okular/core/area.h
Albert Astals Cid 4072eb0c3a Add override
2017-03-02 20:38:50 +01:00

891 lines
26 KiB
C++

/***************************************************************************
* Copyright (C) 2004-05 by Enrico Ros <eros.kde@email.it> *
* Copyright (C) 2005 by Piotr Szymanski <niedakh@gmail.com> *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
***************************************************************************/
#ifndef _OKULAR_AREA_H_
#define _OKULAR_AREA_H_
#include <math.h>
#include <QtCore/QList>
#include <QtGui/QColor>
#include <QtGui/QPainterPath>
#include <QtGui/QTransform>
#include <QtCore/QDebug>
#include "global.h"
#include "okularcore_export.h"
class QPolygonF;
class QRect;
namespace Okular {
class Annotation;
class Action;
class NormalizedShape;
/**
* NormalizedPoint is a helper class which stores the coordinates
* of a normalized point. Normalized means that the coordinates are
* between 0 and 1 so that it is page size independent.
*
* Example:
* The normalized point is (0.5, 0.3)
*
* If you want to draw it on a 800x600 page, just multiply the x coordinate (0.5) with
* the page width (800) and the y coordinate (0.3) with the page height (600), so
* the point will be drawn on the page at (400, 180).
*
* That allows you to zoom the page by just multiplying the normalized points with the
* zoomed page size.
*/
class OKULARCORE_EXPORT NormalizedPoint
{
public:
/**
* Creates a new empty normalized point.
*/
NormalizedPoint();
/**
* Creates a new normalized point with the normalized coordinates (@p x, @p y ).
*/
NormalizedPoint( double x, double y );
/**
* Creates a new normalized point with the coordinates (@p x, @p y) which are normalized
* by the scaling factors @p xScale and @p yScale.
*/
NormalizedPoint( int x, int y, int xScale, int yScale );
/**
* @internal
*/
NormalizedPoint& operator=( const NormalizedPoint& );
/**
* Transforms the normalized point with the operations defined by @p matrix.
*/
void transform( const QTransform &matrix );
/**
* Returns squared distance to point @p x @p y @p xScale @p yScale
* @since 0.17 (KDE 4.11)
*/
double distanceSqr( double x, double y, double xScale, double yScale ) const;
/**
* @brief Calculates distance of the point @p x @p y @p xScale @p yScale to the line segment from @p start to @p end
* @since 0.17 (KDE 4.11)
*/
static double distanceSqr( double x, double y, double xScale, double yScale, const NormalizedPoint& start, const NormalizedPoint& end );
/**
* The normalized x coordinate.
*/
double x;
/**
* The normalized y coordinate.
*/
double y;
};
/**
* NormalizedRect is a helper class which stores the coordinates
* of a normalized rect, which is a rectangle of @see NormalizedPoints.
*/
class OKULARCORE_EXPORT NormalizedRect
{
public:
/**
* Creates a null normalized rectangle.
* @see isNull()
*/
NormalizedRect();
/**
* Creates a normalized rectangle with the normalized coordinates
* @p left, @p top, @p right, @p bottom.
*
* If you need the x, y, width and height coordinates use the
* following formulas:
*
* @li x = left
* @li y = top
* @li width = right - left
* @li height = bottom - top
*/
NormalizedRect( double left, double top, double right, double bottom );
/**
* Creates a normalized rectangle of the given @p rectangle which is normalized
* by the scaling factors @p xScale and @p yScale.
*/
NormalizedRect( const QRect &rectangle, double xScale, double yScale );
/**
* @internal
*/
NormalizedRect( const NormalizedRect& );
/**
* @internal
*/
NormalizedRect& operator=( const NormalizedRect &other );
/**
* Build a normalized rect from a QRectF.
*/
static NormalizedRect fromQRectF( const QRectF &rect );
/**
* Returns whether this normalized rectangle is a null normalized rect.
*/
bool isNull() const;
/**
* Returns whether the normalized rectangle contains the normalized coordinates
* @p x and @p y.
*/
bool contains( double x, double y ) const;
/**
* Returns whether the normalized rectangle intersects the @p other normalized
* rectangle.
*/
bool intersects( const NormalizedRect &other ) const;
/**
* This is an overloaded member function, provided for convenience. It behaves essentially
* like the above function.
*/
bool intersects( const NormalizedRect *other ) const;
/**
* Returns whether the normalized rectangle intersects an other normalized
* rectangle, which is defined by @p left, @p top, @p right and @p bottom.
*/
bool intersects( double left, double top, double right, double bottom ) const;
/**
* Returns the rectangle that accrues when the normalized rectangle is multiplyed
* with the scaling @p xScale and @p yScale.
*/
QRect geometry( int xScale, int yScale ) const;
/**
* Same functionality as geometry, but the output is now rounded before typecasting to int
* @since 0.14 (KDE 4.8)
*/
QRect roundedGeometry( int xScale, int yScale ) const;
/**
* Returns the normalized bounding rectangle of the normalized rectangle
* combined with the @p other normalized rectangle.
*/
NormalizedRect operator|( const NormalizedRect &other ) const;
/**
* Sets the normalized rectangle to the normalized bounding rectangle
* of itself combined with the @p other normalized rectangle.
*/
NormalizedRect& operator|=( const NormalizedRect &other );
/**
* Returns the intersection of this normalized rectangle with the specified
* @p other. If the rects do not intersect then the result is null.
*
* @since 0.7 (KDE 4.1)
*/
NormalizedRect operator&( const NormalizedRect &other ) const;
/**
* Returns whether the normalized rectangle is equal to the @p other
* normalized rectangle.
*/
bool operator==( const NormalizedRect &other ) const;
/**
* Returns the center of the rectangle
* @since 0.10 (KDE 4.4)
*/
NormalizedPoint center() const;
/**
* Transforms the normalized rectangle with the operations defined by @p matrix.
*/
void transform( const QTransform &matrix );
/**
* Returns true if the point pt is located to the bottom of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isBottom(const NormalizedPoint& pt) const
{
return bottom < pt.y;
}
/**
* Returns true if the point pt is located on the top of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isTop(const NormalizedPoint& pt) const
{
return top > pt.y;
}
/**
* Returns true if the point pt is located under the top of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isBottomOrLevel(const NormalizedPoint& pt) const
{
return top < pt.y;
}
/**
* Returns true if the point pt is located above the bottom of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isTopOrLevel(const NormalizedPoint& pt) const
{
return bottom > pt.y;
}
/**
* Returns true if the point pt is located to the right of the left arm of rectangle
* @since 0.14 (KDE 4.8)
*/
bool isLeft(const NormalizedPoint& pt) const
{
return left < pt.x;
}
/**
* Returns true if the point pt is located to the left of the right arm of rectangle
* @since 0.14 (KDE 4.8)
*/
bool isRight(const NormalizedPoint& pt) const
{
return right > pt.x;
}
/**
* Returns the distance of the point @p x @p y @p xScale @p yScale to the closest
* edge or 0 if the point is within the rectangle
* @since 0.17 (KDE 4.11)
*/
double distanceSqr(double x, double y, double xScale, double yScale) const
{
double distX = 0;
if ( x < left )
distX = left - x;
else if ( x > right )
distX = x - right;
double distY = 0;
if ( top > y )
distY = top - y;
else if (bottom < y)
distY = y - bottom;
return pow( distX * xScale, 2 ) + pow( distY * yScale, 2 );
}
/**
* The normalized left coordinate.
*/
double left;
/**
* The normalized top coordinate.
*/
double top;
/**
* The normalized right coordinate.
*/
double right;
/**
* The normalized bottom coordinate.
*/
double bottom;
};
//KDE_DUMMY_QHASH_FUNCTION(NormalizedRect)
/**
* @short NormalizedRect that contains a reference to an object.
*
* These rects contains a pointer to a okular object (such as an action or something
* like that). The pointer is read and stored as 'void pointer' so cast is
* performed by accessors based on the value returned by objectType(). Objects
* are reparented to this class.
*
* Type / Class correspondency tab:
* - Action : class Action: description of an action
* - Image : class Image : description of an image (n/a)
* - Annotation: class Annotation: description of an annotation
*/
class OKULARCORE_EXPORT ObjectRect
{
public:
/**
* Describes the type of storable object.
*/
enum ObjectType
{
Action, ///< An action
Image, ///< An image
OAnnotation, ///< An annotation
SourceRef ///< A source reference
};
/**
* Creates a new object rectangle.
*
* @param left The left coordinate of the rectangle.
* @param top The top coordinate of the rectangle.
* @param right The right coordinate of the rectangle.
* @param bottom The bottom coordinate of the rectangle.
* @param ellipse If true the rectangle describes an ellipse.
* @param type The type of the storable object @see ObjectType.
* @param object The pointer to the storable object.
*/
ObjectRect( double left, double top, double right, double bottom, bool ellipse, ObjectType type, void *object );
/**
* This is an overloaded member function, provided for convenience.
*/
ObjectRect( const NormalizedRect &rect, bool ellipse, ObjectType type, void *object );
/**
* This is an overloaded member function, provided for convenience.
*/
ObjectRect( const QPolygonF &poly, ObjectType type, void *object );
/**
* Destroys the object rectangle.
*/
virtual ~ObjectRect();
/**
* Returns the object type of the object rectangle.
* @see ObjectType
*/
ObjectType objectType() const;
/**
* Returns the storable object of the object rectangle.
*/
const void *object() const;
/**
* Returns the region that is covered by the object rectangle.
*/
const QPainterPath &region() const;
/**
* Returns the bounding rect of the object rectangle for the
* scaling factor @p xScale and @p yScale.
*/
virtual QRect boundingRect( double xScale, double yScale ) const;
/**
* Returns whether the object rectangle contains the point @p x, @p y for the
* scaling factor @p xScale and @p yScale.
*/
virtual bool contains( double x, double y, double xScale, double yScale ) const;
/**
* Transforms the object rectangle with the operations defined by @p matrix.
*/
virtual void transform( const QTransform &matrix );
/**
* Returns the square of the distance between the object and the point @p x, @p y
* for the scaling factor @p xScale and @p yScale.
*
* @since 0.8.2 (KDE 4.2.2)
*/
// FIXME this should most probably be a virtual method
double distanceSqr( double x, double y, double xScale, double yScale ) const;
protected:
ObjectType m_objectType;
void * m_object;
QPainterPath m_path;
QPainterPath m_transformedPath;
};
/**
* This class describes the object rectangle for an annotation.
*/
class OKULARCORE_EXPORT AnnotationObjectRect : public ObjectRect
{
public:
/**
* Creates a new annotation object rectangle with the
* given @p annotation.
*/
AnnotationObjectRect( Annotation *annotation );
/**
* Destroys the annotation object rectangle.
*/
virtual ~AnnotationObjectRect();
/**
* Returns the annotation object of the annotation object rectangle.
*/
Annotation *annotation() const;
/**
* Returns the bounding rect of the annotation object rectangle for the
* scaling factor @p xScale and @p yScale.
*/
QRect boundingRect( double xScale, double yScale ) const override;
/**
* Returns whether the annotation object rectangle contains the point @p x, @p y for the
* scaling factor @p xScale and @p yScale.
*/
bool contains( double x, double y, double xScale, double yScale ) const override;
/**
* Transforms the annotation object rectangle with the operations defined by @p matrix.
*/
void transform( const QTransform &matrix ) override;
private:
Annotation * m_annotation;
};
/**
* This class describes the object rectangle for a source reference.
*/
class OKULARCORE_EXPORT SourceRefObjectRect : public ObjectRect
{
friend class ObjectRect;
public:
/**
* Creates a new source reference object rectangle.
*
* @param point The point of the source reference.
* @param reference The storable source reference object.
*/
SourceRefObjectRect( const NormalizedPoint& point, void *reference );
/**
* Returns the bounding rect of the source reference object rectangle for the
* scaling factor @p xScale and @p yScale.
*/
QRect boundingRect( double xScale, double yScale ) const override;
/**
* Returns whether the source reference object rectangle contains the point @p x, @p y for the
* scaling factor @p xScale and @p yScale.
*/
bool contains( double x, double y, double xScale, double yScale ) const override;
private:
NormalizedPoint m_point;
};
/// @cond PRIVATE
/** @internal */
template <typename T>
void doDelete( T& t )
{
(void)t;
}
/** @internal */
template <typename T>
T* givePtr( T& t )
{
return &t;
}
/** @internal */
template <typename T>
T& deref( T& t )
{
return t;
}
/** @internal */
template <typename T>
static void doDelete( T* t )
{
delete t;
}
/** @internal */
template <typename T>
static T* givePtr( T* t )
{
return t;
}
/** @internal */
template <typename T>
static T& deref( T* t )
{
return *t;
}
/// @endcond
/**
* @short A regular area of NormalizedShape which normalizes a Shape
*
* Class NormalizedShape \b must have the following functions/operators defined:
* - bool contains( double, double )
* - bool intersects( NormalizedShape )
* - bool isNull()
* - Shape geometry( int, int )
* - operator|=( NormalizedShape ) which unite two NormalizedShape's
*/
template <class NormalizedShape, class Shape> class RegularArea : public QList<NormalizedShape>
{
public:
/**
* Destroys a regular area.
*/
~RegularArea();
/**
* Returns whether the regular area contains the
* normalized point @p x, @p y.
*/
bool contains( double x, double y ) const;
/**
* Returns whether the regular area contains the
* given @p shape.
*/
bool contains( const NormalizedShape& shape ) const;
/**
* Returns whether the regular area intersects with the given @p area.
*/
bool intersects( const RegularArea<NormalizedShape,Shape> *area ) const;
/**
* Returns whether the regular area intersects with the given @p shape.
*/
bool intersects( const NormalizedShape& shape ) const;
/**
* Appends the given @p area to the regular area.
*/
void appendArea( const RegularArea<NormalizedShape,Shape> *area );
/**
* Appends the given @p shape to the regular area.
*/
void appendShape( const NormalizedShape& shape, MergeSide side = MergeAll );
/**
* Simplifies the regular area by merging its intersecting subareas.
*/
void simplify();
/**
* Returns whether the regular area is a null area.
*/
bool isNull() const;
/**
* Returns the subareas of the regular areas as shapes for the given scaling factor
* @p xScale and @p yScale, translated by @p dx and @p dy.
*/
QList<Shape> geometry( int xScale, int yScale, int dx = 0, int dy = 0 ) const;
/**
* Transforms the regular area with the operations defined by @p matrix.
*/
void transform( const QTransform &matrix );
};
template <class NormalizedShape, class Shape>
RegularArea<NormalizedShape, Shape>::~RegularArea()
{
int size = this->count();
for ( int i = 0; i < size; ++i )
doDelete( (*this)[i] );
}
template <class NormalizedShape, class Shape>
void RegularArea<NormalizedShape, Shape>::simplify()
{
#ifdef DEBUG_REGULARAREA
int prev_end = this->count();
#endif
int end = this->count() - 1, x = 0;
for ( int i = 0; i < end; ++i )
{
if ( givePtr( (*this)[x] )->intersects( deref( (*this)[i+1] ) ) )
{
deref((*this)[x]) |= deref((*this)[i+1]);
NormalizedShape& tobedeleted = (*this)[i+1];
this->removeAt( i + 1 );
doDelete( tobedeleted );
--end;
--i;
}
else
{
x=i+1;
}
}
#ifdef DEBUG_REGULARAREA
qCDebug(OkularCoreDebug) << "from" << prev_end << "to" << this->count();
#endif
}
template <class NormalizedShape, class Shape>
bool RegularArea<NormalizedShape, Shape>::isNull() const
{
if ( this->isEmpty() )
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for ( ; it != itEnd; ++it )
if ( !givePtr( *it )->isNull() )
return false;
return true;
}
template <class NormalizedShape, class Shape>
bool RegularArea<NormalizedShape, Shape>::intersects( const NormalizedShape& rect ) const
{
if ( this->isEmpty() )
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for ( ; it != itEnd; ++it )
if ( !givePtr( *it )->isNull() && givePtr( *it )->intersects( rect ) )
return true;
return false;
}
template <class NormalizedShape, class Shape>
bool RegularArea<NormalizedShape, Shape>::intersects( const RegularArea<NormalizedShape,Shape> *area ) const
{
if ( this->isEmpty() )
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for ( ; it != itEnd; ++it )
{
typename QList<NormalizedShape>::const_iterator areaIt = area->begin(), areaItEnd = area->end();
for ( ; areaIt != areaItEnd; ++areaIt )
{
if ( !( *it ).isNull() && ( *it ).intersects( *areaIt ) )
return true;
}
}
return false;
}
template <class NormalizedShape, class Shape>
void RegularArea<NormalizedShape, Shape>::appendArea( const RegularArea<NormalizedShape, Shape> *area )
{
typename QList<NormalizedShape>::const_iterator areaIt = area->begin(), areaItEnd = area->end();
for ( ; areaIt != areaItEnd; ++areaIt )
this->append( *areaIt );
}
template <class NormalizedShape, class Shape>
void RegularArea<NormalizedShape, Shape>::appendShape( const NormalizedShape& shape, MergeSide side )
{
int size = this->count();
// if the list is empty, adds the shape normally
if ( size == 0 )
{
this->append( shape );
}
else
{
bool intersection = false;
NormalizedShape& last = (*this)[size - 1];
#define O_LAST givePtr( last )
# define O_LAST_R O_LAST->right
# define O_LAST_L O_LAST->left
# define O_LAST_T O_LAST->top
# define O_LAST_B O_LAST->bottom
#define O_NEW givePtr( shape )
# define O_NEW_R O_NEW->right
# define O_NEW_L O_NEW->left
# define O_NEW_T O_NEW->top
# define O_NEW_B O_NEW->bottom
switch ( side )
{
case MergeRight:
intersection = ( O_LAST_R >= O_NEW_L ) && ( O_LAST_L <= O_NEW_R )
&& ( ( O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B )
|| ( O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B ) );
break;
case MergeBottom:
intersection = ( O_LAST_B >= O_NEW_T ) && ( O_LAST_T <= O_NEW_B )
&& ( ( O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L )
|| ( O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L ) );
break;
case MergeLeft:
intersection = ( O_LAST_L <= O_NEW_R ) && ( O_LAST_R >= O_NEW_L )
&& ( ( O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B )
|| ( O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B ) );
break;
case MergeTop:
intersection = ( O_LAST_T <= O_NEW_B ) && ( O_LAST_B >= O_NEW_T )
&& ( ( O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L )
|| ( O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L ) );
break;
case MergeAll:
intersection = O_LAST->intersects( shape );
break;
}
#undef O_LAST
# undef O_LAST_R
# undef O_LAST_L
# undef O_LAST_T
# undef O_LAST_B
#undef O_NEW
# undef O_NEW_R
# undef O_NEW_L
# undef O_NEW_T
# undef O_NEW_B
// if the new shape intersects with the last shape in the list, then
// merge it with that and delete the shape
if ( intersection )
{
deref((*this)[size - 1]) |= deref( shape );
doDelete( const_cast<NormalizedShape&>( shape ) );
}
else
this->append( shape );
}
}
template <class NormalizedShape, class Shape>
bool RegularArea<NormalizedShape, Shape>::contains( double x, double y ) const
{
if ( this->isEmpty() )
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for ( ; it != itEnd; ++it )
if ( ( *it ).contains( x, y ) )
return true;
return false;
}
template <class NormalizedShape, class Shape>
bool RegularArea<NormalizedShape, Shape>::contains( const NormalizedShape& shape ) const
{
if ( this->isEmpty() )
return false;
return QList<NormalizedShape>::contains( shape );
}
template <class NormalizedShape, class Shape>
QList<Shape> RegularArea<NormalizedShape, Shape>::geometry( int xScale, int yScale, int dx, int dy ) const
{
if ( this->isEmpty() )
return QList<Shape>();
QList<Shape> ret;
Shape t;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for ( ; it != itEnd; ++it )
{
t = givePtr( *it )->geometry( xScale, yScale );
t.translate( dx, dy );
ret.append( t );
}
return ret;
}
template <class NormalizedShape, class Shape>
void RegularArea<NormalizedShape, Shape>::transform( const QTransform &matrix )
{
if ( this->isEmpty() )
return;
for ( int i = 0; i < this->count(); ++i )
givePtr( (*this)[i] )->transform( matrix );
}
class OKULARCORE_EXPORT RegularAreaRect : public RegularArea< NormalizedRect, QRect >
{
public:
RegularAreaRect();
RegularAreaRect( const RegularAreaRect& rar );
~RegularAreaRect();
RegularAreaRect& operator=( const RegularAreaRect& rar );
private:
class Private;
Private * const d;
};
/**
* This class stores the coordinates of a highlighting area
* together with the id of the highlight owner and the color.
*/
class HighlightAreaRect : public RegularAreaRect
{
public:
/**
* Creates a new highlight area rect with the coordinates of
* the given @p area.
*/
HighlightAreaRect( const RegularAreaRect *area = 0 );
/**
* The search ID of the highlight owner.
*/
int s_id;
/**
* The color of the highlight.
*/
QColor color;
};
}
uint qHash(const Okular::NormalizedRect& r, uint seed = 0);
#ifndef QT_NO_DEBUG_STREAM
/**
* Debug operator for normalized @p point.
*/
OKULARCORE_EXPORT QDebug operator<<( QDebug str, const Okular::NormalizedPoint &point );
/**
* Debug operator for normalized @p rect.
*/
OKULARCORE_EXPORT QDebug operator<<( QDebug str, const Okular::NormalizedRect &rect );
#endif
#endif