/*************************************************************************** * Copyright (C) 2004-05 by Enrico Ros * * Copyright (C) 2005 by Piotr Szymanski * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * ***************************************************************************/ #ifndef _OKULAR_AREA_H_ #define _OKULAR_AREA_H_ #include #include #include #include #include #include #include "global.h" #include "okularcore_export.h" class QPolygonF; class QRect; namespace Okular { class Annotation; class Action; class NormalizedShape; /** * NormalizedPoint is a helper class which stores the coordinates * of a normalized point. Normalized means that the coordinates are * between 0 and 1 so that it is page size independent. * * Example: * The normalized point is (0.5, 0.3) * * If you want to draw it on a 800x600 page, just multiply the x coordinate (0.5) with * the page width (800) and the y coordinate (0.3) with the page height (600), so * the point will be drawn on the page at (400, 180). * * That allows you to zoom the page by just multiplying the normalized points with the * zoomed page size. */ class OKULARCORE_EXPORT NormalizedPoint { public: /** * Creates a new empty normalized point. */ NormalizedPoint(); /** * Creates a new normalized point with the normalized coordinates (@p x, @p y ). */ NormalizedPoint( double x, double y ); /** * Creates a new normalized point with the coordinates (@p x, @p y) which are normalized * by the scaling factors @p xScale and @p yScale. */ NormalizedPoint( int x, int y, int xScale, int yScale ); /** * @internal */ NormalizedPoint& operator=( const NormalizedPoint& ); /** * Transforms the normalized point with the operations defined by @p matrix. */ void transform( const QTransform &matrix ); /** * Returns squared distance to point @p x @p y @p xScale @p yScale * @since 0.17 (KDE 4.11) */ double distanceSqr( double x, double y, double xScale, double yScale ) const; /** * @brief Calculates distance of the point @p x @p y @p xScale @p yScale to the line segment from @p start to @p end * @since 0.17 (KDE 4.11) */ static double distanceSqr( double x, double y, double xScale, double yScale, const NormalizedPoint& start, const NormalizedPoint& end ); /** * The normalized x coordinate. */ double x; /** * The normalized y coordinate. */ double y; }; /** * NormalizedRect is a helper class which stores the coordinates * of a normalized rect, which is a rectangle of @see NormalizedPoints. */ class OKULARCORE_EXPORT NormalizedRect { public: /** * Creates a null normalized rectangle. * @see isNull() */ NormalizedRect(); /** * Creates a normalized rectangle with the normalized coordinates * @p left, @p top, @p right, @p bottom. * * If you need the x, y, width and height coordinates use the * following formulas: * * @li x = left * @li y = top * @li width = right - left * @li height = bottom - top */ NormalizedRect( double left, double top, double right, double bottom ); /** * Creates a normalized rectangle of the given @p rectangle which is normalized * by the scaling factors @p xScale and @p yScale. */ NormalizedRect( const QRect &rectangle, double xScale, double yScale ); /** * @internal */ NormalizedRect( const NormalizedRect& ); /** * @internal */ NormalizedRect& operator=( const NormalizedRect &other ); /** * Build a normalized rect from a QRectF. */ static NormalizedRect fromQRectF( const QRectF &rect ); /** * Returns whether this normalized rectangle is a null normalized rect. */ bool isNull() const; /** * Returns whether the normalized rectangle contains the normalized coordinates * @p x and @p y. */ bool contains( double x, double y ) const; /** * Returns whether the normalized rectangle intersects the @p other normalized * rectangle. */ bool intersects( const NormalizedRect &other ) const; /** * This is an overloaded member function, provided for convenience. It behaves essentially * like the above function. */ bool intersects( const NormalizedRect *other ) const; /** * Returns whether the normalized rectangle intersects an other normalized * rectangle, which is defined by @p left, @p top, @p right and @p bottom. */ bool intersects( double left, double top, double right, double bottom ) const; /** * Returns the rectangle that accrues when the normalized rectangle is multiplyed * with the scaling @p xScale and @p yScale. */ QRect geometry( int xScale, int yScale ) const; /** * Same functionality as geometry, but the output is now rounded before typecasting to int * @since 0.14 (KDE 4.8) */ QRect roundedGeometry( int xScale, int yScale ) const; /** * Returns the normalized bounding rectangle of the normalized rectangle * combined with the @p other normalized rectangle. */ NormalizedRect operator|( const NormalizedRect &other ) const; /** * Sets the normalized rectangle to the normalized bounding rectangle * of itself combined with the @p other normalized rectangle. */ NormalizedRect& operator|=( const NormalizedRect &other ); /** * Returns the intersection of this normalized rectangle with the specified * @p other. If the rects do not intersect then the result is null. * * @since 0.7 (KDE 4.1) */ NormalizedRect operator&( const NormalizedRect &other ) const; /** * Returns whether the normalized rectangle is equal to the @p other * normalized rectangle. */ bool operator==( const NormalizedRect &other ) const; /** * Returns the center of the rectangle * @since 0.10 (KDE 4.4) */ NormalizedPoint center() const; /** * Transforms the normalized rectangle with the operations defined by @p matrix. */ void transform( const QTransform &matrix ); /** * Returns true if the point pt is located to the bottom of the rectangle * @since 0.14 (KDE 4.8) */ bool isBottom(const NormalizedPoint& pt) const { return bottom < pt.y; } /** * Returns true if the point pt is located on the top of the rectangle * @since 0.14 (KDE 4.8) */ bool isTop(const NormalizedPoint& pt) const { return top > pt.y; } /** * Returns true if the point pt is located under the top of the rectangle * @since 0.14 (KDE 4.8) */ bool isBottomOrLevel(const NormalizedPoint& pt) const { return top < pt.y; } /** * Returns true if the point pt is located above the bottom of the rectangle * @since 0.14 (KDE 4.8) */ bool isTopOrLevel(const NormalizedPoint& pt) const { return bottom > pt.y; } /** * Returns true if the point pt is located to the right of the left arm of rectangle * @since 0.14 (KDE 4.8) */ bool isLeft(const NormalizedPoint& pt) const { return left < pt.x; } /** * Returns true if the point pt is located to the left of the right arm of rectangle * @since 0.14 (KDE 4.8) */ bool isRight(const NormalizedPoint& pt) const { return right > pt.x; } /** * Returns the distance of the point @p x @p y @p xScale @p yScale to the closest * edge or 0 if the point is within the rectangle * @since 0.17 (KDE 4.11) */ double distanceSqr(double x, double y, double xScale, double yScale) const { double distX = 0; if ( x < left ) distX = left - x; else if ( x > right ) distX = x - right; double distY = 0; if ( top > y ) distY = top - y; else if (bottom < y) distY = y - bottom; return pow( distX * xScale, 2 ) + pow( distY * yScale, 2 ); } /** * The normalized left coordinate. */ double left; /** * The normalized top coordinate. */ double top; /** * The normalized right coordinate. */ double right; /** * The normalized bottom coordinate. */ double bottom; }; //KDE_DUMMY_QHASH_FUNCTION(NormalizedRect) /** * @short NormalizedRect that contains a reference to an object. * * These rects contains a pointer to a okular object (such as an action or something * like that). The pointer is read and stored as 'void pointer' so cast is * performed by accessors based on the value returned by objectType(). Objects * are reparented to this class. * * Type / Class correspondency tab: * - Action : class Action: description of an action * - Image : class Image : description of an image (n/a) * - Annotation: class Annotation: description of an annotation */ class OKULARCORE_EXPORT ObjectRect { public: /** * Describes the type of storable object. */ enum ObjectType { Action, ///< An action Image, ///< An image OAnnotation, ///< An annotation SourceRef ///< A source reference }; /** * Creates a new object rectangle. * * @param left The left coordinate of the rectangle. * @param top The top coordinate of the rectangle. * @param right The right coordinate of the rectangle. * @param bottom The bottom coordinate of the rectangle. * @param ellipse If true the rectangle describes an ellipse. * @param type The type of the storable object @see ObjectType. * @param object The pointer to the storable object. */ ObjectRect( double left, double top, double right, double bottom, bool ellipse, ObjectType type, void *object ); /** * This is an overloaded member function, provided for convenience. */ ObjectRect( const NormalizedRect &rect, bool ellipse, ObjectType type, void *object ); /** * This is an overloaded member function, provided for convenience. */ ObjectRect( const QPolygonF &poly, ObjectType type, void *object ); /** * Destroys the object rectangle. */ virtual ~ObjectRect(); /** * Returns the object type of the object rectangle. * @see ObjectType */ ObjectType objectType() const; /** * Returns the storable object of the object rectangle. */ const void *object() const; /** * Returns the region that is covered by the object rectangle. */ const QPainterPath ®ion() const; /** * Returns the bounding rect of the object rectangle for the * scaling factor @p xScale and @p yScale. */ virtual QRect boundingRect( double xScale, double yScale ) const; /** * Returns whether the object rectangle contains the point @p x, @p y for the * scaling factor @p xScale and @p yScale. */ virtual bool contains( double x, double y, double xScale, double yScale ) const; /** * Transforms the object rectangle with the operations defined by @p matrix. */ virtual void transform( const QTransform &matrix ); /** * Returns the square of the distance between the object and the point @p x, @p y * for the scaling factor @p xScale and @p yScale. * * @since 0.8.2 (KDE 4.2.2) */ // FIXME this should most probably be a virtual method double distanceSqr( double x, double y, double xScale, double yScale ) const; protected: ObjectType m_objectType; void * m_object; QPainterPath m_path; QPainterPath m_transformedPath; }; /** * This class describes the object rectangle for an annotation. */ class OKULARCORE_EXPORT AnnotationObjectRect : public ObjectRect { public: /** * Creates a new annotation object rectangle with the * given @p annotation. */ AnnotationObjectRect( Annotation *annotation ); /** * Destroys the annotation object rectangle. */ virtual ~AnnotationObjectRect(); /** * Returns the annotation object of the annotation object rectangle. */ Annotation *annotation() const; /** * Returns the bounding rect of the annotation object rectangle for the * scaling factor @p xScale and @p yScale. */ virtual QRect boundingRect( double xScale, double yScale ) const; /** * Returns whether the annotation object rectangle contains the point @p x, @p y for the * scaling factor @p xScale and @p yScale. */ virtual bool contains( double x, double y, double xScale, double yScale ) const; /** * Transforms the annotation object rectangle with the operations defined by @p matrix. */ virtual void transform( const QTransform &matrix ); private: Annotation * m_annotation; }; /** * This class describes the object rectangle for a source reference. */ class OKULARCORE_EXPORT SourceRefObjectRect : public ObjectRect { friend class ObjectRect; public: /** * Creates a new source reference object rectangle. * * @param point The point of the source reference. * @param reference The storable source reference object. */ SourceRefObjectRect( const NormalizedPoint& point, void *reference ); /** * Returns the bounding rect of the source reference object rectangle for the * scaling factor @p xScale and @p yScale. */ virtual QRect boundingRect( double xScale, double yScale ) const; /** * Returns whether the source reference object rectangle contains the point @p x, @p y for the * scaling factor @p xScale and @p yScale. */ virtual bool contains( double x, double y, double xScale, double yScale ) const; private: NormalizedPoint m_point; }; /// @cond PRIVATE /** @internal */ template void doDelete( T& t ) { (void)t; } /** @internal */ template T* givePtr( T& t ) { return &t; } /** @internal */ template T& deref( T& t ) { return t; } /** @internal */ template static void doDelete( T* t ) { delete t; } /** @internal */ template static T* givePtr( T* t ) { return t; } /** @internal */ template static T& deref( T* t ) { return *t; } /// @endcond /** * @short A regular area of NormalizedShape which normalizes a Shape * * Class NormalizedShape \b must have the following functions/operators defined: * - bool contains( double, double ) * - bool intersects( NormalizedShape ) * - bool isNull() * - Shape geometry( int, int ) * - operator|=( NormalizedShape ) which unite two NormalizedShape's */ template class RegularArea : public QList { public: /** * Destroys a regular area. */ ~RegularArea(); /** * Returns whether the regular area contains the * normalized point @p x, @p y. */ bool contains( double x, double y ) const; /** * Returns whether the regular area contains the * given @p shape. */ bool contains( const NormalizedShape& shape ) const; /** * Returns whether the regular area intersects with the given @p area. */ bool intersects( const RegularArea *area ) const; /** * Returns whether the regular area intersects with the given @p shape. */ bool intersects( const NormalizedShape& shape ) const; /** * Appends the given @p area to the regular area. */ void appendArea( const RegularArea *area ); /** * Appends the given @p shape to the regular area. */ void appendShape( const NormalizedShape& shape, MergeSide side = MergeAll ); /** * Simplifies the regular area by merging its intersecting subareas. */ void simplify(); /** * Returns whether the regular area is a null area. */ bool isNull() const; /** * Returns the subareas of the regular areas as shapes for the given scaling factor * @p xScale and @p yScale, translated by @p dx and @p dy. */ QList geometry( int xScale, int yScale, int dx = 0, int dy = 0 ) const; /** * Transforms the regular area with the operations defined by @p matrix. */ void transform( const QTransform &matrix ); }; template RegularArea::~RegularArea() { int size = this->count(); for ( int i = 0; i < size; ++i ) doDelete( (*this)[i] ); } template void RegularArea::simplify() { #ifdef DEBUG_REGULARAREA int prev_end = this->count(); #endif int end = this->count() - 1, x = 0; for ( int i = 0; i < end; ++i ) { if ( givePtr( (*this)[x] )->intersects( deref( (*this)[i+1] ) ) ) { deref((*this)[x]) |= deref((*this)[i+1]); NormalizedShape& tobedeleted = (*this)[i+1]; this->removeAt( i + 1 ); doDelete( tobedeleted ); --end; --i; } else { x=i+1; } } #ifdef DEBUG_REGULARAREA qCDebug(OkularCoreDebug) << "from" << prev_end << "to" << this->count(); #endif } template bool RegularArea::isNull() const { if ( this->isEmpty() ) return false; typename QList::const_iterator it = this->begin(), itEnd = this->end(); for ( ; it != itEnd; ++it ) if ( !givePtr( *it )->isNull() ) return false; return true; } template bool RegularArea::intersects( const NormalizedShape& rect ) const { if ( this->isEmpty() ) return false; typename QList::const_iterator it = this->begin(), itEnd = this->end(); for ( ; it != itEnd; ++it ) if ( !givePtr( *it )->isNull() && givePtr( *it )->intersects( rect ) ) return true; return false; } template bool RegularArea::intersects( const RegularArea *area ) const { if ( !this ) return false; if ( this->isEmpty() ) return false; typename QList::const_iterator it = this->begin(), itEnd = this->end(); for ( ; it != itEnd; ++it ) { typename QList::const_iterator areaIt = area->begin(), areaItEnd = area->end(); for ( ; areaIt != areaItEnd; ++areaIt ) { if ( !( *it ).isNull() && ( *it ).intersects( *areaIt ) ) return true; } } return false; } template void RegularArea::appendArea( const RegularArea *area ) { if ( !this ) return; typename QList::const_iterator areaIt = area->begin(), areaItEnd = area->end(); for ( ; areaIt != areaItEnd; ++areaIt ) this->append( *areaIt ); } template void RegularArea::appendShape( const NormalizedShape& shape, MergeSide side ) { int size = this->count(); // if the list is empty, adds the shape normally if ( size == 0 ) { this->append( shape ); } else { bool intersection = false; NormalizedShape& last = (*this)[size - 1]; #define O_LAST givePtr( last ) # define O_LAST_R O_LAST->right # define O_LAST_L O_LAST->left # define O_LAST_T O_LAST->top # define O_LAST_B O_LAST->bottom #define O_NEW givePtr( shape ) # define O_NEW_R O_NEW->right # define O_NEW_L O_NEW->left # define O_NEW_T O_NEW->top # define O_NEW_B O_NEW->bottom switch ( side ) { case MergeRight: intersection = ( O_LAST_R >= O_NEW_L ) && ( O_LAST_L <= O_NEW_R ) && ( ( O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B ) || ( O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B ) ); break; case MergeBottom: intersection = ( O_LAST_B >= O_NEW_T ) && ( O_LAST_T <= O_NEW_B ) && ( ( O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L ) || ( O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L ) ); break; case MergeLeft: intersection = ( O_LAST_L <= O_NEW_R ) && ( O_LAST_R >= O_NEW_L ) && ( ( O_LAST_T <= O_NEW_T && O_LAST_B >= O_NEW_B ) || ( O_LAST_T >= O_NEW_T && O_LAST_B <= O_NEW_B ) ); break; case MergeTop: intersection = ( O_LAST_T <= O_NEW_B ) && ( O_LAST_B >= O_NEW_T ) && ( ( O_LAST_R <= O_NEW_R && O_LAST_L >= O_NEW_L ) || ( O_LAST_R >= O_NEW_R && O_LAST_L <= O_NEW_L ) ); break; case MergeAll: intersection = O_LAST->intersects( shape ); break; } #undef O_LAST # undef O_LAST_R # undef O_LAST_L # undef O_LAST_T # undef O_LAST_B #undef O_NEW # undef O_NEW_R # undef O_NEW_L # undef O_NEW_T # undef O_NEW_B // if the new shape intersects with the last shape in the list, then // merge it with that and delete the shape if ( intersection ) { deref((*this)[size - 1]) |= deref( shape ); doDelete( const_cast( shape ) ); } else this->append( shape ); } } template bool RegularArea::contains( double x, double y ) const { if ( this->isEmpty() ) return false; typename QList::const_iterator it = this->begin(), itEnd = this->end(); for ( ; it != itEnd; ++it ) if ( ( *it ).contains( x, y ) ) return true; return false; } template bool RegularArea::contains( const NormalizedShape& shape ) const { if ( !this ) return false; if ( this->isEmpty() ) return false; return QList::contains( shape ); } template QList RegularArea::geometry( int xScale, int yScale, int dx, int dy ) const { if ( this->isEmpty() ) return QList(); QList ret; Shape t; typename QList::const_iterator it = this->begin(), itEnd = this->end(); for ( ; it != itEnd; ++it ) { t = givePtr( *it )->geometry( xScale, yScale ); t.translate( dx, dy ); ret.append( t ); } return ret; } template void RegularArea::transform( const QTransform &matrix ) { if ( this->isEmpty() ) return; for ( int i = 0; i < this->count(); ++i ) givePtr( (*this)[i] )->transform( matrix ); } class OKULARCORE_EXPORT RegularAreaRect : public RegularArea< NormalizedRect, QRect > { public: RegularAreaRect(); RegularAreaRect( const RegularAreaRect& rar ); ~RegularAreaRect(); RegularAreaRect& operator=( const RegularAreaRect& rar ); private: class Private; Private * const d; }; /** * This class stores the coordinates of a highlighting area * together with the id of the highlight owner and the color. */ class HighlightAreaRect : public RegularAreaRect { public: /** * Creates a new highlight area rect with the coordinates of * the given @p area. */ HighlightAreaRect( const RegularAreaRect *area = 0 ); /** * The search ID of the highlight owner. */ int s_id; /** * The color of the highlight. */ QColor color; }; } uint qHash(const Okular::NormalizedRect& r, uint seed = 0); #ifndef QT_NO_DEBUG_STREAM /** * Debug operator for normalized @p point. */ OKULARCORE_EXPORT QDebug operator<<( QDebug str, const Okular::NormalizedPoint &point ); /** * Debug operator for normalized @p rect. */ OKULARCORE_EXPORT QDebug operator<<( QDebug str, const Okular::NormalizedRect &rect ); #endif #endif