Let codegen decide when to mem::swap with immediates

Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.

So introduce a new `typed_swap` intrinsic with a fallback body, but replace that implementation for immediates and scalar pairs.
This commit is contained in:
Scott McMurray 2024-03-15 22:09:05 -07:00
parent fd27e8745f
commit 7d537106a1
12 changed files with 270 additions and 33 deletions

View file

@ -10,6 +10,7 @@
use crate::MemFlags;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::{sym, Span};
use rustc_target::abi::{
call::{FnAbi, PassMode},
@ -76,6 +77,29 @@ pub fn codegen_intrinsic_call(
let name = bx.tcx().item_name(def_id);
let name_str = name.as_str();
// If we're swapping something that's *not* an `OperandValue::Ref`,
// then we can do it directly and avoid the alloca.
// Otherwise, we'll let the fallback MIR body take care of it.
if let sym::typed_swap = name {
let pointee_ty = fn_args.type_at(0);
let pointee_layout = bx.layout_of(pointee_ty);
if !bx.is_backend_ref(pointee_layout)
// But if we're not going to optimize, trying to use the fallback
// body just makes things worse, so don't bother.
|| bx.sess().opts.optimize == OptLevel::No
// NOTE(eddyb) SPIR-V's Logical addressing model doesn't allow for arbitrary
// reinterpretation of values as (chunkable) byte arrays, and the loop in the
// block optimization in `ptr::swap_nonoverlapping` is hard to rewrite back
// into the (unoptimized) direct swapping implementation, so we disable it.
|| bx.sess().target.arch == "spirv"
{
let x_place = PlaceRef::new_sized(args[0].immediate(), pointee_layout);
let y_place = PlaceRef::new_sized(args[1].immediate(), pointee_layout);
bx.typed_place_swap(x_place, y_place);
return Ok(());
}
}
let llret_ty = bx.backend_type(bx.layout_of(ret_ty));
let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);

View file

@ -1,22 +1,24 @@
use super::abi::AbiBuilderMethods;
use super::asm::AsmBuilderMethods;
use super::consts::ConstMethods;
use super::coverageinfo::CoverageInfoBuilderMethods;
use super::debuginfo::DebugInfoBuilderMethods;
use super::intrinsic::IntrinsicCallMethods;
use super::misc::MiscMethods;
use super::type_::{ArgAbiMethods, BaseTypeMethods};
use super::type_::{ArgAbiMethods, BaseTypeMethods, LayoutTypeMethods};
use super::{HasCodegen, StaticBuilderMethods};
use crate::common::{
AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use crate::mir::operand::OperandRef;
use crate::mir::operand::{OperandRef, OperandValue};
use crate::mir::place::PlaceRef;
use crate::MemFlags;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::ty::layout::{HasParamEnv, TyAndLayout};
use rustc_middle::ty::Ty;
use rustc_session::config::OptLevel;
use rustc_span::Span;
use rustc_target::abi::call::FnAbi;
use rustc_target::abi::{Abi, Align, Scalar, Size, WrappingRange};
@ -267,6 +269,54 @@ fn memset(
flags: MemFlags,
);
/// *Typed* copy for non-overlapping places.
///
/// Has a default implementation in terms of `memcpy`, but specific backends
/// can override to do something smarter if possible.
///
/// (For example, typed load-stores with alias metadata.)
fn typed_place_copy(
&mut self,
dst: PlaceRef<'tcx, Self::Value>,
src: PlaceRef<'tcx, Self::Value>,
) {
debug_assert!(src.llextra.is_none());
debug_assert!(dst.llextra.is_none());
debug_assert_eq!(dst.layout.size, src.layout.size);
if self.sess().opts.optimize == OptLevel::No && self.is_backend_immediate(dst.layout) {
// If we're not optimizing, the aliasing information from `memcpy`
// isn't useful, so just load-store the value for smaller code.
let temp = self.load_operand(src);
temp.val.store(self, dst);
} else if !dst.layout.is_zst() {
let bytes = self.const_usize(dst.layout.size.bytes());
self.memcpy(dst.llval, dst.align, src.llval, src.align, bytes, MemFlags::empty());
}
}
/// *Typed* swap for non-overlapping places.
///
/// Avoids `alloca`s for Immediates and ScalarPairs.
///
/// FIXME: Maybe do something smarter for Ref types too?
/// For now, the `typed_swap` intrinsic just doesn't call this for those
/// cases (in non-debug), preferring the fallback body instead.
fn typed_place_swap(
&mut self,
left: PlaceRef<'tcx, Self::Value>,
right: PlaceRef<'tcx, Self::Value>,
) {
let mut temp = self.load_operand(left);
if let OperandValue::Ref(..) = temp.val {
// The SSA value isn't stand-alone, so we need to copy it elsewhere
let alloca = PlaceRef::alloca(self, left.layout);
self.typed_place_copy(alloca, left);
temp = self.load_operand(alloca);
}
self.typed_place_copy(left, right);
temp.val.store(self, right);
}
fn select(
&mut self,
cond: Self::Value,

View file

@ -120,6 +120,20 @@ fn scalar_pair_element_backend_type(
immediate: bool,
) -> Self::Type;
/// A type that produces an [`OperandValue::Ref`] when loaded.
///
/// AKA one that's not a ZST, not `is_backend_immediate`, and
/// not `is_backend_scalar_pair`. For such a type, a
/// [`load_operand`] doesn't actually `load` anything.
///
/// [`OperandValue::Ref`]: crate::mir::operand::OperandValue::Ref
/// [`load_operand`]: super::BuilderMethods::load_operand
fn is_backend_ref(&self, layout: TyAndLayout<'tcx>) -> bool {
!(layout.is_zst()
|| self.is_backend_immediate(layout)
|| self.is_backend_scalar_pair(layout))
}
/// A type that can be used in a [`super::BuilderMethods::load`] +
/// [`super::BuilderMethods::store`] pair to implement a *typed* copy,
/// such as a MIR `*_0 = *_1`.

View file

@ -21,8 +21,8 @@
use rustc_target::abi::Size;
use super::{
util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, MPlaceTy, Machine, OpTy,
Pointer,
memory::MemoryKind, util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx,
MPlaceTy, Machine, OpTy, Pointer,
};
use crate::fluent_generated as fluent;
@ -415,6 +415,9 @@ pub fn emulate_intrinsic(
let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
self.write_scalar(result, dest)?;
}
sym::typed_swap => {
self.typed_swap_intrinsic(&args[0], &args[1])?;
}
sym::vtable_size => {
let ptr = self.read_pointer(&args[0])?;
@ -608,6 +611,24 @@ pub(crate) fn copy_intrinsic(
self.mem_copy(src, dst, size, nonoverlapping)
}
/// Does a *typed* swap of `*left` and `*right`.
fn typed_swap_intrinsic(
&mut self,
left: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
right: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
) -> InterpResult<'tcx> {
let left = self.deref_pointer(left)?;
let right = self.deref_pointer(right)?;
debug_assert_eq!(left.layout, right.layout);
let kind = MemoryKind::Stack;
let temp = self.allocate(left.layout, kind)?;
self.copy_op(&left, &temp)?;
self.copy_op(&right, &left)?;
self.copy_op(&temp, &right)?;
self.deallocate_ptr(temp.ptr(), None, kind)?;
Ok(())
}
pub(crate) fn write_bytes_intrinsic(
&mut self,
dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,

View file

@ -500,6 +500,8 @@ pub fn check_intrinsic_type(
(1, 0, vec![Ty::new_mut_ptr(tcx, param(0)), param(0)], Ty::new_unit(tcx))
}
sym::typed_swap => (1, 1, vec![Ty::new_mut_ptr(tcx, param(0)); 2], Ty::new_unit(tcx)),
sym::discriminant_value => {
let assoc_items = tcx.associated_item_def_ids(
tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),

View file

@ -1830,6 +1830,7 @@
type_macros,
type_name,
type_privacy_lints,
typed_swap,
u128,
u128_legacy_const_max,
u128_legacy_const_min,

View file

@ -66,6 +66,7 @@
use crate::marker::DiscriminantKind;
use crate::marker::Tuple;
use crate::mem::align_of;
use crate::ptr;
pub mod mir;
pub mod simd;
@ -2628,6 +2629,27 @@ pub const fn is_val_statically_known<T: Copy>(_arg: T) -> bool {
false
}
/// Non-overlapping *typed* swap of a single value.
///
/// The codegen backends will replace this with a better implementation when
/// `T` is a simple type that can be loaded and stored as an immediate.
///
/// The stabilized form of this intrinsic is [`crate::mem::swap`].
///
/// # Safety
///
/// `x` and `y` are readable and writable as `T`, and non-overlapping.
#[rustc_nounwind]
#[inline]
#[cfg_attr(not(bootstrap), rustc_intrinsic)]
// This has fallback `const fn` MIR, so shouldn't need stability, see #122652
#[rustc_const_unstable(feature = "const_typed_swap", issue = "none")]
pub const unsafe fn typed_swap<T>(x: *mut T, y: *mut T) {
// SAFETY: The caller provided single non-overlapping items behind
// pointers, so swapping them with `count: 1` is fine.
unsafe { ptr::swap_nonoverlapping(x, y, 1) };
}
/// Returns whether we should check for library UB. This evaluate to the value of `cfg!(debug_assertions)`
/// during monomorphization.
///

View file

@ -168,6 +168,7 @@
#![feature(const_try)]
#![feature(const_type_id)]
#![feature(const_type_name)]
#![feature(const_typed_swap)]
#![feature(const_unicode_case_lookup)]
#![feature(const_unsafecell_get_mut)]
#![feature(const_waker)]

View file

@ -726,31 +726,9 @@ pub unsafe fn uninitialized<T>() -> T {
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
#[rustc_diagnostic_item = "mem_swap"]
pub const fn swap<T>(x: &mut T, y: &mut T) {
// NOTE(eddyb) SPIR-V's Logical addressing model doesn't allow for arbitrary
// reinterpretation of values as (chunkable) byte arrays, and the loop in the
// block optimization in `swap_slice` is hard to rewrite back
// into the (unoptimized) direct swapping implementation, so we disable it.
#[cfg(not(any(target_arch = "spirv")))]
{
// For types that are larger multiples of their alignment, the simple way
// tends to copy the whole thing to stack rather than doing it one part
// at a time, so instead treat them as one-element slices and piggy-back
// the slice optimizations that will split up the swaps.
if const { size_of::<T>() / align_of::<T>() > 2 } {
// SAFETY: exclusive references always point to one non-overlapping
// element and are non-null and properly aligned.
return unsafe { ptr::swap_nonoverlapping(x, y, 1) };
}
}
// If a scalar consists of just a small number of alignment units, let
// the codegen just swap those pieces directly, as it's likely just a
// few instructions and anything else is probably overcomplicated.
//
// Most importantly, this covers primitives and simd types that tend to
// have size=align where doing anything else can be a pessimization.
// (This will also be used for ZSTs, though any solution works for them.)
swap_simple(x, y);
// SAFETY: `&mut` guarantees these are typed readable and writable
// as well as non-overlapping.
unsafe { intrinsics::typed_swap(x, y) }
}
/// Same as [`swap`] semantically, but always uses the simple implementation.

View file

@ -0,0 +1,50 @@
//@ only-x86_64
//@ assembly-output: emit-asm
//@ compile-flags: --crate-type=lib -O
use std::arch::x86_64::__m128;
use std::mem::swap;
// CHECK-LABEL: swap_i32:
#[no_mangle]
pub fn swap_i32(x: &mut i32, y: &mut i32) {
// CHECK: movl (%[[ARG1:.+]]), %[[T1:.+]]
// CHECK: movl (%[[ARG2:.+]]), %[[T2:.+]]
// CHECK: movl %[[T2]], (%[[ARG1]])
// CHECK: movl %[[T1]], (%[[ARG2]])
// CHECK: retq
swap(x, y)
}
// CHECK-LABEL: swap_pair:
#[no_mangle]
pub fn swap_pair(x: &mut (i32, u32), y: &mut (i32, u32)) {
// CHECK: movq (%[[ARG1]]), %[[T1:.+]]
// CHECK: movq (%[[ARG2]]), %[[T2:.+]]
// CHECK: movq %[[T2]], (%[[ARG1]])
// CHECK: movq %[[T1]], (%[[ARG2]])
// CHECK: retq
swap(x, y)
}
// CHECK-LABEL: swap_str:
#[no_mangle]
pub fn swap_str<'a>(x: &mut &'a str, y: &mut &'a str) {
// CHECK: movups (%[[ARG1]]), %[[T1:xmm.]]
// CHECK: movups (%[[ARG2]]), %[[T2:xmm.]]
// CHECK: movups %[[T2]], (%[[ARG1]])
// CHECK: movups %[[T1]], (%[[ARG2]])
// CHECK: retq
swap(x, y)
}
// CHECK-LABEL: swap_simd:
#[no_mangle]
pub fn swap_simd(x: &mut __m128, y: &mut __m128) {
// CHECK: movaps (%[[ARG1]]), %[[T1:xmm.]]
// CHECK: movaps (%[[ARG2]]), %[[T2:xmm.]]
// CHECK: movaps %[[T2]], (%[[ARG1]])
// CHECK: movaps %[[T1]], (%[[ARG2]])
// CHECK: retq
swap(x, y)
}

View file

@ -0,0 +1,77 @@
//@ revisions: OPT0 OPT3
//@ [OPT0] compile-flags: -Copt-level=0
//@ [OPT3] compile-flags: -Copt-level=3
//@ compile-flags: -C no-prepopulate-passes
//@ only-64bit (so I don't need to worry about usize)
#![crate_type = "lib"]
#![feature(core_intrinsics)]
use std::intrinsics::typed_swap;
// CHECK-LABEL: @swap_unit(
#[no_mangle]
pub unsafe fn swap_unit(x: &mut (), y: &mut ()) {
// CHECK: start
// CHECK-NEXT: ret void
typed_swap(x, y)
}
// CHECK-LABEL: @swap_i32(
#[no_mangle]
pub unsafe fn swap_i32(x: &mut i32, y: &mut i32) {
// CHECK-NOT: alloca
// CHECK: %[[TEMP:.+]] = load i32, ptr %x, align 4
// CHECK-SAME: !noundef
// OPT0: %[[TEMP2:.+]] = load i32, ptr %y, align 4
// OPT0-SAME: !noundef
// OPT0: store i32 %[[TEMP2]], ptr %x, align 4
// OPT0-NOT: memcpy
// OPT3-NOT: load
// OPT3: call void @llvm.memcpy.p0.p0.i64(ptr align 4 %x, ptr align 4 %y, i64 4, i1 false)
// CHECK: store i32 %[[TEMP]], ptr %y, align 4
// CHECK: ret void
typed_swap(x, y)
}
// CHECK-LABEL: @swap_pair(
#[no_mangle]
pub unsafe fn swap_pair(x: &mut (i32, u32), y: &mut (i32, u32)) {
// CHECK-NOT: alloca
// CHECK: load i32
// CHECK-SAME: !noundef
// CHECK: load i32
// CHECK-SAME: !noundef
// CHECK: call void @llvm.memcpy.p0.p0.i64(ptr align 4 %x, ptr align 4 %y, i64 8, i1 false)
// CHECK: store i32
// CHECK: store i32
typed_swap(x, y)
}
// CHECK-LABEL: @swap_str(
#[no_mangle]
pub unsafe fn swap_str<'a>(x: &mut &'a str, y: &mut &'a str) {
// CHECK-NOT: alloca
// CHECK: load ptr
// CHECK-SAME: !nonnull
// CHECK-SAME: !noundef
// CHECK: load i64
// CHECK-SAME: !noundef
// CHECK: call void @llvm.memcpy.p0.p0.i64(ptr align 8 %x, ptr align 8 %y, i64 16, i1 false)
// CHECK: store ptr
// CHECK: store i64
typed_swap(x, y)
}
// OPT0-LABEL: @swap_string(
#[no_mangle]
pub unsafe fn swap_string(x: &mut String, y: &mut String) {
// OPT0: %[[TEMP:.+]] = alloca {{.+}}, align 8
// OPT0: call void @llvm.memcpy.p0.p0.i64(ptr align 8 %[[TEMP]], ptr align 8 %x, i64 24, i1 false)
// OPT0: call void @llvm.memcpy.p0.p0.i64(ptr align 8 %x, ptr align 8 %y, i64 24, i1 false)
// OPT0: call void @llvm.memcpy.p0.p0.i64(ptr align 8 %y, ptr align 8 %[[TEMP]], i64 24, i1 false)
typed_swap(x, y)
}

View file

@ -70,10 +70,7 @@ pub fn swap_slices<'a>(x: &mut &'a [u32], y: &mut &'a [u32]) {
// CHECK-NOT: alloca
// CHECK: load ptr
// CHECK: load i64
// CHECK: load ptr
// CHECK: load i64
// CHECK: store ptr
// CHECK: store i64
// CHECK: call void @llvm.memcpy.p0.p0.i64({{.+}}, i64 16, i1 false)
// CHECK: store ptr
// CHECK: store i64
swap(x, y)