okular/ui/painter_agg2/agg_trans_affine.h
Enrico Ros c5b694d02c Painter_AGG2:
Part from the *very C00L* AGG2 library (www.antigrain.com) are imported
  from the agg23 source package. The imported files provides antialiased
  rendering on bgra32 qimage memory buffers.
  See "kpdf/ui/painter_agg2/README.kpdf" for more info.
PagePainter:
  Replaced my dear crappy scanline renderer (well, was the fastest btw :-)
  with agg2 based rendering code.
  Implemented HighlightAnnotation (HL, Underline, Strikeout and Squiggly)
  and InkAnnotation (simple one) rendering.
  Need a multiply-blending template algo for getting highlights to look
  as highlighs (not solid or transparent, like now).
Makefile.am(s):
  Updated to build the new library, set include paths and link it.

Here we go.

svn path=/branches/kpdf_annotations/kdegraphics/kpdf/; revision=405150
2005-04-12 20:44:26 +00:00

345 lines
12 KiB
C++

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
//
// Affine transformation classes.
//
//----------------------------------------------------------------------------
#ifndef AGG_TRANS_AFFINE_INCLUDED
#define AGG_TRANS_AFFINE_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
const double affine_epsilon = 1e-14; // About of precision of doubles
//============================================================trans_affine
//
// See Implementation agg_trans_affine.cpp
//
// Affine transformation are linear transformations in Cartesian coordinates
// (strictly speaking not only in Cartesian, but for the beginning we will
// think so). They are rotation, scaling, translation and skewing.
// After any affine transformation a line segment remains a line segment
// and it will never become a curve.
//
// There will be no math about matrix calculations, since it has been
// described many times. Ask yourself a very simple question:
// "why do we need to understand and use some matrix stuff instead of just
// rotating, scaling and so on". The answers are:
//
// 1. Any combination of transformations can be done by only 4 multiplications
// and 4 additions in floating point.
// 2. One matrix transformation is equivalent to the number of consecutive
// discrete transformations, i.e. the matrix "accumulates" all transformations
// in the order of their settings. Suppose we have 4 transformations:
// * rotate by 30 degrees,
// * scale X to 2.0,
// * scale Y to 1.5,
// * move to (100, 100).
// The result will depend on the order of these transformations,
// and the advantage of matrix is that the sequence of discret calls:
// rotate(30), scaleX(2.0), scaleY(1.5), move(100,100)
// will have exactly the same result as the following matrix transformations:
//
// affine_matrix m;
// m *= rotate_matrix(30);
// m *= scaleX_matrix(2.0);
// m *= scaleY_matrix(1.5);
// m *= move_matrix(100,100);
//
// m.transform_my_point_at_last(x, y);
//
// What is the good of it? In real life we will set-up the matrix only once
// and then transform many points, let alone the convenience to set any
// combination of transformations.
//
// So, how to use it? Very easy - literally as it's shown above. Not quite,
// let us write a correct example:
//
// agg::trans_affine m;
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0);
// m *= agg::trans_affine_scaling(2.0, 1.5);
// m *= agg::trans_affine_translation(100.0, 100.0);
// m.transform(&x, &y);
//
// The affine matrix is all you need to perform any linear transformation,
// but all transformations have origin point (0,0). It means that we need to
// use 2 translations if we want to rotate someting around (100,100):
//
// m *= agg::trans_affine_translation(-100.0, -100.0); // move to (0,0)
// m *= agg::trans_affine_rotation(30.0 * 3.1415926 / 180.0); // rotate
// m *= agg::trans_affine_translation(100.0, 100.0); // move back to (100,100)
//----------------------------------------------------------------------
class trans_affine
{
public:
//------------------------------------------ Construction
// Construct an identity matrix - it does not transform anything
trans_affine() :
m0(1.0), m1(0.0), m2(0.0), m3(1.0), m4(0.0), m5(0.0)
{}
// Construct a custom matrix. Usually used in derived classes
trans_affine(double v0, double v1, double v2, double v3, double v4, double v5) :
m0(v0), m1(v1), m2(v2), m3(v3), m4(v4), m5(v5)
{}
// Construct a matrix to transform a parallelogram to another one.
trans_affine(const double* rect, const double* parl)
{
parl_to_parl(rect, parl);
}
// Construct a matrix to transform a rectangle to a parallelogram.
trans_affine(double x1, double y1, double x2, double y2,
const double* parl)
{
rect_to_parl(x1, y1, x2, y2, parl);
}
// Construct a matrix to transform a parallelogram to a rectangle.
trans_affine(const double* parl,
double x1, double y1, double x2, double y2)
{
parl_to_rect(parl, x1, y1, x2, y2);
}
//---------------------------------- Parellelogram transformations
// Calculate a matrix to transform a parallelogram to another one.
// src and dst are pointers to arrays of three points
// (double[6], x,y,...) that identify three corners of the
// parallelograms assuming implicit fourth points.
// There are also transformations rectangtle to parallelogram and
// parellelogram to rectangle
const trans_affine& parl_to_parl(const double* src,
const double* dst);
const trans_affine& rect_to_parl(double x1, double y1,
double x2, double y2,
const double* parl);
const trans_affine& parl_to_rect(const double* parl,
double x1, double y1,
double x2, double y2);
//------------------------------------------ Operations
// Reset - actually load an identity matrix
const trans_affine& reset();
// Multiply matrix to another one
const trans_affine& multiply(const trans_affine& m);
// Multiply "m" to "this" and assign the result to "this"
const trans_affine& premultiply(const trans_affine& m);
// Invert matrix. Do not try to invert degenerate matrices,
// there's no check for validity. If you set scale to 0 and
// then try to invert matrix, expect unpredictable result.
const trans_affine& invert();
// Mirroring around X
const trans_affine& flip_x();
// Mirroring around Y
const trans_affine& flip_y();
//------------------------------------------- Load/Store
// Store matrix to an array [6] of double
void store_to(double* m) const
{
*m++ = m0; *m++ = m1; *m++ = m2; *m++ = m3; *m++ = m4; *m++ = m5;
}
// Load matrix from an array [6] of double
const trans_affine& load_from(const double* m)
{
m0 = *m++; m1 = *m++; m2 = *m++; m3 = *m++; m4 = *m++; m5 = *m++;
return *this;
}
//------------------------------------------- Operators
// Multiply current matrix to another one
const trans_affine& operator *= (const trans_affine& m)
{
return multiply(m);
}
// Multiply current matrix to another one and return
// the result in a separete matrix.
trans_affine operator * (const trans_affine& m)
{
return trans_affine(*this).multiply(m);
}
// Calculate and return the inverse matrix
trans_affine operator ~ () const
{
trans_affine ret = *this;
return ret.invert();
}
// Equal operator with default epsilon
bool operator == (const trans_affine& m) const
{
return is_equal(m, affine_epsilon);
}
// Not Equal operator with default epsilon
bool operator != (const trans_affine& m) const
{
return !is_equal(m, affine_epsilon);
}
//-------------------------------------------- Transformations
// Direct transformation x and y
void transform(double* x, double* y) const;
// Inverse transformation x and y. It works slower than the
// direct transformation, so if the performance is critical
// it's better to invert() the matrix and then use transform()
void inverse_transform(double* x, double* y) const;
//-------------------------------------------- Auxiliary
// Calculate the determinant of matrix
double determinant() const
{
return 1.0 / (m0 * m3 - m1 * m2);
}
// Get the average scale (by X and Y).
// Basically used to calculate the approximation_scale when
// decomposinting curves into line segments.
double scale() const;
// Check to see if it's an identity matrix
bool is_identity(double epsilon = affine_epsilon) const;
// Check to see if two matrices are equal
bool is_equal(const trans_affine& m, double epsilon = affine_epsilon) const;
// Determine the major parameters. Use carefully considering degenerate matrices
double rotation() const;
void translation(double* dx, double* dy) const;
void scaling(double* sx, double* sy) const;
void scaling_abs(double* sx, double* sy) const
{
*sx = sqrt(m0*m0 + m2*m2);
*sy = sqrt(m1*m1 + m3*m3);
}
private:
double m0;
double m1;
double m2;
double m3;
double m4;
double m5;
};
//------------------------------------------------------------------------
inline void trans_affine::transform(double* x, double* y) const
{
register double tx = *x;
*x = tx * m0 + *y * m2 + m4;
*y = tx * m1 + *y * m3 + m5;
}
//------------------------------------------------------------------------
inline void trans_affine::inverse_transform(double* x, double* y) const
{
register double d = determinant();
register double a = (*x - m4) * d;
register double b = (*y - m5) * d;
*x = a * m3 - b * m2;
*y = b * m0 - a * m1;
}
//------------------------------------------------------------------------
inline double trans_affine::scale() const
{
double x = 0.707106781 * m0 + 0.707106781 * m2;
double y = 0.707106781 * m1 + 0.707106781 * m3;
return sqrt(x*x + y*y);
}
//------------------------------------------------------------------------
inline const trans_affine& trans_affine::premultiply(const trans_affine& m)
{
trans_affine t = m;
return *this = t.multiply(*this);
}
//====================================================trans_affine_rotation
// Rotation matrix. sin() and cos() are calculated twice for the same angle.
// There's no harm because the performance of sin()/cos() is very good on all
// modern processors. Besides, this operation is not going to be invoked too
// often.
class trans_affine_rotation : public trans_affine
{
public:
trans_affine_rotation(double a) :
trans_affine(cos(a), sin(a), -sin(a), cos(a), 0.0, 0.0)
{}
};
//====================================================trans_affine_scaling
// Scaling matrix. sx, sy - scale coefficients by X and Y respectively
class trans_affine_scaling : public trans_affine
{
public:
trans_affine_scaling(double sx, double sy) :
trans_affine(sx, 0.0, 0.0, sy, 0.0, 0.0)
{}
trans_affine_scaling(double s) :
trans_affine(s, 0.0, 0.0, s, 0.0, 0.0)
{}
};
//================================================trans_affine_translation
// Translation matrix
class trans_affine_translation : public trans_affine
{
public:
trans_affine_translation(double tx, double ty) :
trans_affine(1.0, 0.0, 0.0, 1.0, tx, ty)
{}
};
//====================================================trans_affine_skewing
// Sckewing (shear) matrix
class trans_affine_skewing : public trans_affine
{
public:
trans_affine_skewing(double sx, double sy) :
trans_affine(1.0, tan(sy), tan(sx), 1.0, 0.0, 0.0)
{}
};
}
#endif