okular/core/area.h
Albert Astals Cid 19d98d6a74 Run clang-format
find . \( -name "*.cpp" -or -name "*.h"  -or -name "*.c"  -or -name "*.cc" \) -exec clang-format -i {} \;

If you reached this file doing a git blame, please see README.clang-format (added 2 commits in the future of this one)
2020-07-11 09:17:33 +02:00

964 lines
29 KiB
C++

/***************************************************************************
* Copyright (C) 2004-05 by Enrico Ros <eros.kde@email.it> *
* Copyright (C) 2005 by Piotr Szymanski <niedakh@gmail.com> *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
***************************************************************************/
#ifndef _OKULAR_AREA_H_
#define _OKULAR_AREA_H_
#include <math.h>
#include <QColor>
#include <QDebug>
#include <QList>
#include <QPainterPath>
#include <QTransform>
#include "global.h"
#include "okularcore_export.h"
class QPolygonF;
class QRect;
namespace Okular
{
class Annotation;
class Action;
class NormalizedShape;
/**
* NormalizedPoint is a helper class which stores the coordinates
* of a normalized point.
*
* @par Normalized Coordinate System
* @parblock
* Normalized means that the coordinates are always between 0 and 1,
* unless the point shall be outside of the reference area.
*
* The reference area is a rectangle, and all normalized points
* with coordinates of 0 or 1 describe its edges.
*
* This allows to locate things on a reference area without knowing its
* (current or future) actual size. When the reference area is resized,
* all things which are described in normalized coordinates keep their
* proportional position on the area.
* @endparblock
*
* @par Transformation to and from Normalized Coordinates
* @parblock
* To transform normalized coordinates to coordinates on the reference area,
* just multiply them with the size of the reference area.
*
* To get normalized coordinates from a point on the reference area,
* just divide its coordinates with the size of the reference area.
*
* Many methods have parameters @c xScale and @c yScale,
* these are equal to the size of the reference area.
* @endparblock
*
* @par Normalized Coordinate System Applied to Pages
* @parblock
* Okular uses a normalized coordinate system mainly to describe
* positions on pages.
* This is useful because pages can be shown in different sizes (zoom),
* but all objects shall keep their proportional position on the page.
*
* Okular maps from page to normalized coordinates as follows:
* * Left edge of the page: x = 0
* * Right edge of the page: x = 1
* * Top edge of the page: y = 0
* * Bottom edge of the page: y = 1
* @endparblock
*
* @par Example: Draw a Point on a Page
* @parblock
* The point is given in normalized coordinates (0.5, 0.3).
*
* If you want to draw it on a 800x600 page,
* just multiply the x coordinate (0.5) with the page width (800),
* and the y coordinate (0.3) with the page height (600).
* So, the point will be drawn on the page at (400, 180).
*
* That allows you to zoom the page by just multiplying the normalized points with the
* zoomed page size.
* @endparblock
*
* @par Example: Select Text on a Page using Mouse Events
* @parblock
* The position of all glyphs and words is stored in normalized coordinates.
* (This is what TextPage actually does.)
* Mouse press and release events are given in page coordinates (400, 180) and (600, 450),
* while the page has a size of 800x600.
*
* If you want to search all text between the mouse click and release event,
* you need their normalized coordinates.
* Just divide the x coordinates (400 and 600) by the page width (800),
* and the y coordinates (180 and 450) by the page height (600).
* So, you have to search for all glyphs between (0.5, 0.3) and (0.75, 0.75).
*
* That allows you to process all glyphs and words without
* having to keep any of their positions in sync with the page.
* @endparblock
*
* @par Geometric operations
* @parblock
* NormalizedPoint supports basic geometric operations.
* * You can transform it with a QTransform matrix.
* * With the size of the reference area, you can calculate the squared
* absolute distance to another NormalizedPoint or a line of two NormalizedPoints.
*
* NormalizedRect provides additional geometric operations for rectangles.
* @endparblock
*
* @see NormalizedRect
*/
class OKULARCORE_EXPORT NormalizedPoint
{
public:
/**
* Creates a normalized point at (0, 0).
*/
NormalizedPoint();
/**
* Creates a new normalized point with the normalized coordinates (@p x, @p y ).
*/
NormalizedPoint(double x, double y);
/**
* Creates a new normalized point from an absolute point (@p x, @p y)
* on a reference area of size @p xScale x @p yScale.
*/
NormalizedPoint(int x, int y, int xScale, int yScale);
/**
* @internal
*/
NormalizedPoint &operator=(const NormalizedPoint &);
NormalizedPoint(const NormalizedPoint &);
~NormalizedPoint();
/**
* Transforms the normalized point with the operations defined by @p matrix.
*/
void transform(const QTransform &matrix);
/**
* Returns squared distance to normalized point (@p x, @p y)
* on a reference area of size @p xScale x @p yScale.
* @since 0.17 (KDE 4.11)
*/
double distanceSqr(double x, double y, double xScale, double yScale) const;
/**
* Returns squared distance of the normalized point (@p x, @p y)
* to the line segment from @p start to @p end
* on a reference area of size @p xScale x @p yScale.
* @since 0.17 (KDE 4.11)
*/
static double distanceSqr(double x, double y, double xScale, double yScale, const NormalizedPoint &start, const NormalizedPoint &end);
/**
* The normalized x coordinate.
*/
double x;
/**
* The normalized y coordinate.
*/
double y;
};
/**
* A NormalizedRect is a rectangle which can be defined by two NormalizedPoints.
*
* It describes a rectangular area on a reference area of undefined size.
* For more information about the normalized coordinate system, see NormalizedPoint.
*
* In Okular, NormalizedRect can be used e. g. to describe bounding boxes of TextEntity objects,
* and the highlight area of text selections.
*
* If you need to describe an area which consists of multiple rectangles,
* you can use RegularAreaRect instead.
*
* @see NormalizedPoint, RegularAreaRect, TextEntity
*/
class OKULARCORE_EXPORT NormalizedRect
{
public:
/**
* Creates a null normalized rectangle.
* @see isNull()
*/
NormalizedRect();
/**
* Creates a normalized rectangle with the normalized coordinates
* @p left, @p top, @p right, @p bottom.
*
* If you need the x, y, width and height coordinates use the
* following formulas:
*
* @li x = left
* @li y = top
* @li width = right - left
* @li height = bottom - top
*
* @note
* The coordinates for @p left and @p top should be lower than
* @p right and @p bottom, respectively.
* At negative width or height the behaviour of some operations is undefined.
*/
NormalizedRect(double left, double top, double right, double bottom);
/**
* Creates a normalized rectangle from the given @p rectangle
* on a reference area of size @p xScale x @p yScale.
*
* @note
* The rectangle should have positive width and height.
* You can use e. g. QRect::normalize() to ensure this.
* At negative width or height the behaviour of some operations is undefined.
*/
NormalizedRect(const QRect &rectangle, double xScale, double yScale);
/**
* @internal
*/
NormalizedRect(const NormalizedRect &);
/**
* @internal
*/
NormalizedRect &operator=(const NormalizedRect &other);
~NormalizedRect();
/**
* Build a normalized rect from a QRectF, which already has normalized coordinates.
*/
static NormalizedRect fromQRectF(const QRectF &rect);
/**
* Returns whether this normalized rectangle is a null normalized rect.
*/
bool isNull() const;
/**
* Returns whether the normalized rectangle contains the normalized point
* (@p x, @p y).
*/
bool contains(double x, double y) const;
/**
* Returns whether the normalized rectangle intersects the @p other normalized
* rectangle.
*/
bool intersects(const NormalizedRect &other) const;
/**
* This is an overloaded member function, provided for convenience. It behaves essentially
* like the above function.
*/
bool intersects(const NormalizedRect *other) const;
/**
* Returns whether the normalized rectangle intersects an other normalized
* rectangle, which is defined by @p left, @p top, @p right and @p bottom.
*/
bool intersects(double left, double top, double right, double bottom) const;
/**
* Returns the rectangle mapped to a reference area of @p xScale x @p yScale.
*/
QRect geometry(int xScale, int yScale) const;
/**
* Same functionality as geometry, but the output is now rounded before typecasting to int
*
* @since 0.14 (KDE 4.8)
*/
QRect roundedGeometry(int xScale, int yScale) const;
/**
* Returns the normalized bounding rectangle of the normalized rectangle
* combined with the @p other normalized rectangle.
*/
NormalizedRect operator|(const NormalizedRect &other) const;
/**
* Sets the normalized rectangle to the normalized bounding rectangle
* of itself combined with the @p other normalized rectangle.
*/
NormalizedRect &operator|=(const NormalizedRect &other);
/**
* Returns the intersection of this normalized rectangle with the specified
* @p other. If the rects do not intersect then the result is a null rectangle.
*
* @since 0.7 (KDE 4.1)
*/
NormalizedRect operator&(const NormalizedRect &other) const;
/**
* Returns whether the normalized rectangle is equal to the @p other
* normalized rectangle.
*/
bool operator==(const NormalizedRect &other) const;
/**
* Returns the center of the rectangle
* @since 0.10 (KDE 4.4)
*/
NormalizedPoint center() const;
/**
* Transforms the normalized rectangle with the operations defined by @p matrix.
*/
void transform(const QTransform &matrix);
/**
* Returns true if the point @p pt is located below the bottom of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isBottom(const NormalizedPoint &pt) const
{
return bottom < pt.y;
}
/**
* Returns true if the point @p pt is located above the top of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isTop(const NormalizedPoint &pt) const
{
return top > pt.y;
}
/**
* Returns true if the point @p pt is located below the top of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isBottomOrLevel(const NormalizedPoint &pt) const
{
return top < pt.y;
}
/**
* Returns true if the point @p pt is located above the bottom of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isTopOrLevel(const NormalizedPoint &pt) const
{
return bottom > pt.y;
}
/**
* Returns true if the point @p pt is located to the right of the left edge of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isLeft(const NormalizedPoint &pt) const
{
return left < pt.x;
}
/**
* Returns true if the point @p pt is located to the left of the right edge of the rectangle
* @since 0.14 (KDE 4.8)
*/
bool isRight(const NormalizedPoint &pt) const
{
return right > pt.x;
}
/**
* Returns the squared distance of the normalized point (@p x, @p y)
* to the closest edge, or 0 if the point is within the rectangle;
* using a reference area of size @p xScale x @p yScale
* @since 0.17 (KDE 4.11)
*/
double distanceSqr(double x, double y, double xScale, double yScale) const
{
double distX = 0;
if (x < left)
distX = left - x;
else if (x > right)
distX = x - right;
double distY = 0;
if (top > y)
distY = top - y;
else if (bottom < y)
distY = y - bottom;
return pow(distX * xScale, 2) + pow(distY * yScale, 2);
}
/// @since 1.4
double width() const
{
return right - left;
}
/// @since 1.4
double height() const
{
return bottom - top;
}
/**
* The normalized left coordinate.
*/
double left;
/**
* The normalized top coordinate.
*/
double top;
/**
* The normalized right coordinate.
*/
double right;
/**
* The normalized bottom coordinate.
*/
double bottom;
};
// KDE_DUMMY_QHASH_FUNCTION(NormalizedRect)
/**
* @short An area with normalized coordinates that contains a reference to an object.
*
* These areas ("rects") contain a pointer to a document object
* (such as a hyperlink, an action, or something like that).
* The pointer is read and stored as 'void pointer' so cast is
* performed by accessors based on the value returned by objectType(). Objects
* are reparented to this class.
*
* Type / Class correspondence tab:
* - Action : class Action: description of an action
* - Image : class Image : description of an image (n/a)
* - Annotation: class Annotation: description of an annotation
*
* For more information about the normalized coordinate system, see NormalizedPoint.
*
* @see NormalizedPoint
*/
class OKULARCORE_EXPORT ObjectRect
{
public:
/**
* Describes the type of storable object.
*/
enum ObjectType {
Action, ///< An action
Image, ///< An image
OAnnotation, ///< An annotation
SourceRef ///< A source reference
};
/**
* Creates a new object rectangle.
*
* @param left The left coordinate of the rectangle.
* @param top The top coordinate of the rectangle.
* @param right The right coordinate of the rectangle.
* @param bottom The bottom coordinate of the rectangle.
* @param ellipse If true the rectangle describes an ellipse.
* @param type The type of the storable object @see ObjectType.
* @param object The pointer to the storable object.
*/
ObjectRect(double left, double top, double right, double bottom, bool ellipse, ObjectType type, void *object);
/**
* This is an overloaded member function, provided for convenience.
*/
ObjectRect(const NormalizedRect &r, bool ellipse, ObjectType type, void *object);
/**
* This is an overloaded member function, provided for convenience.
*/
ObjectRect(const QPolygonF &poly, ObjectType type, void *object);
/**
* Destroys the object rectangle.
*/
virtual ~ObjectRect();
ObjectRect(const ObjectRect &o) = delete;
ObjectRect &operator=(const ObjectRect &o) = delete;
/**
* Returns the object type of the object rectangle.
* @see ObjectType
*/
ObjectType objectType() const;
/**
* Returns the storable object of the object rectangle.
*/
const void *object() const;
/**
* Returns the region that is covered by the object rectangle.
*/
const QPainterPath &region() const;
/**
* Returns the bounding rect of the object rectangle for the
* scaling factor @p xScale and @p yScale.
*/
virtual QRect boundingRect(double xScale, double yScale) const;
/**
* Returns whether the object rectangle contains the point with absolute coordinates
* (@p x, @p y) at a page size of @p xScale x @p yScale.
*/
virtual bool contains(double x, double y, double xScale, double yScale) const;
/**
* Transforms the object rectangle with the operations defined by @p matrix.
*/
virtual void transform(const QTransform &matrix);
/**
* Returns the squared distance between the object
* and the point with
* normalized coordinates (@p x, @p y)
* at a page size of @p xScale x @p yScale.
*
* @since 0.8.2 (KDE 4.2.2)
*/
// FIXME this should most probably be a virtual method
double distanceSqr(double x, double y, double xScale, double yScale) const;
protected:
ObjectType m_objectType;
void *m_object;
QPainterPath m_path;
QPainterPath m_transformedPath;
};
/**
* This class describes the object rectangle for an annotation.
*/
class OKULARCORE_EXPORT AnnotationObjectRect : public ObjectRect
{
public:
/**
* Creates a new annotation object rectangle with the
* given @p annotation.
*/
explicit AnnotationObjectRect(Annotation *annotation);
/**
* Destroys the annotation object rectangle.
*/
~AnnotationObjectRect() override;
/**
* Returns the annotation object of the annotation object rectangle.
*/
Annotation *annotation() const;
/**
* Returns the bounding rect of the annotation object rectangle for the
* scaling factor @p xScale and @p yScale.
*/
QRect boundingRect(double xScale, double yScale) const override;
/**
* Returns whether the annotation object rectangle contains the point @p x, @p y for the
* scaling factor @p xScale and @p yScale.
*/
bool contains(double x, double y, double xScale, double yScale) const override;
/**
* Transforms the annotation object rectangle with the operations defined by @p matrix.
*/
void transform(const QTransform &matrix) override;
private:
Annotation *m_annotation;
};
/**
* This class describes the object rectangle for a source reference.
*/
class OKULARCORE_EXPORT SourceRefObjectRect : public ObjectRect
{
friend class ObjectRect;
public:
/**
* Creates a new source reference object rectangle.
*
* @param point The point of the source reference.
* @param srcRef The storable source reference object.
*/
SourceRefObjectRect(const NormalizedPoint &point, void *srcRef);
/**
* Returns the bounding rect of the source reference object rectangle for the
* scaling factor @p xScale and @p yScale.
*/
QRect boundingRect(double xScale, double yScale) const override;
/**
* Returns whether the source reference object rectangle contains the point @p x, @p y for the
* scaling factor @p xScale and @p yScale.
*/
bool contains(double x, double y, double xScale, double yScale) const override;
private:
NormalizedPoint m_point;
};
/**
* This class is an object rect that doesn't own the given pointer, i.e. won't delete it on destruction
* @since 1.7
*/
class OKULARCORE_EXPORT NonOwningObjectRect : public ObjectRect
{
public:
NonOwningObjectRect(double left, double top, double right, double bottom, bool ellipse, ObjectType type, void *object);
~NonOwningObjectRect() override;
};
/// @cond PRIVATE
/** @internal */
/** @internal */
template<typename T> T *givePtr(T &t)
{
return &t;
}
/** @internal */
template<typename T> T &deref(T &t)
{
return t;
}
/// @endcond
/**
* @short An area with normalized coordinates, consisting of NormalizedShape objects.
*
* This is a template class to describe an area which consists of
* multiple shapes of the same type, intersecting or non-intersecting.
* The coordinates are normalized, and can be mapped to a reference area of defined size.
* For more information about the normalized coordinate system, see NormalizedPoint.
*
* Class NormalizedShape \b must have the following functions/operators defined:
* - bool contains( double, double ), whether it contains the given NormalizedPoint
* - bool intersects( NormalizedShape )
* - bool isNull()
* - Shape geometry( int, int ), which maps to the reference area
* - operator|=( NormalizedShape ), which unites two NormalizedShape's
*
* @see RegularAreaRect, NormalizedPoint
*/
template<class NormalizedShape, class Shape> class RegularArea : public QList<NormalizedShape>
{
public:
/**
* Returns whether this area contains the normalized point (@p x, @p y).
*/
bool contains(double x, double y) const;
/**
* Returns whether this area contains a NormalizedShape object that equals @p shape.
*
* @note
* The original NormalizedShape objects can be lost if simplify() was called.
*/
bool contains(const NormalizedShape &shape) const;
/**
* Returns whether this area intersects with the given @p area.
*/
bool intersects(const RegularArea<NormalizedShape, Shape> *area) const;
/**
* Returns whether the regular area intersects with the given @p shape.
*/
bool intersects(const NormalizedShape &shape) const;
/**
* Appends the given @p area to this area.
*/
void appendArea(const RegularArea<NormalizedShape, Shape> *area);
/**
* Appends the given @p shape to this area.
*/
void appendShape(const NormalizedShape &shape, MergeSide side = MergeAll);
/**
* Simplifies this regular area by merging its intersecting subareas.
* This might change the effective geometry of this area.
*/
void simplify();
/**
* Returns whether the regular area is a null area.
*/
bool isNull() const;
/**
* Returns the subareas of this regular area
* mapped to a reference area of size @p xScale x @p yScale,
* then translated by @p dx and @p dy.
*/
QList<Shape> geometry(int xScale, int yScale, int dx = 0, int dy = 0) const;
/**
* Transforms the regular area with the operations defined by @p matrix.
*/
void transform(const QTransform &matrix);
};
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::simplify()
{
#ifdef DEBUG_REGULARAREA
int prev_end = this->count();
#endif
int end = this->count() - 1, x = 0;
for (int i = 0; i < end; ++i) {
if (givePtr((*this)[x])->intersects(deref((*this)[i + 1]))) {
deref((*this)[x]) |= deref((*this)[i + 1]);
this->removeAt(i + 1);
--end;
--i;
} else {
x = i + 1;
}
}
#ifdef DEBUG_REGULARAREA
qCDebug(OkularCoreDebug) << "from" << prev_end << "to" << this->count();
#endif
}
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::isNull() const
{
if (this->isEmpty())
return true;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for (; it != itEnd; ++it)
if (!givePtr(*it)->isNull())
return false;
return true;
}
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::intersects(const NormalizedShape &shape) const
{
if (this->isEmpty())
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for (; it != itEnd; ++it)
if (!givePtr(*it)->isNull() && givePtr(*it)->intersects(shape))
return true;
return false;
}
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::intersects(const RegularArea<NormalizedShape, Shape> *area) const
{
if (this->isEmpty())
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for (; it != itEnd; ++it) {
typename QList<NormalizedShape>::const_iterator areaIt = area->begin(), areaItEnd = area->end();
for (; areaIt != areaItEnd; ++areaIt) {
if (!(*it).isNull() && (*it).intersects(*areaIt))
return true;
}
}
return false;
}
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::appendArea(const RegularArea<NormalizedShape, Shape> *area)
{
typename QList<NormalizedShape>::const_iterator areaIt = area->begin(), areaItEnd = area->end();
for (; areaIt != areaItEnd; ++areaIt)
this->append(*areaIt);
}
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::appendShape(const NormalizedShape &shape, MergeSide side)
{
int size = this->count();
// if the list is empty, adds the shape normally
if (size == 0) {
this->append(shape);
} else {
bool intersection = false;
NormalizedShape &last = (*this)[size - 1];
#define O_LAST givePtr(last)
#define O_LAST_R O_LAST->right
#define O_LAST_L O_LAST->left
#define O_LAST_T O_LAST->top
#define O_LAST_B O_LAST->bottom
#define O_NEW givePtr(shape)
#define O_NEW_R O_NEW->right
#define O_NEW_L O_NEW->left
#define O_NEW_T O_NEW->top
#define O_NEW_B O_NEW->bottom
switch (side) {
case MergeRight:
intersection = (O_LAST_R >= O_NEW_L) && (O_LAST_L <= O_NEW_R) && ((O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B) || (O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B));
break;
case MergeBottom:
intersection = (O_LAST_B >= O_NEW_T) && (O_LAST_T <= O_NEW_B) && ((O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L) || (O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L));
break;
case MergeLeft:
intersection = (O_LAST_L <= O_NEW_R) && (O_LAST_R >= O_NEW_L) && ((O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B) || (O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B));
break;
case MergeTop:
intersection = (O_LAST_T <= O_NEW_B) && (O_LAST_B >= O_NEW_T) && ((O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L) || (O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L));
break;
case MergeAll:
intersection = O_LAST->intersects(shape);
break;
}
#undef O_LAST
#undef O_LAST_R
#undef O_LAST_L
#undef O_LAST_T
#undef O_LAST_B
#undef O_NEW
#undef O_NEW_R
#undef O_NEW_L
#undef O_NEW_T
#undef O_NEW_B
// if the new shape intersects with the last shape in the list, then
// merge it with that and delete the shape
if (intersection) {
deref((*this)[size - 1]) |= deref(shape);
} else
this->append(shape);
}
}
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::contains(double x, double y) const
{
if (this->isEmpty())
return false;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for (; it != itEnd; ++it)
if ((*it).contains(x, y))
return true;
return false;
}
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::contains(const NormalizedShape &shape) const
{
if (this->isEmpty())
return false;
return QList<NormalizedShape>::contains(shape);
}
template<class NormalizedShape, class Shape> QList<Shape> RegularArea<NormalizedShape, Shape>::geometry(int xScale, int yScale, int dx, int dy) const
{
if (this->isEmpty())
return QList<Shape>();
QList<Shape> ret;
Shape t;
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
for (; it != itEnd; ++it) {
t = givePtr(*it)->geometry(xScale, yScale);
t.translate(dx, dy);
ret.append(t);
}
return ret;
}
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::transform(const QTransform &matrix)
{
if (this->isEmpty())
return;
for (int i = 0; i < this->count(); ++i)
givePtr((*this)[i])->transform(matrix);
}
/**
* This is a list of NormalizedRect, to describe an area consisting of
* multiple rectangles using normalized coordinates.
*
* This area can be mapped to a reference area, resulting in a list of QRects.
* For more information about the normalized coordinate system, see NormalizedPoint.
*
* Okular uses this area e. g. to describe a text highlight area,
* which consists of multiple, intersecting or non-intersecting rectangles.
*
* @see NormalizedRect, NormalizedPoint
*/
class OKULARCORE_EXPORT RegularAreaRect : public RegularArea<NormalizedRect, QRect>
{
public:
RegularAreaRect();
RegularAreaRect(const RegularAreaRect &rar);
~RegularAreaRect();
RegularAreaRect &operator=(const RegularAreaRect &rar);
private:
class Private;
Private *const d;
};
/**
* This class stores the geometry of a highlighting area in normalized coordinates,
* together with highlighting specific information.
*/
class HighlightAreaRect : public RegularAreaRect
{
public:
/**
* Creates a new highlight area rect with the coordinates of
* the given @p area.
*/
explicit HighlightAreaRect(const RegularAreaRect *area = nullptr);
/**
* The search ID of the highlight owner.
*/
int s_id;
/**
* The color of the highlight.
*/
QColor color;
};
uint qHash(const Okular::NormalizedRect &r, uint seed = 0);
}
#ifndef QT_NO_DEBUG_STREAM
/**
* Debug operator for normalized @p point.
*/
OKULARCORE_EXPORT QDebug operator<<(QDebug str, const Okular::NormalizedPoint &point);
/**
* Debug operator for normalized @p rect.
*/
OKULARCORE_EXPORT QDebug operator<<(QDebug str, const Okular::NormalizedRect &rect);
#endif
#endif