postgis/doc/reference_measure.xml

3270 lines
109 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8"?>
<sect1 id="Spatial_Relationships_Measurements">
<title>Spatial Relationships and Measurements</title>
<refentry id="ST_Area">
<refnamediv>
<refname>ST_Area</refname>
<refpurpose>Returns the area of the surface if it is a polygon or
multi-polygon. For "geometry" type area is in SRID units. For "geography" area is in square meters.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Area</function></funcdef>
<paramdef><type>geometry </type><parameter>g1</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Area</function></funcdef>
<paramdef><type>geography </type><parameter>g1</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Area</function></funcdef>
<paramdef><type>geography </type><parameter>g1</parameter></paramdef>
<paramdef><type>boolean </type><parameter>use_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the area of the geometry if it is a polygon or
multi-polygon. Return the area measurement of an ST_Surface or
ST_MultiSurface value. For geometry Area is in the units of the srid. For geography area is in square meters and defaults to measuring about the spheroid of the geography (currently only WGS84).
To measure around the faster but less accurate sphere -- ST_Area(geog,false).
</para>
<para>&sfs_compliant;</para>
<para>&sqlmm_compliant; SQL-MM 3: 8.1.2, 9.5.3</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters.
Note this is in square feet because 2249 is
Mass State Plane Feet </para>
<programlisting>
SELECT ST_Area(the_geom) As sqft, ST_Area(the_geom)*POWER(0.3048,2) As sqm
FROM (SELECT
ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))',2249) ) As foo(the_geom);
sqft | sqm
---------+-------------
928.625 | 86.27208552
</programlisting>
<para>Return area square feet and transform to Massachusetts state plane meters (26986) to get square meters.
Note this is in square feet because 2249 is
Mass State Plane Feet and transformed area is in square meters since 26986 is state plane mass meters </para>
<programlisting>
SELECT ST_Area(the_geom) As sqft, ST_Area(ST_Transform(the_geom,26986)) As sqm
FROM (SELECT
ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))',2249) ) As foo(the_geom);
sqft | sqm
---------+------------------
928.625 | 86.2724304199219
</programlisting>
<para>Return area square feet and square meters using Geography data type. Note that we transform to our geometry to geography
(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters.
This is just for demonstration to compare. Normally your table will be stored in geography data type already.</para>
<programlisting>
SELECT ST_Area(the_geog)/POWER(0.3048,2) As sqft_spheroid, ST_Area(the_geog,false)/POWER(0.3048,2) As sqft_sphere, ST_Area(the_geog) As sqm_spheroid
FROM (SELECT
geography(
ST_Transform(
ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416))',
2249
) ,4326
)
)
) As foo(the_geog);
sqft_spheroid | sqft_sphere | sqm_spheroid
-----------------+------------------+------------------
928.684405217197 | 927.186481558724 | 86.2776044452694
--if your data is in geography already
SELECT ST_Area(the_geog)/POWER(0.3048,2) As sqft, ST_Area(the_geog) As sqm
FROM somegeogtable;
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeomFromText" />, <xref linkend="ST_GeographyFromText" />, <xref linkend="ST_SetSRID" />,<xref linkend="ST_Transform" /></para>
</refsection>
</refentry>
<refentry id="ST_Azimuth">
<refnamediv>
<refname>ST_Azimuth</refname>
<refpurpose>Returns the angle in radians from the horizontal of the vector defined by pointA and pointB</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Azimuth</function></funcdef>
<paramdef><type>geometry </type><parameter>pointA</parameter></paramdef>
<paramdef><type>geometry </type><parameter>pointB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the azimuth of the segment defined by the given
Point geometries, or NULL if the two points are coincident. Return
value is in radians.</para>
<para>The Azimuth is mathematical concept defined as the angle, in this case measured in radian, between a reference plane
and a point</para>
<para>Availability: 1.1.0</para>
<para>Azimuth is especially useful in conjunction with ST_Translate for shifting an object along its perpendicular axis. See
upgis_lineshift <ulink url="http://postgis.refractions.net/support/wiki/index.php?plpgsqlfunctions">Plpgsqlfunctions PostGIS wiki section</ulink> for example of this.</para>
</refsection>
<refsection>
<title>Examples</title>
<para>--Azimuth in degrees </para>
<programlisting>
SELECT ST_Azimuth(ST_MakePoint(1,2), ST_MakePoint(3,4))/(2*pi())*360 as degAz,
ST_Azimuth(ST_MakePoint(3,4), ST_MakePoint(1,2))/(2*pi())*360 As degAzrev
degaz degazrev
------ ---------
45 225
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_MakePoint" />, <xref linkend="ST_Translate" /></para>
</refsection>
</refentry>
<refentry id="ST_Centroid">
<refnamediv>
<refname>ST_Centroid</refname>
<refpurpose>Returns the geometric center of a geometry.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_Centroid</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Computes the geometric center of a geometry, or equivalently,
the center of mass of the geometry as a <varname>POINT</varname>. For
[<varname>MULTI</varname>]<varname>POINT</varname>s, this is computed
as the arithmetric mean of the input coordinates. For
[<varname>MULTI</varname>]<varname>LINESTRING</varname>s, this is
computed as the weighted length of each line segment. For
[<varname>MULTI</varname>]<varname>POLYGON</varname>s, "weight" is
thought in terms of area. If an empty geometry is supplied, an empty
<varname>GEOMETRYCOLLECTION</varname> is returned. If
<varname>NULL</varname> is supplied, <varname>NULL</varname> is
returned.</para>
<para>The centroid is equal to the centroid of the set of component
Geometries of highest dimension (since the lower-dimension geometries
contribute zero "weight" to the centroid).</para>
<note><para>Computation will be more accurate if performed by the GEOS
module (enabled at compile time).</para></note>
<para>&sfs_compliant;</para>
<para>&sqlmm_compliant; SQL-MM 3: 8.1.4, 9.5.5</para>
</refsection>
<refsection>
<title>Examples</title>
<para>In each of the following illustrations, the blue dot represents
the centroid of the source geometry.</para>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_centroid01.png" />
</imageobject>
<caption><para>Centroid of a
<varname>MULTIPOINT</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_centroid02.png" />
</imageobject>
<caption><para>Centroid of a
<varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_centroid03.png" />
</imageobject>
<caption><para>Centroid of a
<varname>POLYGON</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_centroid04.png" />
</imageobject>
<caption><para>Centroid of a
<varname>GEOMETRYCOLLECTION</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<programlisting>SELECT ST_AsText(ST_Centroid('MULTIPOINT ( -1 0, -1 2, -1 3, -1 4, -1 7, 0 1, 0 3, 1 1, 2 0, 6 0, 7 8, 9 8, 10 6 )'));
st_astext
------------------------------------------
POINT(2.30769230769231 3.30769230769231)
(1 row)</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_PointOnSurface" /></para>
</refsection>
</refentry>
<refentry id="ST_Contains">
<refnamediv>
<refname>ST_Contains</refname>
<refpurpose>Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Contains</function></funcdef>
<paramdef><type>geometry </type>
<parameter>geomA</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>geomB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Geometry A contains Geometry B if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.
An important subtlety of this definition is that A does not contain its boundary, but A does contain itself. Contrast that to <xref linkend="ST_ContainsProperly" /> where geometry
A does not Contain Properly itself.</para>
<para>Returns TRUE if geometry B is completely inside geometry A. For this function to make
sense, the source geometries must both be of the same coordinate projection,
having the same SRID. ST_Contains is the inverse of ST_Within. So ST_Contains(A,B) implies ST_Within(B,A) except in the case of
invalid geometries where the result is always false regardless or not defined.</para>
<para>Performed by the GEOS module</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<important>
<para>Do not use this function with invalid geometries. You will get unexpected results.</para>
</important>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function
_ST_Contains.</para>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
<para>&sfs_compliant; s2.1.1.2 // s2.1.13.3
- same as within(geometry B, geometry A)</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.31</para>
<para>There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious.
For details check out <ulink url="http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html">Subtleties of OGC Covers, Contains, Within</ulink></para>
</refsection>
<refsection>
<title>Examples</title>
<para>The <function>ST_Contains</function> predicate returns <varname>TRUE</varname> in all the following illustrations.</para>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_contains01.png" />
</imageobject>
<caption><para><varname>LINESTRING</varname> / <varname>MULTIPOINT</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_contains02.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>POINT</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_contains03.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_contains04.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>POLYGON</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>The <function>ST_Contains</function> predicate returns <varname>FALSE</varname> in all the following illustrations.</para>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_contains05.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>MULTIPOINT</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_contains06.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<programlisting>
-- A circle within a circle
SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
ST_Contains(bigc,smallc) As bigcontainssmall,
ST_Contains(bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
-- Result
smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
f | t | t | t | t | f
-- Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
FROM (VALUES ( ST_Buffer(ST_Point(1,1), 5,1) ),
( ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1) ) ),
( ST_Point(1,1) )
) As foo(geomA);
geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Boundary" />, <xref linkend="ST_ContainsProperly" />, <xref linkend="ST_Covers" />,<xref linkend="ST_CoveredBy" />, <xref linkend="ST_Equals"/>,<xref linkend="ST_Within"/></para>
</refsection>
</refentry>
<refentry id="ST_ContainsProperly">
<refnamediv>
<refname>ST_ContainsProperly</refname>
<refpurpose>Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_ContainsProperly</function></funcdef>
<paramdef><type>geometry </type>
<parameter>geomA</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>geomB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns true if B intersects the interior of A but not the boundary (or exterior).</para>
<para>A does not contain properly itself, but does contain itself.</para>
<para>Every point of the other geometry is a point of this geometry's interior. The DE-9IM Intersection Matrix for the two geometries matches
[T**FF*FF*] used in <xref linkend="ST_Relate" /></para>
<note>
<para>From JTS docs slightly reworded: The advantage to using this predicate over <xref linkend="ST_Contains" /> and <xref linkend="ST_Intersects" /> is that it can be computed
efficiently, with no need to compute topology at individual points.</para>
<para>
An example use case for this predicate is computing the intersections
of a set of geometries with a large polygonal geometry.
Since intersection is a fairly slow operation, it can be more efficient
to use containsProperly to filter out test geometries which lie
wholly inside the area. In these cases the intersection is
known a priori to be exactly the original test geometry.
</para>
</note>
<para>Availability: 1.4.0 - requires GEOS &gt;= 3.1.0.</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<important>
<para>Do not use this function with invalid geometries. You will get unexpected results.</para>
</important>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function
_ST_ContainsProperly.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
--a circle within a circle
SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,
ST_ContainsProperly(bigc,smallc) As bigcontainspropsmall,
ST_ContainsProperly(bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,
ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_ContainsProperly(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
--Result
smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
f | t | f | t | t | f
--example demonstrating difference between contains and contains properly
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
FROM (VALUES ( ST_Buffer(ST_Point(1,1), 5,1) ),
( ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1) ) ),
( ST_Point(1,1) )
) As foo(geomA);
geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeometryType" />, <xref linkend="ST_Boundary" />, <xref linkend="ST_Contains" />, <xref linkend="ST_Covers" />,<xref linkend="ST_CoveredBy" />, <xref linkend="ST_Equals"/>,<xref linkend="ST_Relate" />,<xref linkend="ST_Within"/></para>
</refsection>
</refentry>
<refentry id="ST_Covers">
<refnamediv>
<refname>ST_Covers</refname>
<refpurpose>Returns 1 (TRUE) if no point in Geometry B is outside
Geometry A</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Covers</function></funcdef>
<paramdef><type>geometry </type>
<parameter>geomA</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>geomB</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>boolean <function>ST_Covers</function></funcdef>
<paramdef><type>geography </type>
<parameter>geogpolyA</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>geogpointB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns 1 (TRUE) if no point in Geometry/Geography B is outside
Geometry/Geography A</para>
<para>Performed by the GEOS module</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<important>
<para>For geography only Polygon covers point is supported.</para>
</important>
<important>
<para>Do not use this function with invalid geometries. You will get unexpected results.</para>
</important>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function
_ST_Covers.</para>
<para>Availability: 1.2.2 - requires GEOS &gt;= 3.0</para>
<para>Availability: 1.5 - support for geography was introduced. </para>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
<para>Not an OGC standard, but Oracle has it too.</para>
<para>There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious.
For details check out <ulink url="http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html">Subtleties of OGC Covers, Contains, Within</ulink></para>
</refsection>
<refsection>
<title>Examples</title>
<para> Geometry example </para>
<programlisting>
--a circle covering a circle
SELECT ST_Covers(smallc,smallc) As smallinsmall,
ST_Covers(smallc, bigc) As smallcoversbig,
ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
--Result
smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
--------------+----------------+-------------------+---------------------
t | f | t | f
(1 row) </programlisting>
<para>Geeography Example</para>
<programlisting>
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Contains"/>, <xref linkend="ST_CoveredBy" />, <xref linkend="ST_Within"/></para>
</refsection>
</refentry>
<refentry id="ST_CoveredBy">
<refnamediv>
<refname>ST_CoveredBy</refname>
<refpurpose>Returns 1 (TRUE) if no point in Geometry A is outside
Geometry B</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_CoveredBy</function></funcdef>
<paramdef><type>geometry </type>
<parameter>geomA</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>geomB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns 1 (TRUE) if no point in Geometry A is outside
Geometry B</para>
<para>Performed by the GEOS module</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<important>
<para>Do not use this function with invalid geometries. You will get unexpected results.</para>
</important>
<para>Availability: 1.2.2 - requires GEOS &gt;= 3.0</para>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function
_ST_CoveredBy.</para>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
<para>Not an OGC standard, but Oracle has it too.</para>
<para>There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious.
For details check out <ulink url="http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html">Subtleties of OGC Covers, Contains, Within</ulink></para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
--a circle coveredby a circle
SELECT ST_CoveredBy(smallc,smallc) As smallinsmall,
ST_CoveredBy(smallc, bigc) As smallcoveredbybig,
ST_CoveredBy(ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig,
ST_Within(ST_ExteriorRing(bigc),bigc) As exeriorwithinbig
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
--Result
smallinsmall | smallcoveredbybig | exteriorcoveredbybig | exeriorwithinbig
--------------+-------------------+----------------------+------------------
t | t | t | f
(1 row) </programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Contains"/>, <xref linkend="ST_Covers" />, <xref linkend="ST_ExteriorRing"/>, <xref linkend="ST_Within"/></para>
</refsection>
</refentry>
<refentry id="ST_Crosses">
<refnamediv>
<refname>ST_Crosses</refname>
<refpurpose>Returns <varname>TRUE</varname> if the supplied geometries have some, but not all,
interior points in common.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Crosses</function></funcdef>
<paramdef><type>geometry </type><parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type><parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para><function>ST_Crosses</function> takes two geometry objects and
returns <varname>TRUE</varname> if their intersection "spatially cross", that is, the
geometries have some, but not all interior points in common. The
intersection of the interiors of the geometries must not be the empty
set and must have a dimensionality less than the the maximum dimension
of the two input geometries. Additionally, the intersection of the two
geometries must not equal either of the source geometries. Otherwise, it
returns <varname>FALSE</varname>.</para>
<para>In mathematical terms, this is expressed as:</para>
<remark>TODO: Insert appropriate MathML markup here or use a gif.
Simple HTML markup does not work well in both IE and Firefox.</remark>
<informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_crosses-math.gif" />
</imageobject>
</mediaobject>
</informalfigure>
<para>The DE-9IM Intersection Matrix for the two geometries is:</para>
<itemizedlist>
<listitem>
<para><markup>T*T******</markup> (for Point/Line, Point/Area, and
Line/Area situations)</para>
</listitem>
<listitem>
<para><markup>T*****T**</markup> (for Line/Point, Area/Point, and
Area/Line situations)</para>
</listitem>
<listitem>
<para><markup>0********</markup> (for Line/Line situations)</para>
</listitem>
</itemizedlist>
<para>For any other combination of dimensions this predicate returns
false.</para>
<para>The OpenGIS Simple Features Specification defines this predicate
only for Point/Line, Point/Area, Line/Line, and Line/Area situations.
JTS / GEOS extends the definition to apply to Line/Point, Area/Point and
Area/Line situations as well. This makes the relation
symmetric.</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on the
geometries.</para>
</note>
<para>&sfs_compliant; s2.1.13.3</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.29</para>
</refsection>
<refsection>
<title>Examples</title>
<para>The following illustrations all return <varname>TRUE</varname>.</para>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_crosses01.png" />
</imageobject>
<caption><para><varname>MULTIPOINT</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_crosses02.png" />
</imageobject>
<caption><para><varname>MULTIPOINT</varname> / <varname>POLYGON</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_crosses03.png" />
</imageobject>
<caption><para><varname>LINESTRING</varname> / <varname>POLYGON</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_crosses04.png" />
</imageobject>
<caption><para><varname>LINESTRING</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>Consider a situation where a user has two tables: a table of roads
and a table of highways.</para>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para> <informalexample>
<programlisting>CREATE TABLE roads (
id serial NOT NULL,
the_geom geometry,
CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);</programlisting>
</informalexample> </para></entry>
<entry><para> <informalexample>
<programlisting>CREATE TABLE highways (
id serial NOT NULL,
the_gem geometry,
CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);</programlisting>
</informalexample> </para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<para>To determine a list of roads that cross a highway, use a query
similiar to:</para>
<para><informalexample>
<programlisting>SELECT roads.id
FROM roads, highways
WHERE ST_Crosses(roads.the_geom, highways.the_geom);</programlisting>
</informalexample></para>
</refsection>
</refentry>
<refentry id="ST_LineCrossingDirection">
<refnamediv>
<refname>ST_LineCrossingDirection</refname>
<refpurpose>Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>integer <function>ST_LineCrossingDirection</function></funcdef>
<paramdef><type>geometry </type> <parameter>linestringA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>linestringB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing. This is only supported for <varname>LINESTRING</varname></para>
<para>Definition of integer constants is as follows:
<itemizedlist>
<listitem>
<para> 0: LINE NO CROSS</para>
</listitem>
<listitem>
<para>-1: LINE CROSS LEFT</para>
</listitem>
<listitem>
<para> 1: LINE CROSS RIGHT</para>
</listitem>
<listitem>
<para>-2: LINE MULTICROSS END LEFT</para>
</listitem>
<listitem>
<para> 2: LINE MULTICROSS END RIGHT</para>
</listitem>
<listitem>
<para>-3: LINE MULTICROSS END SAME FIRST LEFT</para>
</listitem>
<listitem>
<para> 3: LINE MULTICROSS END SAME FIRST RIGHT</para>
</listitem>
</itemizedlist>
</para>
<para>Availability: 1.4</para>
<!-- optionally mention that this function uses indexes if appropriate -->
</refsection>
<refsection>
<title>Examples</title>
<!-- TODO: We really badly need diagrams here and more examples -->
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_linecrossingdirection01.png" />
</imageobject>
<caption><para>Line 1 (green), Line 2 ball is start point,
triangle are end points. Query below. </para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (
SELECT
ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
ST_GeomFromText('LINESTRING(171 154,20 140,71 74,161 53)') As line2
) As foo;
l1_cross_l2 | l2_cross_l1
-------------+-------------
3 | -3
</programlisting>
</para>
</entry>
<entry>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_linecrossingdirection02.png" />
</imageobject>
<caption><para>Line 1 (green), Line 2 (blue) ball is start point,
triangle are end points. Query below.</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (
SELECT
ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
ST_GeomFromText('LINESTRING (171 154, 20 140, 71 74, 2.99 90.16)') As line2
) As foo;
l1_cross_l2 | l2_cross_l1
-------------+-------------
2 | -2
</programlisting>
</para>
</entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_linecrossingdirection03.png" />
</imageobject>
<caption><para>Line 1 (green), Line 2 (blue) ball is start point,
triangle are end points. Query below. </para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT
ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (
SELECT
ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
ST_GeomFromText('LINESTRING (20 140, 71 74, 161 53)') As line2
) As foo;
l1_cross_l2 | l2_cross_l1
-------------+-------------
-1 | 1
</programlisting>
</para>
</entry>
<entry>
<para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_linecrossingdirection04.png" />
</imageobject>
<caption><para>Line 1 (green), Line 2 (blue) ball is start point,
triangle are end points. Query below.</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (SELECT
ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
ST_GeomFromText('LINESTRING(2.99 90.16,71 74,20 140,171 154)') As line2
) As foo;
l1_cross_l2 | l2_cross_l1
-------------+-------------
-2 | 2
</programlisting>
</para>
</entry>
</row>
</tbody>
</tgroup>
</informaltable>
<programlisting>
SELECT s1.gid, s2.gid, ST_LineCrossingDirection(s1.the_geom, s2.the_geom)
FROM streets s1 CROSS JOIN streets s2 ON (s1.gid != s2.gid AND s1.the_geom &amp;&amp; s2.the_geom )
WHERE ST_CrossingDirection(s1.the_geom, s2.the_geom) > 0;
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Crosses" /></para>
</refsection>
</refentry>
<refentry id="ST_Disjoint">
<refnamediv>
<refname>ST_Disjoint</refname>
<refpurpose>Returns TRUE if the Geometries do not "spatially
intersect" - if they do not share any space together.
</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Disjoint</function></funcdef>
<paramdef>
<type>geometry</type>
<parameter>A</parameter>
</paramdef>
<paramdef>
<type>geometry</type>
<parameter>B</parameter>
</paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned
returns true, then the geometries are not spatially disjoint.
Disjoint implies false for spatial intersection.</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<para>Performed by the GEOS module</para>
<note>
<para>This function call does not use indexes</para>
</note>
<note>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
</note>
<para>&sfs_compliant; s2.1.1.2 //s2.1.13.3
- a.Relate(b, 'FF*FF****')</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.26</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_Disjoint('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
st_disjoint
---------------
t
(1 row)
SELECT ST_Disjoint('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry);
st_disjoint
---------------
f
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Intersects"/>ST_Intersects</para>
</refsection>
</refentry>
<refentry id="ST_Distance">
<refnamediv>
<refname>ST_Distance</refname>
<refpurpose>For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two geometries in
projected units. For geography type defaults to return spheroidal minimum distance between two geographies in meters.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Distance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Distance</function></funcdef>
<paramdef><type>geography </type>
<parameter>gg1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>gg2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Distance</function></funcdef>
<paramdef><type>geography </type>
<parameter>gg1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>gg2</parameter></paramdef>
<paramdef><type>boolean </type>
<parameter>use_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>For geometry type returns the 2-dimensional minimum cartesian distance between two geometries in
projected units (spatial ref units). For geography type defaults to return the minimum distance around WGS 84 spheroid between two geographies in meters. Pass in
false to return answer in sphere instead of spheroid.</para>
<para>&sfs_compliant;</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.23</para>
<para>Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
--Geometry example - units in planar degrees 4326 is WGS 84 long lat unit=degrees
SELECT ST_Distance(
ST_GeomFromText('POINT(-72.1235 42.3521)',4326),
ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326)
);
st_distance
-----------------
0.00150567726382282
-- Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)
SELECT ST_Distance(
ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),26986),
ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),26986)
);
st_distance
-----------------
123.797937878454
-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)
SELECT ST_Distance(
ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),2163),
ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),2163)
);
st_distance
------------------
126.664256056812
-- Geography example -- same but note units in meters - use sphere for slightly faster less accurate
SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT
ST_GeographyFromText('SRID=4326;POINT(-72.1235 42.3521)') As gg1,
ST_GeographyFromText('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)') As gg2
) As foo ;
spheroid_dist | sphere_dist
------------------+------------------
123.802076746848 | 123.475736916397
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_DWithin"/>, <xref linkend="ST_Distance_Sphere"/>, <xref linkend="ST_Distance_Spheroid"/>, <xref linkend="ST_MaxDistance" />, <xref linkend="ST_Transform" /></para>
</refsection>
</refentry>
<refentry id="ST_HausdorffDistance">
<refnamediv>
<refname>ST_HausdorffDistance</refname>
<refpurpose>Returns the Hausdorff distance between two geometries. Basically a measure of how similar or dissimilar 2 geometries are. Units are in the units of the spatial
reference system of the geometries.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_HausdorffDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_HausdorffDistance</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
<paramdef><type>float</type>
<parameter>densifyFrac</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Implements algorithm for computing a distance metric which can be thought of as the "Discrete Hausdorff Distance".
This is the Hausdorff distance restricted to discrete points for one of the geometries. <ulink url="http://en.wikipedia.org/wiki/Hausdorff_distance">Wikipedia article on Hausdorff distance</ulink>
<ulink url="http://lin-ear-th-inking.blogspot.com/2009/01/computing-geometric-similarity.html">Martin Davis note on how Hausdorff Distance calculation was used to prove correctness of the CascadePolygonUnion approach.</ulink></para>
<para>
When densifyFrac is specified, this function performs a segment densification before computing the discrete hausdorff distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.
</para>
<note>
<para>
The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.
</para>
</note>
<note>
<para>
This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is correct for a large subset of useful cases.
One important part of this subset is Linestrings that are roughly parallel to each other, and roughly equal in length. This is a useful metric for line matching.
</para>
</note>
<para>Availability: 1.5.0 - requires GEOS &gt;= 3.2.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>postgis=# SELECT st_HausdorffDistance(
'LINESTRING (0 0, 2 0)'::geometry,
'MULTIPOINT (0 1, 1 0, 2 1)'::geometry);
st_hausdorffdistance
----------------------
1
(1 row)
</programlisting>
<programlisting>postgis=# SELECT st_hausdorffdistance('LINESTRING (130 0, 0 0, 0 150)'::geometry, 'LINESTRING (10 10, 10 150, 130 10)'::geometry, 0.5);
st_hausdorffdistance
----------------------
70
(1 row)
</programlisting>
</refsection>
</refentry>
<refentry id="ST_MaxDistance">
<refnamediv>
<refname>ST_MaxDistance</refname>
<refpurpose>Returns the 2-dimensional largest distance between two geometries in
projected units.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_MaxDistance</function></funcdef>
<paramdef><type>geometry </type> <parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Some useful description here.</para>
<!-- optionally mention that this function uses indexes if appropriate -->
<note>
<para>Returns the 2-dimensional maximum distance between two linestrings in
projected units. If g1 and g2 is the same geometry the function will return the distance between
the two vertices most far from each other in that geometry.</para>
</note>
<para>Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
st_maxdistance
-----------------
2
(1 row)
postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING ( 2 2, 2 2 )'::geometry);
st_maxdistance
------------------
2.82842712474619
(1 row)</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_LongestLine"/></para>
</refsection>
</refentry>
<refentry id="ST_ShortestLine">
<refnamediv>
<refname>ST_ShortestLine</refname>
<refpurpose>Returns the 2-dimensional shortest line between two geometries</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_ShortestLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional shortest line between two geometries. The function will
only return the first shortest line if more than one, that the function finds.
If g1 and g2 intersects in just one point the function will return a line with both start
and end in that intersection-point.
If g1 and g2 are intersecting with more than one point the function will return a line with start
and end in the same point but it can be any of the intersecting points.
The line returned will always start in g1 and end in g2.
The length of the line this function returns will always be the same as st_distance returns for g1 and g2.
</para>
<para>Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_shortestline01.png" />
</imageobject>
<caption><para>Shortest line between point and linestring</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText(
ST_ShortestLine('POINT(100 100)'::geometry,
'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
) As sline;
sline
-----------------
LINESTRING(100 100,73.0769230769231 115.384615384615)
</programlisting>
</para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_shortestline02.png" />
</imageobject>
<caption><para>shortest line between polygon and polygon</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText(
ST_ShortestLine(
ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),
ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)
) As slinewkt;
LINESTRING(140.752120669087 125.695053378061,121.111404660392 153.370607753949)
</programlisting>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_LongestLine"/>, <xref linkend="ST_ShortestLine"/>, <xref linkend="ST_MaxDistance"/></para>
</refsection>
</refentry>
<refentry id="ST_LongestLine">
<refnamediv>
<refname>ST_LongestLine</refname>
<refpurpose>Returns the 2-dimensional longest line points of two geometries.
The function will only return the first longest line if more than one, that the function finds.
The line returned will always start in g1 and end in g2.
The length of the line this function returns will always be the same as st_maxdistance returns for g1 and g2.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_LongestLine</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional longest line between the points of two geometries.
</para>
<para>Availability: 1.5.0</para>
</refsection>
<refsection>
<title>Examples</title>
<informaltable>
<tgroup cols="2">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_longestline01.png" />
</imageobject>
<caption><para>Longest line between point and line</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText(
ST_LongestLine('POINT(100 100)'::geometry,
'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry)
) As lline;
lline
-----------------
LINESTRING(100 100,98 190)
</programlisting>
</para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_longestline02.png" />
</imageobject>
<caption><para>longest line between polygon and polygon</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText(
ST_LongestLine(
ST_GeomFromText('POLYGON((175 150, 20 40,
50 60, 125 100, 175 150))'),
ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)
) As llinewkt;
lline
-----------------
LINESTRING(20 40,121.111404660392 186.629392246051)
</programlisting>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<informaltable>
<tgroup cols="1">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_longestline03.png" />
</imageobject>
<caption><para>longest straight distance to travel from one part of city to the other. Note the max distance = to the length of the line.</para></caption>
</mediaobject>
</informalfigure>
<programlisting>
SELECT ST_AsText(ST_LongestLine(c.the_geom, c.the_geom)) As llinewkt
FROM (SELECT ST_GeomFromText(
'POLYGON ((6107065 2328604, 6091208 2323033,
6092928 2305612, 6074587 2305837, 6074751 2268328, 6042817 2267620,
6045939 2248058, 6013411 2248863, 6029972 2264283, 5991220 2358173,
6071023 2376046, 6015131 2464887, 6022024 2506800, 6051618 2497264,
6085637 2429709, 6107065 2328604),
(6024704 2346266, 6018637 2338372, 6022701 2330499,
6031544 2337484, 6024704 2346266))') As the_geom
) As c;
llinewkt | max_dist | len_lline
--------------------------------------------+------------------+---------------
LINESTRING(6045939 2248058,6022024 2506800) | 259844.857153264 | 259844.857153264
</programlisting>
</para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_MaxDistance"/>, <xref linkend="ST_ShortestLine"/>, <xref linkend="ST_LongestLine"/></para>
</refsection>
</refentry>
<refentry id="ST_Distance_Sphere">
<refnamediv>
<refname>ST_Distance_Sphere</refname>
<refpurpose>Returns minimum distance in meters between two lon/lat
geometries. Uses a spherical earth and radius of 6370986 meters.
Faster than <xref linkend="ST_Distance_Spheroid">ST_Distance_Spheroid</xref>, but less
accurate. PostGIS versions prior to 1.5 only implemented for points.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Distance_Sphere</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomlonlatA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>geomlonlatB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns minimum distance in meters between two lon/lat
points. Uses a spherical earth and radius of 6370986 meters.
Faster than <xref linkend="ST_Distance_Spheroid"/>, but less
accurate. PostGIS Versions prior to 1.5 only implemented for points.</para>
<note>
<para>This function currently does not look at the SRID of a geometry and will always assume its in WGS 84 long lat. Prior versions of this function only support points.</para>
</note>
<para>Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT round(CAST(ST_Distance_Sphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters,
round(CAST(ST_Distance(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)', 4326)) As numeric),5) As dist_degrees,
round(CAST(ST_Distance(ST_Transform(the_geom,32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As min_dist_line_point_meters
FROM
(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
dist_meters | dist_utm11_meters | dist_degrees | min_dist_line_point_meters
-------------+-------------------+--------------+----------------------------
70424.47 | 70438.00 | 0.72900 | 65871.18
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance" />, <xref linkend="ST_Distance_Spheroid" /></para>
</refsection>
</refentry>
<refentry id="ST_Distance_Spheroid">
<refnamediv>
<refname>ST_Distance_Spheroid</refname>
<refpurpose>Returns the minimum distance between two lon/lat geometries given a
particular spheroid.
PostGIS versions prior to 1.5 only support points.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Distance_Spheroid</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomlonlatA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>geomlonlatB</parameter></paramdef>
<paramdef><type>spheroid </type> <parameter>measurement_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns minimum distance in meters between two lon/lat
geometries given a particular spheroid. See the explanation of spheroids given for
<xref linkend="ST_Length_Spheroid" />. PostGIS version prior to 1.5 only support points.</para>
<note>
<para>This function currently does not look at the SRID of a geometry and will always assume its in WGS 80 long lat. Prior versions of this function only support points.</para>
</note>
<para>Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT round(CAST(
ST_Distance_Spheroid(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
As numeric),2) As dist_meters_spheroid,
round(CAST(ST_Distance_Sphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
70454.92 | 70424.47 | 70438.00
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance" />, <xref linkend="ST_Distance_Sphere" /></para>
</refsection>
</refentry>
<refentry id="ST_DWithin">
<refnamediv>
<refname>ST_DWithin</refname>
<refpurpose>Returns true if the geometries are within the specified
distance of one another. For geometry units are in those of spatial reference and For geography units are in meters and measurement is
defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure along sphere.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_DWithin</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
<paramdef><type>double precision </type>
<parameter>distance_of_srid</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>boolean <function>ST_DWithin</function></funcdef>
<paramdef><type>geography </type>
<parameter>gg1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>gg2</parameter></paramdef>
<paramdef><type>double precision </type>
<parameter>distance_meters</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>boolean <function>ST_DWithin</function></funcdef>
<paramdef><type>geography </type>
<parameter>gg1</parameter></paramdef>
<paramdef><type>geography </type>
<parameter>gg2</parameter></paramdef>
<paramdef><type>double precision </type>
<parameter>distance_meters</parameter></paramdef>
<paramdef><type>boolean </type>
<parameter>use_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns true if the geometries are within the specified distance
of one another.</para>
<para>For Geometries: The distance is specified in units defined by the
spatial reference system of the geometries. For this function to make
sense, the source geometries must both be of the same coorindate projection,
having the same SRID.</para>
<para>For geography units are in meters and measurement is
defaulted to use_spheroid=true (measure around WGS 84 spheroid), for faster check, use_spheroid=false to measure along sphere.
</para>
<note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries.</para>
</note>
<note>
<para>Prior to 1.3, ST_Expand was commonly used in conjunction with &amp;&amp; and ST_Distance to
achieve the same effect and in pre-1.3.4 this function was basically short-hand for that construct.
From 1.3.4, ST_DWithin uses a more short-circuit distance function which should make it more efficient
than prior versions for larger buffer regions.</para>
</note>
<para>&sfs_compliant;</para>
<para>Availability: 1.5.0 support for geography was introduced</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
--Find the nearest hospital to each school
--that is within 3000 units of the school.
-- We do an ST_DWithin search to utilize indexes to limit our search list
-- that the non-indexable ST_Distance needs to process
--If the units of the spatial reference is meters then units would be meters
SELECT DISTINCT ON (s.gid) s.gid, s.school_name, s.the_geom, h.hospital_name
FROM schools s
LEFT JOIN hospitals h ON ST_DWithin(s.the_geom, h.the_geom, 3000)
ORDER BY s.gid, ST_Distance(s.the_geom, h.the_geom);
--The schools with no close hospitals
--Find all schools with no hospital within 3000 units
--away from the school. Units is in units of spatial ref (e.g. meters, feet, degrees)
SELECT s.gid, s.school_name
FROM schools s
LEFT JOIN hospitals h ON ST_DWithin(s.the_geom, h.the_geom, 3000)
WHERE h.gid IS NULL;
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Distance"/>, <xref linkend="ST_Expand"/></para>
</refsection>
</refentry>
<refentry id="ST_DFullyWithin">
<refnamediv>
<refname>ST_DFullyWithin</refname>
<refpurpose>Returns true if all of the geometries are within the specified
distance of one another</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_DFullyWithin</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
<paramdef><type>double precision </type>
<parameter>distance</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns true if the geometries is fully within the specified distance
of one another. The distance is specified in units defined by the
spatial reference system of the geometries. For this function to make
sense, the source geometries must both be of the same coordinate projection,
having the same SRID.</para>
<note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries.</para>
</note>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>postgis=# SELECT ST_DFullyWithin(geom_a, geom_b, 10) as DFullyWithin10, ST_DWithin(geom_a, geom_b, 10) as DWithin10, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from
(select ST_GeomFromText('POINT(1 1)') as geom_a,ST_GeomFromText('LINESTRING(1 5, 2 7, 1 9, 14 12)') as geom_b) t1;
-----------------
DFullyWithin10 | DWithin10 | DFullyWithin20 |
---------------+----------+---------------+
f | t | t | </programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_MaxDistance"/>, <xref linkend="ST_DWithin"/></para>
</refsection>
</refentry>
<refentry id="ST_DFullyWithin">
<refnamediv>
<refname>ST_DFullyWithin</refname>
<refpurpose>Returns true if all of the geometries are within the specified
distance of one another</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_DFullyWithin</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
<paramdef><type>double precision </type>
<parameter>distance</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns true if the geometries is fully within the specified distance
of one another. The distance is specified in units defined by the
spatial reference system of the geometries. For this function to make
sense, the source geometries must both be of the same coordinate projection,
having the same SRID.</para>
<note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries.</para>
</note>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>postgis=# SELECT ST_DFullyWithin(geom_a, geom_b, 10) as DFullyWithin10, ST_DWithin(geom_a, geom_b, 10) as DWithin10, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from
(select ST_GeomFromText('POINT(1 1)') as geom_a,ST_GeomFromText('LINESTRING(1 5, 2 7, 1 9, 14 12)') as geom_b) t1;
-----------------
DFullyWithin10 | DWithin10 | DFullyWithin20 |
---------------+----------+---------------+
f | t | t | </programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_MaxDistance"/>, <xref linkend="ST_DWithin"/></para>
</refsection>
</refentry>
<refentry id="ST_Equals">
<refnamediv>
<refname>ST_Equals</refname>
<refpurpose>Returns true if the given geometries represent the same geometry. Directionality
is ignored.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Equals</function></funcdef>
<paramdef><type>geometry </type> <parameter>A</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>B</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns TRUE if the given Geometries are "spatially
equal". Use this for a 'better' answer than '='.
Note by spatially equal we mean ST_Within(A,B) = true and ST_Within(B,A) = true and
also mean ordering of points can be different but
represent the same geometry structure. To verify the order of points is consistent, use
ST_OrderingEquals (it must be noted ST_OrderingEquals is a little more stringent than simply verifying order of
points are the same).</para>
<important>
<para>This function will return false if either geometry is invalid even if they are binary equal.</para>
</important>
<para>&sfs_compliant; s2.1.1.2</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.24</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_Equals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
st_equals
-----------
t
(1 row)
SELECT ST_Equals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')),
ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
st_equals
-----------
t
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_IsValid"/>, <xref linkend="ST_OrderingEquals"/>, <xref linkend="ST_Reverse"/>, <xref linkend="ST_Within" /></para>
</refsection>
</refentry>
<refentry id="ST_HasArc">
<refnamediv>
<refname>ST_HasArc</refname>
<refpurpose>Returns true if a geometry or geometry collection contains a circular string</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_HasArc</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns true if a geometry or geometry collection contains a circular string</para>
<para>Availability: 1.2.3?</para>
<para>&Z_support;</para>
<para>&curve_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_HasArc(ST_Collect('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 7, 5 6)'));
st_hasarc
--------
t
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_CurveToLine" />,<xref linkend="ST_LineToCurve" /></para>
</refsection>
</refentry>
<refentry id="ST_Intersects">
<refnamediv>
<refname>ST_Intersects</refname>
<refpurpose>Returns TRUE if the Geometries/Geography "spatially
intersect" - (share any portion of space) and FALSE if they don't (they are Disjoint).
For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)
</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Intersects</function></funcdef>
<paramdef>
<type>geometry</type>
<parameter>geomA</parameter>
</paramdef>
<paramdef>
<type>geometry</type>
<parameter>geomB</parameter>
</paramdef>
</funcprototype>
<funcprototype>
<funcdef>boolean <function>ST_Intersects</function></funcdef>
<paramdef>
<type>geography</type>
<parameter>geogA</parameter>
</paramdef>
<paramdef>
<type>geography</type>
<parameter>geogB</parameter>
</paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned
returns true, then the geometries also spatially intersect.
Disjoint implies false for spatial intersection.</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument for geometry version. The geography
version supports GEOMETRYCOLLECTION since its a thin wrapper around distance implementation.</para>
</important>
<para>Performed by the GEOS module (for geometry), geography is native</para>
<para>Availability: 1.5 support for geography was introduced.</para>
<note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on the
geometries.</para>
</note>
<note>
<para>For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather
than spheroid calculation.</para>
</note>
<note>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
</note>
<para>&sfs_compliant; s2.1.1.2 //s2.1.13.3
- ST_Intersects(g1, g2 ) --&gt; Not (ST_Disjoint(g1, g2 ))
</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.27</para>
</refsection>
<refsection>
<title>Geometry Examples</title>
<programlisting>SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
st_intersects
---------------
f
(1 row)
SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry);
st_intersects
---------------
t
(1 row)
</programlisting>
</refsection>
<refsection>
<title>Geography Examples</title>
<programlisting>SELECT ST_Intersects(
ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
);
st_intersects
---------------
t
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Disjoint"/></para>
</refsection>
</refentry>
<refentry id="ST_Length">
<refnamediv>
<refname>ST_Length</refname>
<refpurpose>Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in units of spatial reference and geography are in meters (default spheroid)</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length</function></funcdef>
<paramdef><type>geometry </type><parameter>a_2dlinestring</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Length</function></funcdef>
<paramdef><type>geography </type><parameter>gg</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>float <function>ST_Length</function></funcdef>
<paramdef><type>geography </type><parameter>gg</parameter></paramdef>
<paramdef><type>boolean </type><parameter>use_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>For geometry: Returns the cartesian 2D length of the geometry if it is a linestring, multilinestring, ST_Curve, ST_MultiCurve. 0 is returned for
areal geometries. For areal geometries use ST_Perimeter. Geometry: Measurements are in the units of the
spatial reference system of the geometry. Geography: Units are in meters and also acts as a Perimeter function for areal geogs.</para>
<para>Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.</para>
<note><para>Currently applying this to a MULTI/POLYGON of type geography will give you the perimeter of the POLYGON/MULTIPOLYGON. This is not the
case with the geometry implementation.</para></note>
<note><para>For geography measurement defaults spheroid measurement. To use the faster less accurate sphere use ST_Length(gg,false);</para></note>
<para>&sfs_compliant; s2.1.5.1</para>
<para>&sqlmm_compliant; SQL-MM 3: 7.1.2, 9.3.4</para>
<para>Availability: 1.5.0 geography support was introduced in 1.5.</para>
</refsection>
<refsection>
<title>Geometry Examples</title>
<para>Return length in feet for line string. Note this is in feet because 2249 is
Mass State Plane Feet</para>
<programlisting>
SELECT ST_Length(ST_GeomFromText('LINESTRING(743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416)',2249));
st_length
---------
122.630744000095
--Transforming WGS 84 linestring to Massachusetts state plane meters
SELECT ST_Length(
ST_Transform(
ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)'),
26986
)
);
st_length
---------
34309.4563576191
</programlisting>
</refsection>
<refsection>
<title>Geography Examples</title>
<para>Return length of WGS 84 geography line</para>
<programlisting>
-- default calculation is using a sphere rather than spheroid
SELECT ST_Length(the_geog) As length_spheroid, ST_Length(the_geog,false) As length_sphere
FROM (SELECT ST_GeographyFromText(
'SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)') As the_geog)
As foo;
length_spheroid | length_sphere
------------------+------------------
34310.5703627305 | 34346.2060960742
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeographyFromText" />, <xref linkend="ST_GeomFromEWKT" />, <xref linkend="ST_Length_Spheroid" />, <xref linkend="ST_Perimeter" />, <xref linkend="ST_Transform" /></para>
</refsection>
</refentry>
<refentry id="ST_Length2D">
<refnamediv>
<refname>ST_Length2D</refname>
<refpurpose>Returns the 2-dimensional length of the geometry if it is a
linestring or multi-linestring. This is an alias for <varname>ST_Length</varname></refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length2D</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_2dlinestring</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional length of the geometry if it is a
linestring or multi-linestring. This is an alias for <varname>ST_Length</varname></para>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Length" />, <xref linkend="ST_Length3D" /></para>
</refsection>
</refentry>
<refentry id="ST_Length3D">
<refnamediv>
<refname>ST_Length3D</refname>
<refpurpose>Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
linestring or multi-linestring. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length3D</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_3dlinestring</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
linestring or multi-linestring. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)</para>
<para>&Z_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Return length in feet for a 3D cable. Note this is in feet because 2249 is
Mass State Plane Feet</para>
<programlisting>
SELECT ST_Length3D(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
st_length3d
-----------
122.704716741457
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Length" />, <xref linkend="ST_Length2D" /></para>
</refsection>
</refentry>
<refentry id="ST_Length_Spheroid">
<refnamediv>
<refname>ST_Length_Spheroid</refname>
<refpurpose>Calculates the 2D or 3D length of a linestring/multilinestring on an ellipsoid. This
is useful if the coordinates of the geometry are in
longitude/latitude and a length is desired without reprojection.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length_Spheroid</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_linestring</parameter></paramdef>
<paramdef><type>spheroid </type> <parameter>a_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Calculates the length of a geometry on an ellipsoid. This
is useful if the coordinates of the geometry are in
longitude/latitude and a length is desired without reprojection.
The ellipsoid is a separate database type and can be constructed
as follows:</para>
<literallayout>SPHEROID[&lt;NAME&gt;,&lt;SEMI-MAJOR
AXIS&gt;,&lt;INVERSE FLATTENING&gt;]</literallayout>
<literallayout>SPHEROID["GRS_1980",6378137,298.257222101]</literallayout>
<note><para>Will return 0 for anything that is not a MULTILINESTRING or LINESTRING</para></note>
<para>&Z_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_Length_Spheroid( geometry_column,
'SPHEROID["GRS_1980",6378137,298.257222101]' )
FROM geometry_table;
SELECT ST_Length_Spheroid( the_geom, sph_m ) As tot_len,
ST_Length_Spheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_Length_Spheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(-71.05957 42.3589 , -71.061 43))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len | len_line1 | len_line2
------------------+------------------+------------------
85204.5207562955 | 13986.8725229309 | 71217.6482333646
--3D
SELECT ST_Length_Spheroid( the_geom, sph_m ) As tot_len,
ST_Length_Spheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_Length_Spheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
(-71.05957 42.3589 75, -71.061 43 90))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len | len_line1 | len_line2
------------------+-----------------+------------------
85204.5259107402 | 13986.876097711 | 71217.6498130292
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeometryN" />, <xref linkend="ST_Length" />, <xref linkend="ST_Length3D_Spheroid" /></para>
</refsection>
</refentry>
<refentry id="ST_Length2D_Spheroid">
<refnamediv>
<refname>ST_Length2D_Spheroid</refname>
<refpurpose>Calculates the 2D length of a linestring/multilinestring on an ellipsoid. This
is useful if the coordinates of the geometry are in
longitude/latitude and a length is desired without reprojection. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length2D_Spheroid</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_linestring</parameter></paramdef>
<paramdef><type>spheroid </type> <parameter>a_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Calculates the 2D length of a geometry on an ellipsoid. This
is useful if the coordinates of the geometry are in
longitude/latitude and a length is desired without reprojection.
The ellipsoid is a separate database type and can be constructed
as follows:</para>
<literallayout>SPHEROID[&lt;NAME&gt;,&lt;SEMI-MAJOR
AXIS&gt;,&lt;INVERSE FLATTENING&gt;]</literallayout>
<literallayout>SPHEROID["GRS_1980",6378137,298.257222101]</literallayout>
<note><para>Will return 0 for anything that is not a MULTILINESTRING or LINESTRING</para></note>
<note><para>This is much like <xref linkend="ST_Length_Spheroid" /> and <xref linkend="ST_Length3D_Spheroid" /> except it will throw away the Z coordinate in calculations.</para></note>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_Length2D_Spheroid( geometry_column,
'SPHEROID["GRS_1980",6378137,298.257222101]' )
FROM geometry_table;
SELECT ST_Length2D_Spheroid( the_geom, sph_m ) As tot_len,
ST_Length2D_Spheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_Length2D_Spheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(-71.05957 42.3589 , -71.061 43))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len | len_line1 | len_line2
------------------+------------------+------------------
85204.5207562955 | 13986.8725229309 | 71217.6482333646
--3D Observe same answer
SELECT ST_Length2D_Spheroid( the_geom, sph_m ) As tot_len,
ST_Length2D_Spheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_Length2D_Spheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
(-71.05957 42.3589 75, -71.061 43 90))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len | len_line1 | len_line2
------------------+------------------+------------------
85204.5207562955 | 13986.8725229309 | 71217.6482333646
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeometryN" />, <xref linkend="ST_Length_Spheroid" />, <xref linkend="ST_Length3D_Spheroid" /></para>
</refsection>
</refentry>
<refentry id="ST_Length3D_Spheroid">
<refnamediv>
<refname>ST_Length3D_Spheroid</refname>
<refpurpose>Calculates the length of a geometry on an ellipsoid,
taking the elevation into account. This is just an alias for ST_Length_Spheroid. </refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Length3D_Spheroid</function></funcdef>
<paramdef><type>geometry </type> <parameter>a_linestring</parameter></paramdef>
<paramdef><type>spheroid </type> <parameter>a_spheroid</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Calculates the length of a geometry on an ellipsoid,
taking the elevation into account. This is just an alias
for ST_Length_Spheroid. </para>
<note><para>Will return 0 for anything that is not a MULTILINESTRING or LINESTRING</para></note>
<note><para>This functionis just an alias for ST_Length_Spheroid. </para></note>
<para>&Z_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>See ST_Length_Spheroid</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeometryN" />, <xref linkend="ST_Length" />, <xref linkend="ST_Length_Spheroid" /></para>
</refsection>
</refentry>
<refentry id="ST_OrderingEquals">
<refnamediv>
<refname>ST_OrderingEquals</refname>
<refpurpose>Returns true if the given geometries represent the same geometry
and points are in the same directional order.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_OrderingEquals</function></funcdef>
<paramdef><type>geometry </type> <parameter>A</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>B</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>ST_OrderingEquals compares two geometries and t (TRUE) if the
geometries are equal and the coordinates are in the same order;
otherwise it returns f (FALSE).</para>
<note>
<para>This function is implemented as per the ArcSDE SQL
specification rather than SQL-MM.
http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals</para>
</note>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.43</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
st_orderingequals
-----------
f
(1 row)
SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
st_orderingequals
-----------
t
(1 row)
SELECT ST_OrderingEquals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')),
ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
st_orderingequals
-----------
f
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Equals"/>, <xref linkend="ST_Reverse"/></para>
</refsection>
</refentry>
<refentry id="ST_Overlaps">
<refnamediv>
<refname>ST_Overlaps</refname>
<refpurpose>Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by each other.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Overlaps</function></funcdef>
<paramdef><type>geometry </type> <parameter>A</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>B</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns TRUE if the Geometries "spatially
overlap". By that we mean they intersect, but one does not completely contain another. </para>
<para>Performed by the GEOS module</para>
<note><para>Do not call with a GeometryCollection as an argument</para></note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function
_ST_Overlaps.</para>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
<para>&sfs_compliant; s2.1.1.2 // s2.1.13.3</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.32</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>--a point on a line is contained by the line and is of a lower dimension, and therefore does not overlap the line
nor crosses
SELECT ST_Overlaps(a,b) As a_overlap_b,
ST_Crosses(a,b) As a_crosses_b,
ST_Intersects(a, b) As a_intersects_b, ST_Contains(b,a) As b_contains_a
FROM (SELECT ST_GeomFromText('POINT(1 0.5)') As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
As foo
a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a
------------+-------------+----------------+--------------
f | f | t | t
--a line that is partly contained by circle, but not fully is defined as intersecting and crossing,
-- but since of different dimension it does not overlap
SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b,
ST_Intersects(a, b) As a_intersects_b,
ST_Contains(a,b) As a_contains_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
As foo;
a_overlap_b | a_crosses_b | a_intersects_b | a_contains_b
-------------+-------------+----------------+--------------
f | t | t | f
-- a 2-dimensional bent hot dog (aka puffered line string) that intersects a circle,
-- but is not fully contained by the circle is defined as overlapping since they are of the same dimension,
-- but it does not cross, because the intersection of the 2 is of the same dimension
-- as the maximum dimension of the 2
SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b, ST_Intersects(a, b) As a_intersects_b,
ST_Contains(b,a) As b_contains_a,
ST_Dimension(a) As dim_a, ST_Dimension(b) as dim_b, ST_Dimension(ST_Intersection(a,b)) As dima_intersection_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a,
ST_Buffer(ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)'),0.5) As b)
As foo;
a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a | dim_a | dim_b | dima_intersection_b
-------------+-------------+----------------+--------------+-------+-------+---------------------
t | f | t | f | 2 | 2 | 2
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Contains"/>, <xref linkend="ST_Crosses"/>, <xref linkend="ST_Dimension"/>, <xref linkend="ST_Intersects"/></para>
</refsection>
</refentry>
<refentry id="ST_Perimeter">
<refnamediv>
<refname>ST_Perimeter</refname>
<refpurpose>Return the length measurement of the boundary of an ST_Surface
or ST_MultiSurface value. (Polygon, Multipolygon)</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Perimeter</function></funcdef>
<paramdef><type>geometry </type><parameter>g1</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2D perimeter of the geometry if it is a ST_Surface, ST_MultiSurface (Polygon, Multipolygon). 0 is returned for
non-areal geometries. For linestrings use ST_Length. Measurements are in the units of the
spatial reference system of the geometry.</para>
<para>Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.</para>
<para>&sfs_compliant; s2.1.5.1</para>
<para>&sqlmm_compliant; SQL-MM 3: 8.1.3, 9.5.4</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Return perimeter in feet for polygon and multipolygon. Note this is in feet because 2249 is
Mass State Plane Feet</para>
<programlisting>
SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter
---------
122.630744000095
(1 row)
SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter
---------
845.227713366825
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Length" /></para>
</refsection>
</refentry>
<refentry id="ST_Perimeter2D">
<refnamediv>
<refname>ST_Perimeter2D</refname>
<refpurpose>Returns the 2-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon. This is currently an alias for ST_Perimeter.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Perimeter2D</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 2-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon. </para>
<!-- optionally mention that this function uses indexes if appropriate -->
<note>
<para> This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter for a geometry. This is still under consideration</para>
</note>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Perimeter" /></para>
</refsection>
</refentry>
<refentry id="ST_Perimeter3D">
<refnamediv>
<refname>ST_Perimeter3D</refname>
<refpurpose>Returns the 3-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>float <function>ST_Perimeter3D</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns the 3-dimensional perimeter of the geometry, if it
is a polygon or multi-polygon. If the geometry is 2-dimensional, then the 2-dimensional perimeter is returned. </para>
<para>&Z_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<para>Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet</para>
<programlisting>SELECT ST_Perimeter3D(the_geom), ST_Perimeter2d(the_geom), ST_Perimeter(the_geom) FROM
(SELECT ST_GeomFromEWKT('SRID=2249;POLYGON((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))') As the_geom) As foo;
st_perimeter3d | st_perimeter2d | st_perimeter
------------------+------------------+------------------
105.465793597674 | 105.432997272188 | 105.432997272188
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_GeomFromEWKT" />, <xref linkend="ST_Perimeter" />, <xref linkend="ST_Perimeter2D" /></para>
</refsection>
</refentry>
<refentry id="ST_PointOnSurface">
<refnamediv>
<refname>ST_PointOnSurface</refname>
<refpurpose>Returns a <varname>POINT</varname> guaranteed to lie on the surface.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>geometry <function>ST_PointOnSurface</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns a <varname>POINT</varname> guaranteed to intersect a surface.</para>
<para>&sfs_compliant; s3.2.14.2 // s3.2.18.2</para>
<para>&sqlmm_compliant; SQL-MM 3: 8.1.5, 9.5.6.
According to the specs, ST_PointOnSurface works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what
the spec allows here. Most databases Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all common geometries.</para>
<para>&Z_support;</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>SELECT ST_AsText(ST_PointOnSurface('POINT(0 5)'::geometry));
st_astext
------------
POINT(0 5)
(1 row)
SELECT ST_AsText(ST_PointOnSurface('LINESTRING(0 5, 0 10)'::geometry));
st_astext
------------
POINT(0 5)
(1 row)
SELECT ST_AsText(ST_PointOnSurface('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0))'::geometry));
st_astext
----------------
POINT(2.5 2.5)
(1 row)
SELECT ST_AsEWKT(ST_PointOnSurface(ST_GeomFromEWKT('LINESTRING(0 5 1, 0 0 1, 0 10 2)')));
st_asewkt
----------------
POINT(0 0 1)
(1 row)
</programlisting>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Centroid" />, <xref linkend="ST_Point_Inside_Circle" /></para>
</refsection>
</refentry>
<refentry id="ST_Relate">
<refnamediv>
<refname>ST_Relate</refname>
<refpurpose>Returns true if this Geometry is spatially related to
anotherGeometry, by testing for intersections between the
Interior, Boundary and Exterior of the two geometries as specified
by the values in the intersectionMatrixPattern. If no intersectionMatrixPattern
is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Relate</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>geomB</parameter></paramdef>
<paramdef><type>text </type> <parameter>intersectionMatrixPattern</parameter></paramdef>
</funcprototype>
<funcprototype>
<funcdef>text <function>ST_Relate</function></funcdef>
<paramdef><type>geometry </type> <parameter>geomA</parameter></paramdef>
<paramdef><type>geometry </type> <parameter>geomB</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Version 1: Takes geomA, geomB, intersectionMatrix and Returns 1 (TRUE) if this Geometry is spatially related to
anotherGeometry, by testing for intersections between the
Interior, Boundary and Exterior of the two geometries as specified
by the values in the <ulink url="http://docs.codehaus.org/display/GEOTDOC/Point+Set+Theory+and+the+DE-9IM+Matrix#PointSetTheoryandtheDE-9IMMatrix-9IntersectionMatrix">intersectionMatrixPattern</ulink>.</para>
<para>This is especially useful for testing compound checks of intersection, crosses, etc in one step.</para>
<para>Do not call with a GeometryCollection as an argument</para>
<note><para>This is the "allowable" version that returns a
boolean, not an integer. This is defined in OGC spec</para></note>
<note><para>This DOES NOT automagically include an index call. The reason for that
is some relationships are anti e.g. Disjoint. If you are
using a relationship pattern that requires intersection, then include the &amp;&amp;
index call.</para></note>
<para>Version 2: Takes geomA and geomB and returns the <ulink url="http://docs.codehaus.org/display/GEOTDOC/Point+Set+Theory+and+the+DE-9IM+Matrix#PointSetTheoryandtheDE-9IMMatrix-9IntersectionMatrix">DE-9IM (dimensionally extended nine-intersection
matrix)</ulink></para>
<note><para>Do not call with a GeometryCollection as an argument</para></note>
<para>not in OGC spec, but implied. see s2.1.13.2</para>
<para>Both Performed by the GEOS module</para>
<para>&sfs_compliant; s2.1.1.2 // s2.1.13.3</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.25</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
--Find all compounds that intersect and not touch a poly (interior intersects)
SELECT l.* , b.name As poly_name
FROM polys As b
INNER JOIN compounds As l
ON (p.the_geom &amp;&amp; b.the_geom
AND ST_Relate(l.the_geom, b.the_geom,'T********'));
SELECT ST_Relate(ST_GeometryFromText('POINT(1 2)'), ST_Buffer(ST_GeometryFromText('POINT(1 2)'),2));
st_relate
-----------
0FFFFF212
SELECT ST_Relate(ST_GeometryFromText('LINESTRING(1 2, 3 4)'), ST_GeometryFromText('LINESTRING(5 6, 7 8)'));
st_relate
-----------
FF1FF0102
SELECT ST_Relate(ST_GeometryFromText('POINT(1 2)'), ST_Buffer(ST_GeometryFromText('POINT(1 2)'),2), '0FFFFF212');
st_relate
-----------
t
SELECT ST_Relate(ST_GeometryFromText('POINT(1 2)'), ST_Buffer(ST_GeometryFromText('POINT(1 2)'),2), '*FF*FF212');
st_relate
-----------
t
</programlisting>
</refsection>
<!-- Optionally add a "See Also" section -->
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Crosses" />, <xref linkend="ST_Disjoint" />, <xref linkend="ST_Intersects" />, <xref linkend="ST_Touches" /></para>
</refsection>
</refentry>
<refentry id="ST_Touches">
<refnamediv>
<refname>ST_Touches</refname>
<refpurpose>Returns <varname>TRUE</varname> if the geometries have at least one point in common,
but their interiors do not intersect.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Touches</function></funcdef>
<paramdef><type>geometry </type>
<parameter>g1</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>g2</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns <varname>TRUE</varname> if the only points in common between
<parameter>g1</parameter> and <parameter>g2</parameter> lie in the union of the
boundaries of <parameter>g1</parameter> and <parameter>g2</parameter>.
The <function>ST_Touches</function> relation applies
to all Area/Area, Line/Line, Line/Area, Point/Area and Point/Line pairs of relationships,
but <emphasis>not</emphasis> to the Point/Point pair.</para>
<para>In mathematical terms, this predicate is expressed as:</para>
<remark>TODO: Insert appropriate MathML markup here or use a gif.
Simple HTML markup does not work well in both IE and Firefox.</remark>
<informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches-math.gif" />
</imageobject>
</mediaobject>
</informalfigure>
<para>The allowable DE-9IM Intersection Matrices for the two geometries are:</para>
<itemizedlist>
<listitem>
<para><markup>FT*******</markup></para>
</listitem>
<listitem>
<para><markup>F**T*****</markup></para>
</listitem>
<listitem>
<para><markup>F***T****</markup></para>
</listitem>
</itemizedlist>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<note>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid using an index, use <function>_ST_Touches</function> instead.</para>
</note>
<para>&sfs_compliant; s2.1.1.2 // s2.1.13.3</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.28</para>
</refsection>
<refsection>
<title>Examples</title>
<para>The <function>ST_Touches</function> predicate returns <varname>TRUE</varname> in all the following illustrations.</para>
<informaltable>
<tgroup cols="3">
<tbody>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches01.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>POLYGON</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches02.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>POLYGON</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches03.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
<row>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches04.png" />
</imageobject>
<caption><para><varname>LINESTRING</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches05.png" />
</imageobject>
<caption><para><varname>LINESTRING</varname> / <varname>LINESTRING</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
<entry><para><informalfigure>
<mediaobject>
<imageobject>
<imagedata fileref="images/st_touches06.png" />
</imageobject>
<caption><para><varname>POLYGON</varname> / <varname>POINT</varname></para></caption>
</mediaobject>
</informalfigure></para></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<programlisting>SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)'::geometry, 'POINT(1 1)'::geometry);
st_touches
------------
f
(1 row)
SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)'::geometry, 'POINT(0 2)'::geometry);
st_touches
------------
t
(1 row)</programlisting>
</refsection>
</refentry>
<refentry id="ST_Within">
<refnamediv>
<refname>ST_Within</refname>
<refpurpose>Returns true if the geometry A is completely inside geometry B</refpurpose>
</refnamediv>
<refsynopsisdiv>
<funcsynopsis>
<funcprototype>
<funcdef>boolean <function>ST_Within</function></funcdef>
<paramdef><type>geometry </type>
<parameter>A</parameter></paramdef>
<paramdef><type>geometry </type>
<parameter>B</parameter></paramdef>
</funcprototype>
</funcsynopsis>
</refsynopsisdiv>
<refsection>
<title>Description</title>
<para>Returns TRUE if geometry A is completely inside geometry B. For this function to make
sense, the source geometries must both be of the same coordinate projection,
having the same SRID. It is a given that if ST_Within(A,B) is true and ST_Within(B,A) is true, then
the two geometries are considered spatially equal.</para>
<para>Performed by the GEOS module</para>
<important>
<para>Do not call with a <varname>GEOMETRYCOLLECTION</varname> as an argument</para>
</important>
<important>
<para>Do not use this function with invalid geometries. You will get unexpected results.</para>
</important>
<para>This function call will automatically include a bounding box
comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function
_ST_Within.</para>
<para>NOTE: this is the "allowable" version that returns a
boolean, not an integer.</para>
<para>&sfs_compliant; s2.1.1.2 // s2.1.13.3
- a.Relate(b, 'T*F**F***')
</para>
<para>&sqlmm_compliant; SQL-MM 3: 5.1.30</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting>
--a circle within a circle
SELECT ST_Within(smallc,smallc) As smallinsmall,
ST_Within(smallc, bigc) As smallinbig,
ST_Within(bigc,smallc) As biginsmall,
ST_Within(ST_Union(smallc, bigc), bigc) as unioninbig,
ST_Within(bigc, ST_Union(smallc, bigc)) as biginunion,
ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion
FROM
(
SELECT ST_Buffer(ST_GeomFromText('POINT(50 50)'), 20) As smallc,
ST_Buffer(ST_GeomFromText('POINT(50 50)'), 40) As bigc) As foo;
--Result
smallinsmall | smallinbig | biginsmall | unioninbig | biginunion | bigisunion
--------------+------------+------------+------------+------------+------------
t | t | f | t | t | t
(1 row)
</programlisting>
<para><inlinemediaobject>
<imageobject>
<imagedata fileref="images/st_within01.png" />
</imageobject>
</inlinemediaobject> </para>
</refsection>
<refsection>
<title>See Also</title>
<para><xref linkend="ST_Contains"/>, <xref linkend="ST_Equals"/>,<xref linkend="ST_IsValid"/></para>
</refsection>
</refentry>
</sect1>