mirror of
https://invent.kde.org/graphics/okular
synced 2024-11-05 18:34:53 +00:00
8c61b6a2b4
It turns out that there were two issues at play here: rounding errors meant that pixmaps were almost never the same size as pagePainter thought the tiles should be, and the tile-is-the-size-it-should-be code path was broken (but only hit in rare cases, seemingly at random). To help with rounding errors in the future, I added a geometryF function to NormalizedRect that returns a QRectF. In general, device-independent-pixel points/rects should be floating point, and device-pixel rects should be integer.
985 lines
29 KiB
C++
985 lines
29 KiB
C++
/*
|
|
SPDX-FileCopyrightText: 2004-05 Enrico Ros <eros.kde@email.it>
|
|
SPDX-FileCopyrightText: 2005 Piotr Szymanski <niedakh@gmail.com>
|
|
SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
|
|
#ifndef _OKULAR_AREA_H_
|
|
#define _OKULAR_AREA_H_
|
|
|
|
#include <math.h>
|
|
|
|
#include <QColor>
|
|
#include <QDebug>
|
|
#include <QList>
|
|
#include <QPainterPath>
|
|
#include <QTransform>
|
|
|
|
#include "global.h"
|
|
#include "okularcore_export.h"
|
|
|
|
class QPolygonF;
|
|
class QRect;
|
|
|
|
namespace Okular
|
|
{
|
|
class Annotation;
|
|
class Action;
|
|
class NormalizedShape;
|
|
|
|
/**
|
|
* NormalizedPoint is a helper class which stores the coordinates
|
|
* of a normalized point.
|
|
*
|
|
* @par Normalized Coordinate System
|
|
* @parblock
|
|
* Normalized means that the coordinates are always between 0 and 1,
|
|
* unless the point shall be outside of the reference area.
|
|
*
|
|
* The reference area is a rectangle, and all normalized points
|
|
* with coordinates of 0 or 1 describe its edges.
|
|
*
|
|
* This allows to locate things on a reference area without knowing its
|
|
* (current or future) actual size. When the reference area is resized,
|
|
* all things which are described in normalized coordinates keep their
|
|
* proportional position on the area.
|
|
* @endparblock
|
|
*
|
|
* @par Transformation to and from Normalized Coordinates
|
|
* @parblock
|
|
* To transform normalized coordinates to coordinates on the reference area,
|
|
* just multiply them with the size of the reference area.
|
|
*
|
|
* To get normalized coordinates from a point on the reference area,
|
|
* just divide its coordinates with the size of the reference area.
|
|
*
|
|
* Many methods have parameters @c xScale and @c yScale,
|
|
* these are equal to the size of the reference area.
|
|
* @endparblock
|
|
*
|
|
* @par Normalized Coordinate System Applied to Pages
|
|
* @parblock
|
|
* Okular uses a normalized coordinate system mainly to describe
|
|
* positions on pages.
|
|
* This is useful because pages can be shown in different sizes (zoom),
|
|
* but all objects shall keep their proportional position on the page.
|
|
*
|
|
* Okular maps from page to normalized coordinates as follows:
|
|
* * Left edge of the page: x = 0
|
|
* * Right edge of the page: x = 1
|
|
* * Top edge of the page: y = 0
|
|
* * Bottom edge of the page: y = 1
|
|
* @endparblock
|
|
*
|
|
* @par Example: Draw a Point on a Page
|
|
* @parblock
|
|
* The point is given in normalized coordinates (0.5, 0.3).
|
|
*
|
|
* If you want to draw it on a 800x600 page,
|
|
* just multiply the x coordinate (0.5) with the page width (800),
|
|
* and the y coordinate (0.3) with the page height (600).
|
|
* So, the point will be drawn on the page at (400, 180).
|
|
*
|
|
* That allows you to zoom the page by just multiplying the normalized points with the
|
|
* zoomed page size.
|
|
* @endparblock
|
|
*
|
|
* @par Example: Select Text on a Page using Mouse Events
|
|
* @parblock
|
|
* The position of all glyphs and words is stored in normalized coordinates.
|
|
* (This is what TextPage actually does.)
|
|
* Mouse press and release events are given in page coordinates (400, 180) and (600, 450),
|
|
* while the page has a size of 800x600.
|
|
*
|
|
* If you want to search all text between the mouse click and release event,
|
|
* you need their normalized coordinates.
|
|
* Just divide the x coordinates (400 and 600) by the page width (800),
|
|
* and the y coordinates (180 and 450) by the page height (600).
|
|
* So, you have to search for all glyphs between (0.5, 0.3) and (0.75, 0.75).
|
|
*
|
|
* That allows you to process all glyphs and words without
|
|
* having to keep any of their positions in sync with the page.
|
|
* @endparblock
|
|
*
|
|
* @par Geometric operations
|
|
* @parblock
|
|
* NormalizedPoint supports basic geometric operations.
|
|
* * You can transform it with a QTransform matrix.
|
|
* * With the size of the reference area, you can calculate the squared
|
|
* absolute distance to another NormalizedPoint or a line of two NormalizedPoints.
|
|
*
|
|
* NormalizedRect provides additional geometric operations for rectangles.
|
|
* @endparblock
|
|
*
|
|
* @see NormalizedRect
|
|
*/
|
|
class OKULARCORE_EXPORT NormalizedPoint
|
|
{
|
|
public:
|
|
/**
|
|
* Creates a normalized point at (0, 0).
|
|
*/
|
|
NormalizedPoint();
|
|
|
|
/**
|
|
* Creates a new normalized point with the normalized coordinates (@p x, @p y ).
|
|
*/
|
|
NormalizedPoint(double x, double y);
|
|
|
|
/**
|
|
* Creates a new normalized point from an absolute point (@p x, @p y)
|
|
* on a reference area of size @p xScale x @p yScale.
|
|
*/
|
|
NormalizedPoint(int x, int y, int xScale, int yScale);
|
|
|
|
/**
|
|
* @internal
|
|
*/
|
|
NormalizedPoint &operator=(const NormalizedPoint &);
|
|
|
|
NormalizedPoint(const NormalizedPoint &);
|
|
~NormalizedPoint() = default;
|
|
|
|
/**
|
|
* Transforms the normalized point with the operations defined by @p matrix.
|
|
*/
|
|
void transform(const QTransform &matrix);
|
|
|
|
/**
|
|
* Returns squared distance to normalized point (@p x, @p y)
|
|
* on a reference area of size @p xScale x @p yScale.
|
|
* @since 0.17 (KDE 4.11)
|
|
*/
|
|
double distanceSqr(double x, double y, double xScale, double yScale) const;
|
|
|
|
/**
|
|
* Returns squared distance of the normalized point (@p x, @p y)
|
|
* to the line segment from @p start to @p end
|
|
* on a reference area of size @p xScale x @p yScale.
|
|
* @since 0.17 (KDE 4.11)
|
|
*/
|
|
static double distanceSqr(double x, double y, double xScale, double yScale, const NormalizedPoint &start, const NormalizedPoint &end);
|
|
|
|
/**
|
|
* The normalized x coordinate.
|
|
*/
|
|
double x;
|
|
|
|
/**
|
|
* The normalized y coordinate.
|
|
*/
|
|
double y;
|
|
};
|
|
|
|
/**
|
|
* A NormalizedRect is a rectangle which can be defined by two NormalizedPoints.
|
|
*
|
|
* It describes a rectangular area on a reference area of undefined size.
|
|
* For more information about the normalized coordinate system, see NormalizedPoint.
|
|
*
|
|
* In Okular, NormalizedRect can be used e. g. to describe bounding boxes of TextEntity objects,
|
|
* and the highlight area of text selections.
|
|
*
|
|
* If you need to describe an area which consists of multiple rectangles,
|
|
* you can use RegularAreaRect instead.
|
|
*
|
|
* @see NormalizedPoint, RegularAreaRect, TextEntity
|
|
*/
|
|
class OKULARCORE_EXPORT NormalizedRect
|
|
{
|
|
public:
|
|
/**
|
|
* Creates a null normalized rectangle.
|
|
* @see isNull()
|
|
*/
|
|
NormalizedRect();
|
|
|
|
/**
|
|
* Creates a normalized rectangle with the normalized coordinates
|
|
* @p left, @p top, @p right, @p bottom.
|
|
*
|
|
* If you need the x, y, width and height coordinates use the
|
|
* following formulas:
|
|
*
|
|
* @li x = left
|
|
* @li y = top
|
|
* @li width = right - left
|
|
* @li height = bottom - top
|
|
*
|
|
* @note
|
|
* The coordinates for @p left and @p top should be lower than
|
|
* @p right and @p bottom, respectively.
|
|
* At negative width or height the behaviour of some operations is undefined.
|
|
*/
|
|
NormalizedRect(double left, double top, double right, double bottom);
|
|
|
|
/**
|
|
* Creates a normalized rectangle from the given @p rectangle
|
|
* on a reference area of size @p xScale x @p yScale.
|
|
*
|
|
* @note
|
|
* The rectangle should have positive width and height.
|
|
* You can use e. g. QRect::normalize() to ensure this.
|
|
* At negative width or height the behaviour of some operations is undefined.
|
|
*/
|
|
NormalizedRect(const QRect rectangle, double xScale, double yScale);
|
|
|
|
/**
|
|
* @internal
|
|
*/
|
|
NormalizedRect(const NormalizedRect &);
|
|
|
|
/**
|
|
* @internal
|
|
*/
|
|
NormalizedRect &operator=(const NormalizedRect &other);
|
|
|
|
~NormalizedRect() = default;
|
|
|
|
/**
|
|
* Build a normalized rect from a QRectF, which already has normalized coordinates.
|
|
*/
|
|
static NormalizedRect fromQRectF(const QRectF &rect);
|
|
|
|
/**
|
|
* Returns whether this normalized rectangle is a null normalized rect.
|
|
*/
|
|
bool isNull() const;
|
|
|
|
/**
|
|
* Returns whether the normalized rectangle contains the normalized point
|
|
* (@p x, @p y).
|
|
*/
|
|
bool contains(double x, double y) const;
|
|
|
|
/**
|
|
* Returns whether the normalized rectangle intersects the @p other normalized
|
|
* rectangle.
|
|
*/
|
|
bool intersects(const NormalizedRect &other) const;
|
|
|
|
/**
|
|
* This is an overloaded member function, provided for convenience. It behaves essentially
|
|
* like the above function.
|
|
*/
|
|
bool intersects(const NormalizedRect *other) const;
|
|
|
|
/**
|
|
* Returns whether the normalized rectangle intersects an other normalized
|
|
* rectangle, which is defined by @p left, @p top, @p right and @p bottom.
|
|
*/
|
|
bool intersects(double left, double top, double right, double bottom) const;
|
|
|
|
/**
|
|
* Returns the rectangle mapped to a reference area of @p xScale x @p yScale.
|
|
*/
|
|
QRect geometry(int xScale, int yScale) const;
|
|
|
|
/**
|
|
* Same functionality as geometry, but the output is now rounded before typecasting to int
|
|
*
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
QRect roundedGeometry(int xScale, int yScale) const;
|
|
|
|
/**
|
|
* Same functionality as geometry, but nothing is converted into int.
|
|
*/
|
|
QRectF geometryF(float xScale, float yScale) const;
|
|
|
|
/**
|
|
* Returns the normalized bounding rectangle of the normalized rectangle
|
|
* combined with the @p other normalized rectangle.
|
|
*/
|
|
NormalizedRect operator|(const NormalizedRect &other) const;
|
|
|
|
/**
|
|
* Sets the normalized rectangle to the normalized bounding rectangle
|
|
* of itself combined with the @p other normalized rectangle.
|
|
*/
|
|
NormalizedRect &operator|=(const NormalizedRect &other);
|
|
|
|
/**
|
|
* Returns the intersection of this normalized rectangle with the specified
|
|
* @p other. If the rects do not intersect then the result is a null rectangle.
|
|
*
|
|
* @since 0.7 (KDE 4.1)
|
|
*/
|
|
NormalizedRect operator&(const NormalizedRect &other) const;
|
|
|
|
/**
|
|
* Returns whether the normalized rectangle is equal to the @p other
|
|
* normalized rectangle.
|
|
*/
|
|
bool operator==(const NormalizedRect &other) const;
|
|
|
|
/**
|
|
* Returns the center of the rectangle
|
|
* @since 0.10 (KDE 4.4)
|
|
*/
|
|
NormalizedPoint center() const;
|
|
|
|
/**
|
|
* Transforms the normalized rectangle with the operations defined by @p matrix.
|
|
*/
|
|
void transform(const QTransform &matrix);
|
|
|
|
/**
|
|
* Returns true if the point @p pt is located below the bottom of the rectangle
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
bool isBottom(const NormalizedPoint &pt) const
|
|
{
|
|
return bottom < pt.y;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the point @p pt is located above the top of the rectangle
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
bool isTop(const NormalizedPoint &pt) const
|
|
{
|
|
return top > pt.y;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the point @p pt is located below the top of the rectangle
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
bool isBottomOrLevel(const NormalizedPoint &pt) const
|
|
{
|
|
return top < pt.y;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the point @p pt is located above the bottom of the rectangle
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
bool isTopOrLevel(const NormalizedPoint &pt) const
|
|
{
|
|
return bottom > pt.y;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the point @p pt is located to the right of the left edge of the rectangle
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
bool isLeft(const NormalizedPoint &pt) const
|
|
{
|
|
return left < pt.x;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the point @p pt is located to the left of the right edge of the rectangle
|
|
* @since 0.14 (KDE 4.8)
|
|
*/
|
|
bool isRight(const NormalizedPoint &pt) const
|
|
{
|
|
return right > pt.x;
|
|
}
|
|
|
|
/**
|
|
* Returns the squared distance of the normalized point (@p x, @p y)
|
|
* to the closest edge, or 0 if the point is within the rectangle;
|
|
* using a reference area of size @p xScale x @p yScale
|
|
* @since 0.17 (KDE 4.11)
|
|
*/
|
|
double distanceSqr(double x, double y, double xScale, double yScale) const
|
|
{
|
|
double distX = 0;
|
|
if (x < left) {
|
|
distX = left - x;
|
|
} else if (x > right) {
|
|
distX = x - right;
|
|
}
|
|
|
|
double distY = 0;
|
|
if (top > y) {
|
|
distY = top - y;
|
|
} else if (bottom < y) {
|
|
distY = y - bottom;
|
|
}
|
|
return pow(distX * xScale, 2) + pow(distY * yScale, 2);
|
|
}
|
|
|
|
/// @since 1.4
|
|
double width() const
|
|
{
|
|
return right - left;
|
|
}
|
|
|
|
/// @since 1.4
|
|
double height() const
|
|
{
|
|
return bottom - top;
|
|
}
|
|
|
|
/**
|
|
* The normalized left coordinate.
|
|
*/
|
|
double left;
|
|
|
|
/**
|
|
* The normalized top coordinate.
|
|
*/
|
|
double top;
|
|
|
|
/**
|
|
* The normalized right coordinate.
|
|
*/
|
|
double right;
|
|
|
|
/**
|
|
* The normalized bottom coordinate.
|
|
*/
|
|
double bottom;
|
|
};
|
|
// KDE_DUMMY_QHASH_FUNCTION(NormalizedRect)
|
|
|
|
/**
|
|
* @short An area with normalized coordinates that contains a reference to an object.
|
|
*
|
|
* These areas ("rects") contain a pointer to a document object
|
|
* (such as a hyperlink, an action, or something like that).
|
|
* The pointer is read and stored as 'void pointer' so cast is
|
|
* performed by accessors based on the value returned by objectType(). Objects
|
|
* are reparented to this class.
|
|
*
|
|
* Type / Class correspondence tab:
|
|
* - Action : class Action: description of an action
|
|
* - Image : class Image : description of an image (n/a)
|
|
* - Annotation: class Annotation: description of an annotation
|
|
*
|
|
* For more information about the normalized coordinate system, see NormalizedPoint.
|
|
*
|
|
* @see NormalizedPoint
|
|
*/
|
|
class OKULARCORE_EXPORT ObjectRect
|
|
{
|
|
public:
|
|
/**
|
|
* Describes the type of storable object.
|
|
*/
|
|
enum ObjectType {
|
|
Action, ///< An action
|
|
Image, ///< An image
|
|
OAnnotation, ///< An annotation
|
|
SourceRef ///< A source reference
|
|
};
|
|
|
|
/**
|
|
* Creates a new object rectangle.
|
|
*
|
|
* @param left The left coordinate of the rectangle.
|
|
* @param top The top coordinate of the rectangle.
|
|
* @param right The right coordinate of the rectangle.
|
|
* @param bottom The bottom coordinate of the rectangle.
|
|
* @param ellipse If true the rectangle describes an ellipse.
|
|
* @param type The type of the storable object @see ObjectType.
|
|
* @param object The pointer to the storable object.
|
|
*/
|
|
ObjectRect(double left, double top, double right, double bottom, bool ellipse, ObjectType type, void *object);
|
|
|
|
/**
|
|
* This is an overloaded member function, provided for convenience.
|
|
*/
|
|
ObjectRect(const NormalizedRect &r, bool ellipse, ObjectType type, void *object);
|
|
|
|
/**
|
|
* This is an overloaded member function, provided for convenience.
|
|
*/
|
|
ObjectRect(const QPolygonF &poly, ObjectType type, void *object);
|
|
|
|
/**
|
|
* Destroys the object rectangle.
|
|
*/
|
|
virtual ~ObjectRect();
|
|
|
|
ObjectRect(const ObjectRect &o) = delete;
|
|
ObjectRect &operator=(const ObjectRect &o) = delete;
|
|
|
|
/**
|
|
* Returns the object type of the object rectangle.
|
|
* @see ObjectType
|
|
*/
|
|
ObjectType objectType() const;
|
|
|
|
/**
|
|
* Returns the storable object of the object rectangle.
|
|
*/
|
|
const void *object() const;
|
|
|
|
/**
|
|
* Returns the region that is covered by the object rectangle.
|
|
*/
|
|
const QPainterPath ®ion() const;
|
|
|
|
/**
|
|
* Returns the bounding rect of the object rectangle for the
|
|
* scaling factor @p xScale and @p yScale.
|
|
*/
|
|
virtual QRect boundingRect(double xScale, double yScale) const;
|
|
|
|
/**
|
|
* Returns whether the object rectangle contains the point with absolute coordinates
|
|
* (@p x, @p y) at a page size of @p xScale x @p yScale.
|
|
*/
|
|
virtual bool contains(double x, double y, double xScale, double yScale) const;
|
|
|
|
/**
|
|
* Transforms the object rectangle with the operations defined by @p matrix.
|
|
*/
|
|
virtual void transform(const QTransform &matrix);
|
|
|
|
/**
|
|
* Returns the squared distance between the object
|
|
* and the point with
|
|
* normalized coordinates (@p x, @p y)
|
|
* at a page size of @p xScale x @p yScale.
|
|
*
|
|
* @since 0.8.2 (KDE 4.2.2)
|
|
*/
|
|
// FIXME this should most probably be a virtual method
|
|
double distanceSqr(double x, double y, double xScale, double yScale) const;
|
|
|
|
protected:
|
|
ObjectType m_objectType;
|
|
void *m_object;
|
|
QPainterPath m_path;
|
|
QPainterPath m_transformedPath;
|
|
};
|
|
|
|
/**
|
|
* This class describes the object rectangle for an annotation.
|
|
*/
|
|
class OKULARCORE_EXPORT AnnotationObjectRect : public ObjectRect
|
|
{
|
|
public:
|
|
/**
|
|
* Creates a new annotation object rectangle with the
|
|
* given @p annotation.
|
|
*/
|
|
explicit AnnotationObjectRect(Annotation *annotation);
|
|
|
|
/**
|
|
* Destroys the annotation object rectangle.
|
|
*/
|
|
~AnnotationObjectRect() override;
|
|
|
|
/**
|
|
* Returns the annotation object of the annotation object rectangle.
|
|
*/
|
|
Annotation *annotation() const;
|
|
|
|
/**
|
|
* Returns the bounding rect of the annotation object rectangle for the
|
|
* scaling factor @p xScale and @p yScale.
|
|
*/
|
|
QRect boundingRect(double xScale, double yScale) const override;
|
|
|
|
/**
|
|
* Returns whether the annotation object rectangle contains the point @p x, @p y for the
|
|
* scaling factor @p xScale and @p yScale.
|
|
*/
|
|
bool contains(double x, double y, double xScale, double yScale) const override;
|
|
|
|
/**
|
|
* Transforms the annotation object rectangle with the operations defined by @p matrix.
|
|
*/
|
|
void transform(const QTransform &matrix) override;
|
|
|
|
private:
|
|
Annotation *m_annotation;
|
|
};
|
|
|
|
/**
|
|
* This class describes the object rectangle for a source reference.
|
|
*/
|
|
class OKULARCORE_EXPORT SourceRefObjectRect : public ObjectRect
|
|
{
|
|
friend class ObjectRect;
|
|
|
|
public:
|
|
/**
|
|
* Creates a new source reference object rectangle.
|
|
*
|
|
* @param point The point of the source reference.
|
|
* @param srcRef The storable source reference object.
|
|
*/
|
|
SourceRefObjectRect(const NormalizedPoint &point, void *srcRef);
|
|
|
|
/**
|
|
* Returns the bounding rect of the source reference object rectangle for the
|
|
* scaling factor @p xScale and @p yScale.
|
|
*/
|
|
QRect boundingRect(double xScale, double yScale) const override;
|
|
|
|
/**
|
|
* Returns whether the source reference object rectangle contains the point @p x, @p y for the
|
|
* scaling factor @p xScale and @p yScale.
|
|
*/
|
|
bool contains(double x, double y, double xScale, double yScale) const override;
|
|
|
|
private:
|
|
NormalizedPoint m_point;
|
|
};
|
|
|
|
/**
|
|
* This class is an object rect that doesn't own the given pointer, i.e. won't delete it on destruction
|
|
* @since 1.7
|
|
*/
|
|
class OKULARCORE_EXPORT NonOwningObjectRect : public ObjectRect
|
|
{
|
|
public:
|
|
NonOwningObjectRect(double left, double top, double right, double bottom, bool ellipse, ObjectType type, void *object);
|
|
~NonOwningObjectRect() override;
|
|
};
|
|
|
|
/// @cond PRIVATE
|
|
/** @internal */
|
|
/** @internal */
|
|
template<typename T> T *givePtr(T &t)
|
|
{
|
|
return &t;
|
|
}
|
|
|
|
/** @internal */
|
|
template<typename T> T &deref(T &t)
|
|
{
|
|
return t;
|
|
}
|
|
/// @endcond
|
|
|
|
/**
|
|
* @short An area with normalized coordinates, consisting of NormalizedShape objects.
|
|
*
|
|
* This is a template class to describe an area which consists of
|
|
* multiple shapes of the same type, intersecting or non-intersecting.
|
|
* The coordinates are normalized, and can be mapped to a reference area of defined size.
|
|
* For more information about the normalized coordinate system, see NormalizedPoint.
|
|
*
|
|
* Class NormalizedShape \b must have the following functions/operators defined:
|
|
* - bool contains( double, double ), whether it contains the given NormalizedPoint
|
|
* - bool intersects( NormalizedShape )
|
|
* - bool isNull()
|
|
* - Shape geometry( int, int ), which maps to the reference area
|
|
* - operator|=( NormalizedShape ), which unites two NormalizedShape's
|
|
*
|
|
* @see RegularAreaRect, NormalizedPoint
|
|
*/
|
|
template<class NormalizedShape, class Shape> class RegularArea : public QList<NormalizedShape>
|
|
{
|
|
public:
|
|
/**
|
|
* Returns whether this area contains the normalized point (@p x, @p y).
|
|
*/
|
|
bool contains(double x, double y) const;
|
|
|
|
/**
|
|
* Returns whether this area contains a NormalizedShape object that equals @p shape.
|
|
*
|
|
* @note
|
|
* The original NormalizedShape objects can be lost if simplify() was called.
|
|
*/
|
|
bool contains(const NormalizedShape &shape) const;
|
|
|
|
/**
|
|
* Returns whether this area intersects with the given @p area.
|
|
*/
|
|
bool intersects(const RegularArea<NormalizedShape, Shape> *area) const;
|
|
|
|
/**
|
|
* Returns whether the regular area intersects with the given @p shape.
|
|
*/
|
|
bool intersects(const NormalizedShape &shape) const;
|
|
|
|
/**
|
|
* Appends the given @p area to this area.
|
|
*/
|
|
void appendArea(const RegularArea<NormalizedShape, Shape> *area);
|
|
|
|
/**
|
|
* Appends the given @p shape to this area.
|
|
*/
|
|
void appendShape(const NormalizedShape &shape, MergeSide side = MergeAll);
|
|
|
|
/**
|
|
* Simplifies this regular area by merging its intersecting subareas.
|
|
* This might change the effective geometry of this area.
|
|
*/
|
|
void simplify();
|
|
|
|
/**
|
|
* Returns whether the regular area is a null area.
|
|
*/
|
|
bool isNull() const;
|
|
|
|
/**
|
|
* Returns the subareas of this regular area
|
|
* mapped to a reference area of size @p xScale x @p yScale,
|
|
* then translated by @p dx and @p dy.
|
|
*/
|
|
QList<Shape> geometry(int xScale, int yScale, int dx = 0, int dy = 0) const;
|
|
|
|
/**
|
|
* Transforms the regular area with the operations defined by @p matrix.
|
|
*/
|
|
void transform(const QTransform &matrix);
|
|
};
|
|
|
|
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::simplify()
|
|
{
|
|
#ifdef DEBUG_REGULARAREA
|
|
int prev_end = this->count();
|
|
#endif
|
|
int end = this->count() - 1, x = 0;
|
|
for (int i = 0; i < end; ++i) {
|
|
if (givePtr((*this)[x])->intersects(deref((*this)[i + 1]))) {
|
|
deref((*this)[x]) |= deref((*this)[i + 1]);
|
|
this->removeAt(i + 1);
|
|
--end;
|
|
--i;
|
|
} else {
|
|
x = i + 1;
|
|
}
|
|
}
|
|
#ifdef DEBUG_REGULARAREA
|
|
qCDebug(OkularCoreDebug) << "from" << prev_end << "to" << this->count();
|
|
#endif
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::isNull() const
|
|
{
|
|
if (this->isEmpty()) {
|
|
return true;
|
|
}
|
|
|
|
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
|
|
for (; it != itEnd; ++it) {
|
|
if (!givePtr(*it)->isNull()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::intersects(const NormalizedShape &shape) const
|
|
{
|
|
if (this->isEmpty()) {
|
|
return false;
|
|
}
|
|
|
|
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
|
|
for (; it != itEnd; ++it) {
|
|
if (!givePtr(*it)->isNull() && givePtr(*it)->intersects(shape)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::intersects(const RegularArea<NormalizedShape, Shape> *area) const
|
|
{
|
|
if (this->isEmpty()) {
|
|
return false;
|
|
}
|
|
|
|
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
|
|
for (; it != itEnd; ++it) {
|
|
typename QList<NormalizedShape>::const_iterator areaIt = area->begin(), areaItEnd = area->end();
|
|
for (; areaIt != areaItEnd; ++areaIt) {
|
|
if (!(*it).isNull() && (*it).intersects(*areaIt)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::appendArea(const RegularArea<NormalizedShape, Shape> *area)
|
|
{
|
|
typename QList<NormalizedShape>::const_iterator areaIt = area->begin(), areaItEnd = area->end();
|
|
for (; areaIt != areaItEnd; ++areaIt) {
|
|
this->append(*areaIt);
|
|
}
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::appendShape(const NormalizedShape &shape, MergeSide side)
|
|
{
|
|
int size = this->count();
|
|
// if the list is empty, adds the shape normally
|
|
if (size == 0) {
|
|
this->append(shape);
|
|
} else {
|
|
bool intersection = false;
|
|
NormalizedShape &last = (*this)[size - 1];
|
|
#define O_LAST givePtr(last)
|
|
#define O_LAST_R O_LAST->right
|
|
#define O_LAST_L O_LAST->left
|
|
#define O_LAST_T O_LAST->top
|
|
#define O_LAST_B O_LAST->bottom
|
|
#define O_NEW givePtr(shape)
|
|
#define O_NEW_R O_NEW->right
|
|
#define O_NEW_L O_NEW->left
|
|
#define O_NEW_T O_NEW->top
|
|
#define O_NEW_B O_NEW->bottom
|
|
switch (side) {
|
|
case MergeRight:
|
|
intersection = (O_LAST_R >= O_NEW_L) && (O_LAST_L <= O_NEW_R) && ((O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B) || (O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B));
|
|
break;
|
|
case MergeBottom:
|
|
intersection = (O_LAST_B >= O_NEW_T) && (O_LAST_T <= O_NEW_B) && ((O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L) || (O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L));
|
|
break;
|
|
case MergeLeft:
|
|
intersection = (O_LAST_L <= O_NEW_R) && (O_LAST_R >= O_NEW_L) && ((O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B) || (O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B));
|
|
break;
|
|
case MergeTop:
|
|
intersection = (O_LAST_T <= O_NEW_B) && (O_LAST_B >= O_NEW_T) && ((O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L) || (O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L));
|
|
break;
|
|
case MergeAll:
|
|
intersection = O_LAST->intersects(shape);
|
|
break;
|
|
}
|
|
#undef O_LAST
|
|
#undef O_LAST_R
|
|
#undef O_LAST_L
|
|
#undef O_LAST_T
|
|
#undef O_LAST_B
|
|
#undef O_NEW
|
|
#undef O_NEW_R
|
|
#undef O_NEW_L
|
|
#undef O_NEW_T
|
|
#undef O_NEW_B
|
|
// if the new shape intersects with the last shape in the list, then
|
|
// merge it with that and delete the shape
|
|
if (intersection) {
|
|
deref((*this)[size - 1]) |= deref(shape);
|
|
} else {
|
|
this->append(shape);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::contains(double x, double y) const
|
|
{
|
|
if (this->isEmpty()) {
|
|
return false;
|
|
}
|
|
|
|
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
|
|
for (; it != itEnd; ++it) {
|
|
if ((*it).contains(x, y)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> bool RegularArea<NormalizedShape, Shape>::contains(const NormalizedShape &shape) const
|
|
{
|
|
if (this->isEmpty()) {
|
|
return false;
|
|
}
|
|
|
|
return QList<NormalizedShape>::contains(shape);
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> QList<Shape> RegularArea<NormalizedShape, Shape>::geometry(int xScale, int yScale, int dx, int dy) const
|
|
{
|
|
if (this->isEmpty()) {
|
|
return QList<Shape>();
|
|
}
|
|
|
|
QList<Shape> ret;
|
|
Shape t;
|
|
typename QList<NormalizedShape>::const_iterator it = this->begin(), itEnd = this->end();
|
|
for (; it != itEnd; ++it) {
|
|
t = givePtr(*it)->geometry(xScale, yScale);
|
|
t.translate(dx, dy);
|
|
ret.append(t);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
template<class NormalizedShape, class Shape> void RegularArea<NormalizedShape, Shape>::transform(const QTransform &matrix)
|
|
{
|
|
if (this->isEmpty()) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < this->count(); ++i) {
|
|
givePtr((*this)[i])->transform(matrix);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is a list of NormalizedRect, to describe an area consisting of
|
|
* multiple rectangles using normalized coordinates.
|
|
*
|
|
* This area can be mapped to a reference area, resulting in a list of QRects.
|
|
* For more information about the normalized coordinate system, see NormalizedPoint.
|
|
*
|
|
* Okular uses this area e. g. to describe a text highlight area,
|
|
* which consists of multiple, intersecting or non-intersecting rectangles.
|
|
*
|
|
* @see NormalizedRect, NormalizedPoint
|
|
*/
|
|
class OKULARCORE_EXPORT RegularAreaRect : public RegularArea<NormalizedRect, QRect>
|
|
{
|
|
public:
|
|
RegularAreaRect();
|
|
RegularAreaRect(const RegularAreaRect &rar);
|
|
~RegularAreaRect();
|
|
|
|
RegularAreaRect &operator=(const RegularAreaRect &rar);
|
|
|
|
private:
|
|
class Private;
|
|
Private *const d;
|
|
};
|
|
|
|
/**
|
|
* This class stores the geometry of a highlighting area in normalized coordinates,
|
|
* together with highlighting specific information.
|
|
*/
|
|
class HighlightAreaRect : public RegularAreaRect
|
|
{
|
|
public:
|
|
/**
|
|
* Creates a new highlight area rect with the coordinates of
|
|
* the given @p area.
|
|
*/
|
|
explicit HighlightAreaRect(const RegularAreaRect *area = nullptr);
|
|
|
|
/**
|
|
* The search ID of the highlight owner.
|
|
*/
|
|
int s_id;
|
|
|
|
/**
|
|
* The color of the highlight.
|
|
*/
|
|
QColor color;
|
|
};
|
|
|
|
uint qHash(const Okular::NormalizedRect &r, uint seed = 0);
|
|
}
|
|
|
|
#ifndef QT_NO_DEBUG_STREAM
|
|
/**
|
|
* Debug operator for normalized @p point.
|
|
*/
|
|
OKULARCORE_EXPORT QDebug operator<<(QDebug str, const Okular::NormalizedPoint &point);
|
|
|
|
/**
|
|
* Debug operator for normalized @p rect.
|
|
*/
|
|
OKULARCORE_EXPORT QDebug operator<<(QDebug str, const Okular::NormalizedRect &rect);
|
|
#endif
|
|
|
|
#endif
|