swap_simple no longer needs to be a separate function

This commit is contained in:
Scott McMurray 2024-03-22 11:33:13 -07:00
parent 6d2cb39ac5
commit d0ce391b14
3 changed files with 18 additions and 37 deletions

View file

@ -731,38 +731,6 @@ pub const fn swap<T>(x: &mut T, y: &mut T) {
unsafe { intrinsics::typed_swap(x, y) }
}
/// Same as [`swap`] semantically, but always uses the simple implementation.
///
/// Used elsewhere in `mem` and `ptr` at the bottom layer of calls.
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
#[inline]
pub(crate) const fn swap_simple<T>(x: &mut T, y: &mut T) {
// We arrange for this to typically be called with small types,
// so this reads-and-writes approach is actually better than using
// copy_nonoverlapping as it easily puts things in LLVM registers
// directly and doesn't end up inlining allocas.
// And LLVM actually optimizes it to 3×memcpy if called with
// a type larger than it's willing to keep in a register.
// Having typed reads and writes in MIR here is also good as
// it lets Miri and CTFE understand them better, including things
// like enforcing type validity for them.
// Importantly, read+copy_nonoverlapping+write introduces confusing
// asymmetry to the behaviour where one value went through read+write
// whereas the other was copied over by the intrinsic (see #94371).
// Furthermore, using only read+write here benefits limited backends
// such as SPIR-V that work on an underlying *typed* view of memory,
// and thus have trouble with Rust's untyped memory operations.
// SAFETY: exclusive references are always valid to read/write,
// including being aligned, and nothing here panics so it's drop-safe.
unsafe {
let a = ptr::read(x);
let b = ptr::read(y);
ptr::write(x, b);
ptr::write(y, a);
}
}
/// Replaces `dest` with the default value of `T`, returning the previous `dest` value.
///
/// * If you want to replace the values of two variables, see [`swap`].

View file

@ -1062,11 +1062,26 @@ macro_rules! attempt_swap_as_chunks {
let mut i = 0;
while i < count {
// SAFETY: By precondition, `i` is in-bounds because it's below `n`
let x = unsafe { &mut *x.add(i) };
let x = unsafe { x.add(i) };
// SAFETY: By precondition, `i` is in-bounds because it's below `n`
// and it's distinct from `x` since the ranges are non-overlapping
let y = unsafe { &mut *y.add(i) };
mem::swap_simple::<MaybeUninit<T>>(x, y);
let y = unsafe { y.add(i) };
// If we end up here, it's because we're using a simple type -- like
// a small power-of-two-sized thing -- or a special type with particularly
// large alignment, particularly SIMD types.
// Thus we're fine just reading-and-writing it, as either it's small
// and that works well anyway or it's special and the type's author
// presumably wanted things to be done in the larger chunk.
// SAFETY: we're only ever given pointers that are valid to read/write,
// including being aligned, and nothing here panics so it's drop-safe.
unsafe {
let a: MaybeUninit<T> = read(x);
let b: MaybeUninit<T> = read(y);
write(x, b);
write(y, a);
}
i += 1;
}

View file

@ -5,8 +5,6 @@ error[E0080]: evaluation of constant value failed
|
note: inside `std::ptr::read::<MaybeUninit<MaybeUninit<u8>>>`
--> $SRC_DIR/core/src/ptr/mod.rs:LL:COL
note: inside `mem::swap_simple::<MaybeUninit<MaybeUninit<u8>>>`
--> $SRC_DIR/core/src/mem/mod.rs:LL:COL
note: inside `std::ptr::swap_nonoverlapping_simple_untyped::<MaybeUninit<u8>>`
--> $SRC_DIR/core/src/ptr/mod.rs:LL:COL
note: inside `swap_nonoverlapping::<MaybeUninit<u8>>`