returns the number of points in the geometry.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>nrings(geometry)</term>
<listitem>
<para>If the geometry is a polygon or multi-polygon returns the
number of rings.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>numb_sub_objects(geometry)</term>
<listitem>
<para>Returns the number of objects stored in the geometry. This is
useful for MULTI-geometries and GEOMETRYCOLLECTIONs.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>perimeter2d(geometry)</term>
<listitem>
<para>Returns the 2-dimensional perimeter of the geometry, if it is
a polygon or multi-polygon.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>perimeter3d(geometry)</term>
<listitem>
<para>Returns the 3-dimensional perimeter of the geometry, if it is
a polygon or multi-polygon.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>point_inside_circle(geometry,float,float,float)</term>
<listitem>
<para>The syntax for this functions is
point_inside_circle(&lt;geometry&gt;,&lt;circle_center_x&gt;,&lt;circle_center_y&gt;,&lt;radius&gt;).
Returns the true if the geometry is a point and is inside the circle. Returns
false otherwise.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>postgis_version()</term>
<listitem>
<para>Returns the version number of the PostGIS functions
installed in this database.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>summary(geometry)</term>
<listitem>
<para>Returns a text summary of the contents of the
geometry.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>transform(geometry,integer)</term>
<listitem>
<para>Returns a new geometry with its coordinates transformed to the SRID referenced by the integer parameter. The destination SRID must exist in the SPATIAL_REF_SYS table.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>translate(geometry,float8,float8,float8)</term>
<listitem>
<para>Translates the geometry to a new location using the numeric
parameters as offsets. Ie: translate(geom,X,Y,Z).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>truly_inside(geometryA,geometryB)</term>
<listitem>
<para>Returns true if any part of B is within the bounding box of
A.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>xmin(box3d) ymin(box3d) zmin(box3d)</term>
<listitem>
<para>Returns the requested minima of a bounding box.</para>
</listitem>
</varlistentry><varlistentry>
<term>xmax(box3d) ymax(box3d) zmax(box3d)</term>
<listitem>
<para>Returns the requested maxima of a bounding box.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
</chapter>
</book>