Find a file
Jorge Aparicio 4c7e277340 add an #[used] attribute
similar to GCC's __attribute((used))__. This attribute prevents LLVM from
optimizing away a non-exported symbol, within a compilation unit (object file),
when there are no references to it.

This is better explained with an example:

```
#[used]
static LIVE: i32 = 0;

static REFERENCED: i32 = 0;

static DEAD: i32 = 0;

fn internal() {}

pub fn exported() -> &'static i32 {
    &REFERENCED
}
```

Without optimizations, LLVM pretty much preserves all the static variables and
functions within the compilation unit.

```
$ rustc --crate-type=lib --emit=obj symbols.rs && nm -C symbols.o
0000000000000000 t drop::h1be0f8f27a2ba94a
0000000000000000 r symbols::REFERENCED::hb3bdfd46050bc84c
0000000000000000 r symbols::DEAD::hc2ea8f9bd06f380b
0000000000000000 r symbols::LIVE::h0970cf9889edb56e
0000000000000000 T symbols::exported::h6f096c2b1fc292b2
0000000000000000 t symbols::internal::h0ac1aadbc1e3a494
```

With optimizations, LLVM will drop dead code. Here `internal` is dropped because
it's not a exported function/symbol (i.e. not `pub`lic). `DEAD` is dropped for
the same reason. `REFERENCED` is preserved, even though it's not exported,
because it's referenced by the `exported` function. Finally, `LIVE` survives
because of the `#[used]` attribute even though it's not exported or referenced.

```
$ rustc --crate-type=lib -C opt-level=3 --emit=obj symbols.rs && nm -C symbols.o
0000000000000000 r symbols::REFERENCED::hb3bdfd46050bc84c
0000000000000000 r symbols::LIVE::h0970cf9889edb56e
0000000000000000 T symbols::exported::h6f096c2b1fc292b2
```

Note that the linker knows nothing about `#[used]` and will drop `LIVE`
because no other object references to it.

```
$ echo 'fn main() {}' >> symbols.rs
$ rustc symbols.rs && nm -C symbols | grep LIVE
```

At this time, `#[used]` only works on `static` variables.
2017-04-05 13:40:11 -05:00
cargo@4e95c6b41e Update cargo submodule 2017-03-23 16:22:29 -07:00
man
src add an #[used] attribute 2017-04-05 13:40:11 -05:00
.gitattributes
.gitignore
.gitmodules End of pulldown switch and remove completely hoedown 2017-03-28 11:38:55 -06:00
.mailmap
.travis.yml update image name for DEPLOY_ALT 2017-04-04 18:14:14 +02:00
appveyor.yml Disable appveyor cache 2017-03-30 01:33:45 +01:00
configure
CONTRIBUTING.md Split paragraph in CONTRIBUTING.md 2017-03-24 21:28:59 +01:00
COPYRIGHT
LICENSE-APACHE
LICENSE-MIT
README.md Nit: LLVM & Clang latest version is 4.0 2017-03-21 16:26:35 -04:00
RELEASES.md
x.py

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installing Rust" from The Book.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x or later
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./x.py build && sudo ./x.py dist --install
    

    Note: Install locations can be adjusted by copying the config file from ./src/bootstrap/config.toml.example to ./config.toml, and adjusting the prefix option under [install]. Various other options are also supported, and are documented in the config file.

    When complete, sudo ./x.py dist --install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py dist --install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2013 (or later) so rustc can use its linker. Make sure to check the “C++ tools” option.

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"
python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in powershell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=ABI when invoking x.py commands, or by copying the config.toml file (as described in Building From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs between 600MiB and 1.5GiB to build, depending on platform. If it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.