Auto merge of #36695 - arielb1:literal-match, r=eddyb

Refactor match checking to use HAIR

Refactor match checking to use HAIR instead of HIR, fixing quite a few bugs in the process.

r? @eddyb
This commit is contained in:
bors 2016-10-26 18:18:57 -07:00 committed by GitHub
commit 4a584637b0
24 changed files with 1909 additions and 1336 deletions

2
src/Cargo.lock generated
View file

@ -330,11 +330,13 @@ dependencies = [
name = "rustc_const_eval"
version = "0.0.0"
dependencies = [
"arena 0.0.0",
"graphviz 0.0.0",
"log 0.0.0",
"rustc 0.0.0",
"rustc_back 0.0.0",
"rustc_const_math 0.0.0",
"rustc_data_structures 0.0.0",
"rustc_errors 0.0.0",
"serialize 0.0.0",
"syntax 0.0.0",

View file

@ -9,11 +9,13 @@ path = "lib.rs"
crate-type = ["dylib"]
[dependencies]
arena = { path = "../libarena" }
log = { path = "../liblog" }
serialize = { path = "../libserialize" }
rustc = { path = "../librustc" }
rustc_back = { path = "../librustc_back" }
rustc_const_math = { path = "../librustc_const_math" }
rustc_data_structures = { path = "../librustc_data_structures" }
rustc_errors = { path = "../librustc_errors" }
syntax = { path = "../libsyntax" }
graphviz = { path = "../libgraphviz" }

View file

@ -0,0 +1,767 @@
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::Constructor::*;
use self::Usefulness::*;
use self::WitnessPreference::*;
use rustc::middle::const_val::ConstVal;
use eval::{compare_const_vals};
use rustc_const_math::ConstInt;
use rustc_data_structures::fnv::FnvHashMap;
use rustc_data_structures::indexed_vec::Idx;
use pattern::{FieldPattern, Pattern, PatternKind};
use pattern::{PatternFoldable, PatternFolder};
use rustc::hir::def_id::{DefId};
use rustc::hir::pat_util::def_to_path;
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::hir;
use rustc::hir::def::CtorKind;
use rustc::hir::{Pat, PatKind};
use rustc::util::common::ErrorReported;
use syntax::ast::{self, DUMMY_NODE_ID};
use syntax::codemap::Spanned;
use syntax::ptr::P;
use syntax_pos::{Span, DUMMY_SP};
use arena::TypedArena;
use std::cmp::Ordering;
use std::fmt;
use std::iter::{FromIterator, IntoIterator, repeat};
pub fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pattern<'tcx>)
-> &'a Pattern<'tcx>
{
cx.pattern_arena.alloc(LiteralExpander.fold_pattern(&pat))
}
struct LiteralExpander;
impl<'tcx> PatternFolder<'tcx> for LiteralExpander {
fn fold_pattern(&mut self, pat: &Pattern<'tcx>) -> Pattern<'tcx> {
match (&pat.ty.sty, &*pat.kind) {
(&ty::TyRef(_, mt), &PatternKind::Constant { ref value }) => {
Pattern {
ty: pat.ty,
span: pat.span,
kind: box PatternKind::Deref {
subpattern: Pattern {
ty: mt.ty,
span: pat.span,
kind: box PatternKind::Constant { value: value.clone() },
}
}
}
}
(_, &PatternKind::Binding { subpattern: Some(ref s), .. }) => {
s.fold_with(self)
}
_ => pat.super_fold_with(self)
}
}
}
pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
id: DUMMY_NODE_ID,
node: PatKind::Wild,
span: DUMMY_SP
};
impl<'tcx> Pattern<'tcx> {
fn is_wildcard(&self) -> bool {
match *self.kind {
PatternKind::Binding { subpattern: None, .. } | PatternKind::Wild =>
true,
_ => false
}
}
}
pub struct Matrix<'a, 'tcx: 'a>(Vec<Vec<&'a Pattern<'tcx>>>);
impl<'a, 'tcx> Matrix<'a, 'tcx> {
pub fn empty() -> Self {
Matrix(vec![])
}
pub fn push(&mut self, row: Vec<&'a Pattern<'tcx>>) {
self.0.push(row)
}
}
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "\n")?;
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter().map(|pat| format!("{:?}", pat)).collect()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<usize> = (0..column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
}).collect();
let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
let br = repeat('+').take(total_width).collect::<String>();
write!(f, "{}\n", br)?;
for row in pretty_printed_matrix {
write!(f, "+")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
write!(f, " +")?;
}
write!(f, "\n")?;
write!(f, "{}\n", br)?;
}
Ok(())
}
}
impl<'a, 'tcx> FromIterator<Vec<&'a Pattern<'tcx>>> for Matrix<'a, 'tcx> {
fn from_iter<T: IntoIterator<Item=Vec<&'a Pattern<'tcx>>>>(iter: T) -> Self
{
Matrix(iter.into_iter().collect())
}
}
//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
/// A wild pattern with an error type - it exists to avoid having to normalize
/// associated types to get field types.
pub wild_pattern: &'a Pattern<'tcx>,
pub pattern_arena: &'a TypedArena<Pattern<'tcx>>,
pub byte_array_map: FnvHashMap<*const Pattern<'tcx>, Vec<&'a Pattern<'tcx>>>,
}
impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> {
pub fn create_and_enter<F, R>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
f: F) -> R
where F: for<'b> FnOnce(MatchCheckCtxt<'b, 'tcx>) -> R
{
let wild_pattern = Pattern {
ty: tcx.types.err,
span: DUMMY_SP,
kind: box PatternKind::Wild
};
let pattern_arena = TypedArena::new();
f(MatchCheckCtxt {
tcx: tcx,
wild_pattern: &wild_pattern,
pattern_arena: &pattern_arena,
byte_array_map: FnvHashMap(),
})
}
// convert a byte-string pattern to a list of u8 patterns.
fn lower_byte_str_pattern(&mut self, pat: &'a Pattern<'tcx>) -> Vec<&'a Pattern<'tcx>> {
let pattern_arena = &*self.pattern_arena;
let tcx = self.tcx;
self.byte_array_map.entry(pat).or_insert_with(|| {
match pat.kind {
box PatternKind::Constant {
value: ConstVal::ByteStr(ref data)
} => {
data.iter().map(|c| &*pattern_arena.alloc(Pattern {
ty: tcx.types.u8,
span: pat.span,
kind: box PatternKind::Constant {
value: ConstVal::Integral(ConstInt::U8(*c))
}
})).collect()
}
_ => span_bug!(pat.span, "unexpected byte array pattern {:?}", pat)
}
}).clone()
}
}
#[derive(Clone, Debug, PartialEq)]
pub enum Constructor {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(ConstVal),
/// Ranges of literal values (2..5).
ConstantRange(ConstVal, ConstVal),
/// Array patterns of length n.
Slice(usize),
}
impl Constructor {
fn variant_for_adt<'tcx, 'container, 'a>(&self,
adt: &'a ty::AdtDefData<'tcx, 'container>)
-> &'a ty::VariantDefData<'tcx, 'container> {
match self {
&Variant(vid) => adt.variant_with_id(vid),
&Single => {
assert_eq!(adt.variants.len(), 1);
&adt.variants[0]
}
_ => bug!("bad constructor {:?} for adt {:?}", self, adt)
}
}
}
#[derive(Clone, PartialEq)]
pub enum Usefulness {
Useful,
UsefulWithWitness(Vec<Witness>),
NotUseful
}
#[derive(Copy, Clone)]
pub enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
#[derive(Copy, Clone, Debug)]
struct PatternContext<'tcx> {
ty: Ty<'tcx>,
max_slice_length: usize,
}
fn const_val_to_expr(value: &ConstVal) -> P<hir::Expr> {
let node = match value {
&ConstVal::Bool(b) => ast::LitKind::Bool(b),
_ => bug!()
};
P(hir::Expr {
id: DUMMY_NODE_ID,
node: hir::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
span: DUMMY_SP,
attrs: ast::ThinVec::new(),
})
}
/// A stack of patterns in reverse order of construction
#[derive(Clone, PartialEq, Eq)]
pub struct Witness(Vec<P<Pat>>);
impl Witness {
pub fn single_pattern(&self) -> &Pat {
assert_eq!(self.0.len(), 1);
&self.0[0]
}
fn push_wild_constructor<'a, 'tcx>(
mut self,
cx: &MatchCheckCtxt<'a, 'tcx>,
ctor: &Constructor,
ty: Ty<'tcx>)
-> Self
{
let arity = constructor_arity(cx, ctor, ty);
self.0.extend(repeat(DUMMY_WILD_PAT).take(arity).map(|p| P(p.clone())));
self.apply_constructor(cx, ctor, ty)
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn apply_constructor<'a, 'tcx>(
mut self,
cx: &MatchCheckCtxt<'a,'tcx>,
ctor: &Constructor,
ty: Ty<'tcx>)
-> Self
{
let arity = constructor_arity(cx, ctor, ty);
let pat = {
let len = self.0.len();
let mut pats = self.0.drain(len-arity..).rev();
match ty.sty {
ty::TyTuple(..) => PatKind::Tuple(pats.collect(), None),
ty::TyAdt(adt, _) => {
let v = ctor.variant_for_adt(adt);
match v.ctor_kind {
CtorKind::Fictive => {
let field_pats: hir::HirVec<_> = v.fields.iter()
.zip(pats)
.filter(|&(_, ref pat)| pat.node != PatKind::Wild)
.map(|(field, pat)| Spanned {
span: DUMMY_SP,
node: hir::FieldPat {
name: field.name,
pat: pat,
is_shorthand: false,
}
}).collect();
let has_more_fields = field_pats.len() < arity;
PatKind::Struct(
def_to_path(cx.tcx, v.did), field_pats, has_more_fields)
}
CtorKind::Fn => {
PatKind::TupleStruct(
def_to_path(cx.tcx, v.did), pats.collect(), None)
}
CtorKind::Const => {
PatKind::Path(None, def_to_path(cx.tcx, v.did))
}
}
}
ty::TyRef(_, ty::TypeAndMut { mutbl, .. }) => {
PatKind::Ref(pats.nth(0).unwrap(), mutbl)
}
ty::TySlice(_) | ty::TyArray(..) => {
PatKind::Slice(pats.collect(), None, hir::HirVec::new())
}
_ => {
match *ctor {
ConstantValue(ref v) => PatKind::Lit(const_val_to_expr(v)),
_ => PatKind::Wild,
}
}
}
};
self.0.push(P(hir::Pat {
id: DUMMY_NODE_ID,
node: pat,
span: DUMMY_SP
}));
self
}
}
/// Return the set of constructors from the same type as the first column of `matrix`,
/// that are matched only by wildcard patterns from that first column.
///
/// Therefore, if there is some pattern that is unmatched by `matrix`, it will
/// still be unmatched if the first constructor is replaced by any of the constructors
/// in the return value.
fn missing_constructors(cx: &mut MatchCheckCtxt,
matrix: &Matrix,
pcx: PatternContext) -> Vec<Constructor> {
let used_constructors: Vec<Constructor> =
matrix.0.iter()
.flat_map(|row| pat_constructors(cx, row[0], pcx).unwrap_or(vec![]))
.collect();
debug!("used_constructors = {:?}", used_constructors);
all_constructors(cx, pcx).into_iter()
.filter(|c| !used_constructors.contains(c))
.collect()
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
///
/// This intentionally does not list ConstantValue specializations for
/// non-booleans, because we currently assume that there is always a
/// "non-standard constant" that matches. See issue #12483.
///
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
fn all_constructors(_cx: &mut MatchCheckCtxt, pcx: PatternContext) -> Vec<Constructor> {
match pcx.ty.sty {
ty::TyBool =>
[true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
ty::TySlice(_) =>
(0..pcx.max_slice_length+1).map(|length| Slice(length)).collect(),
ty::TyArray(_, length) => vec![Slice(length)],
ty::TyAdt(def, _) if def.is_enum() && def.variants.len() > 1 =>
def.variants.iter().map(|v| Variant(v.did)).collect(),
_ => vec![Single]
}
}
/// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
///
/// Whether a vector `v` of patterns is 'useful' in relation to a set of such
/// vectors `m` is defined as there being a set of inputs that will match `v`
/// but not any of the sets in `m`.
///
/// This is used both for reachability checking (if a pattern isn't useful in
/// relation to preceding patterns, it is not reachable) and exhaustiveness
/// checking (if a wildcard pattern is useful in relation to a matrix, the
/// matrix isn't exhaustive).
///
/// Note: is_useful doesn't work on empty types, as the paper notes.
/// So it assumes that v is non-empty.
pub fn is_useful<'a, 'tcx>(cx: &mut MatchCheckCtxt<'a, 'tcx>,
matrix: &Matrix<'a, 'tcx>,
v: &[&'a Pattern<'tcx>],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("is_useful({:?}, {:?})", matrix, v);
if rows.is_empty() {
return match witness {
ConstructWitness => UsefulWithWitness(vec![Witness(
repeat(DUMMY_WILD_PAT).take(v.len()).map(|p| P(p.clone())).collect()
)]),
LeaveOutWitness => Useful
};
}
if rows[0].is_empty() {
return NotUseful;
}
let &Matrix(ref rows) = matrix;
assert!(rows.iter().all(|r| r.len() == v.len()));
let pcx = PatternContext {
ty: rows.iter().map(|r| r[0].ty).find(|ty| !ty.references_error())
.unwrap_or(v[0].ty),
max_slice_length: rows.iter().filter_map(|row| match *row[0].kind {
PatternKind::Slice { ref prefix, slice: _, ref suffix } =>
Some(prefix.len() + suffix.len()),
PatternKind::Constant { value: ConstVal::ByteStr(ref data) } =>
Some(data.len()),
_ => None
}).max().map_or(0, |v| v + 1)
};
debug!("is_useful_expand_first_col: pcx={:?}, expanding {:?}", pcx, v[0]);
if let Some(constructors) = pat_constructors(cx, v[0], pcx) {
debug!("is_useful - expanding constructors: {:?}", constructors);
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
debug!("is_useful - expanding wildcard");
let constructors = missing_constructors(cx, matrix, pcx);
debug!("is_useful - missing_constructors = {:?}", constructors);
if constructors.is_empty() {
all_constructors(cx, pcx).into_iter().map(|c| {
is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness)
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
let matrix = rows.iter().filter_map(|r| {
if r[0].is_wildcard() {
Some(r[1..].to_vec())
} else {
None
}
}).collect();
match is_useful(cx, &matrix, &v[1..], witness) {
UsefulWithWitness(pats) => {
let cx = &*cx;
UsefulWithWitness(pats.into_iter().flat_map(|witness| {
constructors.iter().map(move |ctor| {
witness.clone().push_wild_constructor(cx, ctor, pcx.ty)
})
}).collect())
}
result => result
}
}
}
}
fn is_useful_specialized<'a, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
&Matrix(ref m): &Matrix<'a, 'tcx>,
v: &[&'a Pattern<'tcx>],
ctor: Constructor,
lty: Ty<'tcx>,
witness: WitnessPreference) -> Usefulness
{
let arity = constructor_arity(cx, &ctor, lty);
let matrix = Matrix(m.iter().flat_map(|r| {
specialize(cx, &r[..], &ctor, 0, arity)
}).collect());
match specialize(cx, v, &ctor, 0, arity) {
Some(v) => match is_useful(cx, &matrix, &v[..], witness) {
UsefulWithWitness(witnesses) => UsefulWithWitness(
witnesses.into_iter()
.map(|witness| witness.apply_constructor(cx, &ctor, lty))
.collect()
),
result => result
},
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// Returns None in case of a catch-all, which can't be specialized.
fn pat_constructors(_cx: &mut MatchCheckCtxt,
pat: &Pattern,
pcx: PatternContext)
-> Option<Vec<Constructor>>
{
match *pat.kind {
PatternKind::Binding { .. } | PatternKind::Wild =>
None,
PatternKind::Leaf { .. } | PatternKind::Deref { .. } =>
Some(vec![Single]),
PatternKind::Variant { adt_def, variant_index, .. } =>
Some(vec![Variant(adt_def.variants[variant_index].did)]),
PatternKind::Constant { ref value } =>
Some(vec![ConstantValue(value.clone())]),
PatternKind::Range { ref lo, ref hi } =>
Some(vec![ConstantRange(lo.clone(), hi.clone())]),
PatternKind::Array { .. } => match pcx.ty.sty {
ty::TyArray(_, length) => Some(vec![Slice(length)]),
_ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty)
},
PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
let pat_len = prefix.len() + suffix.len();
if slice.is_some() {
Some((pat_len..pcx.max_slice_length+1).map(Slice).collect())
} else {
Some(vec![Slice(pat_len)])
}
}
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
debug!("constructor_arity({:?}, {:?})", ctor, ty);
match ty.sty {
ty::TyTuple(ref fs) => fs.len(),
ty::TyBox(_) => 1,
ty::TySlice(..) | ty::TyArray(..) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0,
_ => bug!("bad slice pattern {:?} {:?}", ctor, ty)
},
ty::TyRef(..) => 1,
ty::TyAdt(adt, _) => {
ctor.variant_for_adt(adt).fields.len()
}
_ => 0
}
}
fn slice_pat_covered_by_constructor(_tcx: TyCtxt, _span: Span,
ctor: &Constructor,
prefix: &[Pattern],
slice: &Option<Pattern>,
suffix: &[Pattern])
-> Result<bool, ErrorReported> {
let data = match *ctor {
ConstantValue(ConstVal::ByteStr(ref data)) => data,
_ => bug!()
};
let pat_len = prefix.len() + suffix.len();
if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) {
return Ok(false);
}
for (ch, pat) in
data[..prefix.len()].iter().zip(prefix).chain(
data[data.len()-suffix.len()..].iter().zip(suffix))
{
match pat.kind {
box PatternKind::Constant { ref value } => match *value {
ConstVal::Integral(ConstInt::U8(u)) => {
if u != *ch {
return Ok(false);
}
},
_ => span_bug!(pat.span, "bad const u8 {:?}", value)
},
_ => {}
}
}
Ok(true)
}
fn range_covered_by_constructor(tcx: TyCtxt, span: Span,
ctor: &Constructor,
from: &ConstVal, to: &ConstVal)
-> Result<bool, ErrorReported> {
let (c_from, c_to) = match *ctor {
ConstantValue(ref value) => (value, value),
ConstantRange(ref from, ref to) => (from, to),
Single => return Ok(true),
_ => bug!()
};
let cmp_from = compare_const_vals(tcx, span, c_from, from)?;
let cmp_to = compare_const_vals(tcx, span, c_to, to)?;
Ok(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
}
fn patterns_for_variant<'a, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
subpatterns: &'a [FieldPattern<'tcx>],
arity: usize)
-> Vec<&'a Pattern<'tcx>>
{
let mut result = vec![cx.wild_pattern; arity];
for subpat in subpatterns {
result[subpat.field.index()] = &subpat.pattern;
}
debug!("patterns_for_variant({:?}, {:?}) = {:?}", subpatterns, arity, result);
result
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
fn specialize<'a, 'tcx>(
cx: &mut MatchCheckCtxt<'a, 'tcx>,
r: &[&'a Pattern<'tcx>],
constructor: &Constructor, col: usize, arity: usize)
-> Option<Vec<&'a Pattern<'tcx>>>
{
let pat = &r[col];
let head: Option<Vec<&Pattern>> = match *pat.kind {
PatternKind::Binding { .. } | PatternKind::Wild =>
Some(vec![cx.wild_pattern; arity]),
PatternKind::Variant { adt_def, variant_index, ref subpatterns } => {
let ref variant = adt_def.variants[variant_index];
if *constructor == Variant(variant.did) {
Some(patterns_for_variant(cx, subpatterns, arity))
} else {
None
}
}
PatternKind::Leaf { ref subpatterns } => Some(patterns_for_variant(cx, subpatterns, arity)),
PatternKind::Deref { ref subpattern } => Some(vec![subpattern]),
PatternKind::Constant { ref value } => {
match *constructor {
Slice(..) => match *value {
ConstVal::ByteStr(ref data) => {
if arity == data.len() {
Some(cx.lower_byte_str_pattern(pat))
} else {
None
}
}
_ => span_bug!(pat.span,
"unexpected const-val {:?} with ctor {:?}", value, constructor)
},
_ => {
match range_covered_by_constructor(
cx.tcx, pat.span, constructor, value, value
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
}
}
PatternKind::Range { ref lo, ref hi } => {
match range_covered_by_constructor(
cx.tcx, pat.span, constructor, lo, hi
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
PatternKind::Array { ref prefix, ref slice, ref suffix } |
PatternKind::Slice { ref prefix, ref slice, ref suffix } => {
match *constructor {
Slice(..) => {
let pat_len = prefix.len() + suffix.len();
if let Some(slice_count) = arity.checked_sub(pat_len) {
if slice_count == 0 || slice.is_some() {
Some(
prefix.iter().chain(
repeat(cx.wild_pattern).take(slice_count).chain(
suffix.iter()
)).collect())
} else {
None
}
} else {
None
}
}
ConstantValue(..) => {
match slice_pat_covered_by_constructor(
cx.tcx, pat.span, constructor, prefix, slice, suffix
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None
}
}
_ => span_bug!(pat.span,
"unexpected ctor {:?} for slice pat", constructor)
}
}
};
debug!("specialize({:?}, {:?}) = {:?}", r[col], arity, head);
head.map(|mut head| {
head.extend_from_slice(&r[..col]);
head.extend_from_slice(&r[col + 1..]);
head
})
}

File diff suppressed because it is too large Load diff

View file

@ -40,7 +40,7 @@
arms.
"##,
E0002: r##"
/*E0002: r##"
This error indicates that an empty match expression is invalid because the type
it is matching on is non-empty (there exist values of this type). In safe code
it is impossible to create an instance of an empty type, so empty match
@ -68,10 +68,10 @@ fn foo(x: Option<String>) {
}
}
```
"##,
"##,*/
E0003: r##"
/*E0003: r##"
Not-a-Number (NaN) values cannot be compared for equality and hence can never
match the input to a match expression. So, the following will not compile:
@ -100,7 +100,7 @@ fn foo(x: Option<String>) {
}
```
"##,
*/
E0004: r##"
This error indicates that the compiler cannot guarantee a matching pattern for

View file

@ -392,7 +392,7 @@ pub fn note_const_eval_err<'a, 'tcx>(
pub fn eval_const_expr<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
e: &Expr) -> ConstVal {
match eval_const_expr_partial(tcx, e, ExprTypeChecked, None) {
match eval_const_expr_checked(tcx, e) {
Ok(r) => r,
// non-const path still needs to be a fatal error, because enums are funky
Err(s) => {
@ -407,15 +407,21 @@ pub fn eval_const_expr<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
}
pub fn eval_const_expr_checked<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
e: &Expr) -> EvalResult
{
eval_const_expr_partial(tcx, e, ExprTypeChecked, None)
}
pub type FnArgMap<'a> = Option<&'a NodeMap<ConstVal>>;
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct ConstEvalErr {
pub span: Span,
pub kind: ErrKind,
}
#[derive(Clone)]
#[derive(Clone, Debug)]
pub enum ErrKind {
CannotCast,
CannotCastTo(&'static str),

View file

@ -31,11 +31,13 @@
#![feature(box_patterns)]
#![feature(box_syntax)]
extern crate arena;
#[macro_use] extern crate syntax;
#[macro_use] extern crate log;
#[macro_use] extern crate rustc;
extern crate rustc_back;
extern crate rustc_const_math;
extern crate rustc_data_structures;
extern crate rustc_errors;
extern crate graphviz;
extern crate syntax_pos;
@ -46,7 +48,9 @@
pub mod diagnostics;
mod eval;
mod _match;
pub mod check_match;
pub mod pattern;
pub use eval::*;

View file

@ -0,0 +1,612 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use eval;
use rustc::middle::const_val::ConstVal;
use rustc::mir::repr::{Field, BorrowKind, Mutability};
use rustc::ty::{self, TyCtxt, AdtDef, Ty, Region};
use rustc::hir::{self, PatKind};
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::hir::pat_util::EnumerateAndAdjustIterator;
use rustc_data_structures::indexed_vec::Idx;
use syntax::ast;
use syntax::ptr::P;
use syntax_pos::Span;
#[derive(Clone, Debug)]
pub enum PatternError {
StaticInPattern(Span),
BadConstInPattern(Span, DefId),
ConstEval(eval::ConstEvalErr),
}
#[derive(Copy, Clone, Debug)]
pub enum BindingMode<'tcx> {
ByValue,
ByRef(&'tcx Region, BorrowKind),
}
#[derive(Clone, Debug)]
pub struct FieldPattern<'tcx> {
pub field: Field,
pub pattern: Pattern<'tcx>,
}
#[derive(Clone, Debug)]
pub struct Pattern<'tcx> {
pub ty: Ty<'tcx>,
pub span: Span,
pub kind: Box<PatternKind<'tcx>>,
}
#[derive(Clone, Debug)]
pub enum PatternKind<'tcx> {
Wild,
/// x, ref x, x @ P, etc
Binding {
mutability: Mutability,
name: ast::Name,
mode: BindingMode<'tcx>,
var: ast::NodeId,
ty: Ty<'tcx>,
subpattern: Option<Pattern<'tcx>>,
},
/// Foo(...) or Foo{...} or Foo, where `Foo` is a variant name from an adt with >1 variants
Variant {
adt_def: AdtDef<'tcx>,
variant_index: usize,
subpatterns: Vec<FieldPattern<'tcx>>,
},
/// (...), Foo(...), Foo{...}, or Foo, where `Foo` is a variant name from an adt with 1 variant
Leaf {
subpatterns: Vec<FieldPattern<'tcx>>,
},
/// box P, &P, &mut P, etc
Deref {
subpattern: Pattern<'tcx>,
},
Constant {
value: ConstVal,
},
Range {
lo: ConstVal,
hi: ConstVal,
},
/// matches against a slice, checking the length and extracting elements
Slice {
prefix: Vec<Pattern<'tcx>>,
slice: Option<Pattern<'tcx>>,
suffix: Vec<Pattern<'tcx>>,
},
/// fixed match against an array, irrefutable
Array {
prefix: Vec<Pattern<'tcx>>,
slice: Option<Pattern<'tcx>>,
suffix: Vec<Pattern<'tcx>>,
},
}
pub struct PatternContext<'a, 'gcx: 'tcx, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'gcx, 'tcx>,
pub errors: Vec<PatternError>,
}
impl<'a, 'gcx, 'tcx> Pattern<'tcx> {
pub fn from_hir(tcx: TyCtxt<'a, 'gcx, 'tcx>, pat: &hir::Pat) -> Self {
let mut pcx = PatternContext::new(tcx);
let result = pcx.lower_pattern(pat);
if !pcx.errors.is_empty() {
span_bug!(pat.span, "encountered errors lowering pattern: {:?}", pcx.errors)
}
debug!("Pattern::from_hir({:?}) = {:?}", pat, result);
result
}
}
impl<'a, 'gcx, 'tcx> PatternContext<'a, 'gcx, 'tcx> {
pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Self {
PatternContext { tcx: tcx, errors: vec![] }
}
pub fn lower_pattern(&mut self, pat: &hir::Pat) -> Pattern<'tcx> {
let mut ty = self.tcx.node_id_to_type(pat.id);
let kind = match pat.node {
PatKind::Wild => PatternKind::Wild,
PatKind::Lit(ref value) => {
match eval::eval_const_expr_checked(self.tcx.global_tcx(), value) {
Ok(value) => {
PatternKind::Constant { value: value }
}
Err(e) => {
self.errors.push(PatternError::ConstEval(e));
PatternKind::Wild
}
}
}
PatKind::Range(ref lo, ref hi) => {
let r_lo = eval::eval_const_expr_checked(self.tcx.global_tcx(), lo);
if let Err(ref e_lo) = r_lo {
self.errors.push(PatternError::ConstEval(e_lo.clone()));
}
let r_hi = eval::eval_const_expr_checked(self.tcx.global_tcx(), hi);
if let Err(ref e_hi) = r_hi {
self.errors.push(PatternError::ConstEval(e_hi.clone()));
}
if let (Ok(lo), Ok(hi)) = (r_lo, r_hi) {
PatternKind::Range { lo: lo, hi: hi }
} else {
PatternKind::Wild
}
}
PatKind::Path(..) => {
match self.tcx.expect_def(pat.id) {
Def::Const(def_id) | Def::AssociatedConst(def_id) => {
let tcx = self.tcx.global_tcx();
let substs = Some(self.tcx.node_id_item_substs(pat.id).substs);
match eval::lookup_const_by_id(tcx, def_id, substs) {
Some((const_expr, _const_ty)) => {
match eval::const_expr_to_pat(
tcx, const_expr, pat.id, pat.span)
{
Ok(pat) => return self.lower_pattern(&pat),
Err(_) => {
self.errors.push(PatternError::BadConstInPattern(
pat.span, def_id));
PatternKind::Wild
}
}
}
None => {
self.errors.push(PatternError::StaticInPattern(pat.span));
PatternKind::Wild
}
}
}
_ => self.lower_variant_or_leaf(pat, vec![])
}
}
PatKind::Ref(ref subpattern, _) |
PatKind::Box(ref subpattern) => {
PatternKind::Deref { subpattern: self.lower_pattern(subpattern) }
}
PatKind::Slice(ref prefix, ref slice, ref suffix) => {
let ty = self.tcx.node_id_to_type(pat.id);
match ty.sty {
ty::TyRef(_, mt) =>
PatternKind::Deref {
subpattern: Pattern {
ty: mt.ty,
span: pat.span,
kind: Box::new(self.slice_or_array_pattern(
pat.span, mt.ty, prefix, slice, suffix))
},
},
ty::TySlice(..) |
ty::TyArray(..) =>
self.slice_or_array_pattern(pat.span, ty, prefix, slice, suffix),
ref sty =>
span_bug!(
pat.span,
"unexpanded type for vector pattern: {:?}",
sty),
}
}
PatKind::Tuple(ref subpatterns, ddpos) => {
match self.tcx.node_id_to_type(pat.id).sty {
ty::TyTuple(ref tys) => {
let subpatterns =
subpatterns.iter()
.enumerate_and_adjust(tys.len(), ddpos)
.map(|(i, subpattern)| FieldPattern {
field: Field::new(i),
pattern: self.lower_pattern(subpattern)
})
.collect();
PatternKind::Leaf { subpatterns: subpatterns }
}
ref sty => span_bug!(pat.span, "unexpected type for tuple pattern: {:?}", sty),
}
}
PatKind::Binding(bm, ref ident, ref sub) => {
let def_id = self.tcx.expect_def(pat.id).def_id();
let id = self.tcx.map.as_local_node_id(def_id).unwrap();
let var_ty = self.tcx.node_id_to_type(pat.id);
let region = match var_ty.sty {
ty::TyRef(r, _) => Some(r),
_ => None,
};
let (mutability, mode) = match bm {
hir::BindByValue(hir::MutMutable) =>
(Mutability::Mut, BindingMode::ByValue),
hir::BindByValue(hir::MutImmutable) =>
(Mutability::Not, BindingMode::ByValue),
hir::BindByRef(hir::MutMutable) =>
(Mutability::Not, BindingMode::ByRef(region.unwrap(), BorrowKind::Mut)),
hir::BindByRef(hir::MutImmutable) =>
(Mutability::Not, BindingMode::ByRef(region.unwrap(), BorrowKind::Shared)),
};
// A ref x pattern is the same node used for x, and as such it has
// x's type, which is &T, where we want T (the type being matched).
if let hir::BindByRef(_) = bm {
if let ty::TyRef(_, mt) = ty.sty {
ty = mt.ty;
} else {
bug!("`ref {}` has wrong type {}", ident.node, ty);
}
}
PatternKind::Binding {
mutability: mutability,
mode: mode,
name: ident.node,
var: id,
ty: var_ty,
subpattern: self.lower_opt_pattern(sub),
}
}
PatKind::TupleStruct(_, ref subpatterns, ddpos) => {
let pat_ty = self.tcx.node_id_to_type(pat.id);
let adt_def = match pat_ty.sty {
ty::TyAdt(adt_def, _) => adt_def,
_ => span_bug!(pat.span, "tuple struct pattern not applied to an ADT"),
};
let variant_def = adt_def.variant_of_def(self.tcx.expect_def(pat.id));
let subpatterns =
subpatterns.iter()
.enumerate_and_adjust(variant_def.fields.len(), ddpos)
.map(|(i, field)| FieldPattern {
field: Field::new(i),
pattern: self.lower_pattern(field),
})
.collect();
self.lower_variant_or_leaf(pat, subpatterns)
}
PatKind::Struct(_, ref fields, _) => {
let pat_ty = self.tcx.node_id_to_type(pat.id);
let adt_def = match pat_ty.sty {
ty::TyAdt(adt_def, _) => adt_def,
_ => {
span_bug!(
pat.span,
"struct pattern not applied to an ADT");
}
};
let variant_def = adt_def.variant_of_def(self.tcx.expect_def(pat.id));
let subpatterns =
fields.iter()
.map(|field| {
let index = variant_def.index_of_field_named(field.node.name);
let index = index.unwrap_or_else(|| {
span_bug!(
pat.span,
"no field with name {:?}",
field.node.name);
});
FieldPattern {
field: Field::new(index),
pattern: self.lower_pattern(&field.node.pat),
}
})
.collect();
self.lower_variant_or_leaf(pat, subpatterns)
}
};
Pattern {
span: pat.span,
ty: ty,
kind: Box::new(kind),
}
}
fn lower_patterns(&mut self, pats: &[P<hir::Pat>]) -> Vec<Pattern<'tcx>> {
pats.iter().map(|p| self.lower_pattern(p)).collect()
}
fn lower_opt_pattern(&mut self, pat: &Option<P<hir::Pat>>) -> Option<Pattern<'tcx>>
{
pat.as_ref().map(|p| self.lower_pattern(p))
}
fn flatten_nested_slice_patterns(
&mut self,
prefix: Vec<Pattern<'tcx>>,
slice: Option<Pattern<'tcx>>,
suffix: Vec<Pattern<'tcx>>)
-> (Vec<Pattern<'tcx>>, Option<Pattern<'tcx>>, Vec<Pattern<'tcx>>)
{
let orig_slice = match slice {
Some(orig_slice) => orig_slice,
None => return (prefix, slice, suffix)
};
let orig_prefix = prefix;
let orig_suffix = suffix;
// dance because of intentional borrow-checker stupidity.
let kind = *orig_slice.kind;
match kind {
PatternKind::Slice { prefix, slice, mut suffix } |
PatternKind::Array { prefix, slice, mut suffix } => {
let mut orig_prefix = orig_prefix;
orig_prefix.extend(prefix);
suffix.extend(orig_suffix);
(orig_prefix, slice, suffix)
}
_ => {
(orig_prefix, Some(Pattern {
kind: box kind, ..orig_slice
}), orig_suffix)
}
}
}
fn slice_or_array_pattern(
&mut self,
span: Span,
ty: Ty<'tcx>,
prefix: &[P<hir::Pat>],
slice: &Option<P<hir::Pat>>,
suffix: &[P<hir::Pat>])
-> PatternKind<'tcx>
{
let prefix = self.lower_patterns(prefix);
let slice = self.lower_opt_pattern(slice);
let suffix = self.lower_patterns(suffix);
let (prefix, slice, suffix) =
self.flatten_nested_slice_patterns(prefix, slice, suffix);
match ty.sty {
ty::TySlice(..) => {
// matching a slice or fixed-length array
PatternKind::Slice { prefix: prefix, slice: slice, suffix: suffix }
}
ty::TyArray(_, len) => {
// fixed-length array
assert!(len >= prefix.len() + suffix.len());
PatternKind::Array { prefix: prefix, slice: slice, suffix: suffix }
}
_ => {
span_bug!(span, "bad slice pattern type {:?}", ty);
}
}
}
fn lower_variant_or_leaf(
&mut self,
pat: &hir::Pat,
subpatterns: Vec<FieldPattern<'tcx>>)
-> PatternKind<'tcx>
{
match self.tcx.expect_def(pat.id) {
Def::Variant(variant_id) | Def::VariantCtor(variant_id, ..) => {
let enum_id = self.tcx.parent_def_id(variant_id).unwrap();
let adt_def = self.tcx.lookup_adt_def(enum_id);
if adt_def.variants.len() > 1 {
PatternKind::Variant {
adt_def: adt_def,
variant_index: adt_def.variant_index_with_id(variant_id),
subpatterns: subpatterns,
}
} else {
PatternKind::Leaf { subpatterns: subpatterns }
}
}
Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
Def::TyAlias(..) | Def::AssociatedTy(..) => {
PatternKind::Leaf { subpatterns: subpatterns }
}
def => {
span_bug!(pat.span, "inappropriate def for pattern: {:?}", def);
}
}
}
}
pub trait PatternFoldable<'tcx> : Sized {
fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
self.super_fold_with(folder)
}
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self;
}
pub trait PatternFolder<'tcx> : Sized {
fn fold_pattern(&mut self, pattern: &Pattern<'tcx>) -> Pattern<'tcx> {
pattern.super_fold_with(self)
}
fn fold_pattern_kind(&mut self, kind: &PatternKind<'tcx>) -> PatternKind<'tcx> {
kind.super_fold_with(self)
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Box<T> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
let content: T = (**self).fold_with(folder);
box content
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Vec<T> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
self.iter().map(|t| t.fold_with(folder)).collect()
}
}
impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Option<T> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self{
self.as_ref().map(|t| t.fold_with(folder))
}
}
macro_rules! CopyImpls {
($($ty:ty),+) => {
$(
impl<'tcx> PatternFoldable<'tcx> for $ty {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, _: &mut F) -> Self {
self.clone()
}
}
)+
}
}
macro_rules! TcxCopyImpls {
($($ty:ident),+) => {
$(
impl<'tcx> PatternFoldable<'tcx> for $ty<'tcx> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, _: &mut F) -> Self {
*self
}
}
)+
}
}
CopyImpls!{ Span, Field, Mutability, ast::Name, ast::NodeId, usize, ConstVal }
TcxCopyImpls!{ Ty, BindingMode, AdtDef }
impl<'tcx> PatternFoldable<'tcx> for FieldPattern<'tcx> {
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
FieldPattern {
field: self.field.fold_with(folder),
pattern: self.pattern.fold_with(folder)
}
}
}
impl<'tcx> PatternFoldable<'tcx> for Pattern<'tcx> {
fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
folder.fold_pattern(self)
}
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
Pattern {
ty: self.ty.fold_with(folder),
span: self.span.fold_with(folder),
kind: self.kind.fold_with(folder)
}
}
}
impl<'tcx> PatternFoldable<'tcx> for PatternKind<'tcx> {
fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
folder.fold_pattern_kind(self)
}
fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
match *self {
PatternKind::Wild => PatternKind::Wild,
PatternKind::Binding {
mutability,
name,
mode,
var,
ty,
ref subpattern,
} => PatternKind::Binding {
mutability: mutability.fold_with(folder),
name: name.fold_with(folder),
mode: mode.fold_with(folder),
var: var.fold_with(folder),
ty: ty.fold_with(folder),
subpattern: subpattern.fold_with(folder),
},
PatternKind::Variant {
adt_def,
variant_index,
ref subpatterns,
} => PatternKind::Variant {
adt_def: adt_def.fold_with(folder),
variant_index: variant_index.fold_with(folder),
subpatterns: subpatterns.fold_with(folder)
},
PatternKind::Leaf {
ref subpatterns,
} => PatternKind::Leaf {
subpatterns: subpatterns.fold_with(folder),
},
PatternKind::Deref {
ref subpattern,
} => PatternKind::Deref {
subpattern: subpattern.fold_with(folder),
},
PatternKind::Constant {
ref value
} => PatternKind::Constant {
value: value.fold_with(folder)
},
PatternKind::Range {
ref lo,
ref hi
} => PatternKind::Range {
lo: lo.fold_with(folder),
hi: hi.fold_with(folder)
},
PatternKind::Slice {
ref prefix,
ref slice,
ref suffix,
} => PatternKind::Slice {
prefix: prefix.fold_with(folder),
slice: slice.fold_with(folder),
suffix: suffix.fold_with(folder)
},
PatternKind::Array {
ref prefix,
ref slice,
ref suffix
} => PatternKind::Array {
prefix: prefix.fold_with(folder),
slice: slice.fold_with(folder),
suffix: suffix.fold_with(folder)
},
}
}
}

View file

@ -73,8 +73,8 @@ pub fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
Test {
span: match_pair.pattern.span,
kind: TestKind::Range {
lo: lo.clone(),
hi: hi.clone(),
lo: Literal::Value { value: lo.clone() },
hi: Literal::Value { value: hi.clone() },
ty: match_pair.pattern.ty.clone(),
},
}

View file

@ -9,6 +9,8 @@
// except according to those terms.
use hair::cx::Cx;
use hair::Pattern;
use rustc::middle::region::{CodeExtent, CodeExtentData, ROOT_CODE_EXTENT};
use rustc::ty::{self, Ty};
use rustc::mir::repr::*;
@ -339,7 +341,7 @@ fn args_and_body(&mut self,
let lvalue = Lvalue::Local(Local::new(index + 1));
if let Some(pattern) = pattern {
let pattern = self.hir.irrefutable_pat(pattern);
let pattern = Pattern::from_hir(self.hir.tcx(), pattern);
scope = self.declare_bindings(scope, ast_block.span, &pattern);
unpack!(block = self.lvalue_into_pattern(block, pattern, &lvalue));
}

View file

@ -57,7 +57,7 @@ fn mirror_stmts<'a, 'gcx, 'tcx>(cx: &mut Cx<'a, 'gcx, 'tcx>,
let remainder_extent =
cx.tcx.region_maps.lookup_code_extent(remainder_extent);
let pattern = cx.irrefutable_pat(&local.pat);
let pattern = Pattern::from_hir(cx.tcx, &local.pat);
result.push(StmtRef::Mirror(Box::new(Stmt {
span: stmt.span,
kind: StmtKind::Let {

View file

@ -657,7 +657,7 @@ fn to_borrow_kind(m: hir::Mutability) -> BorrowKind {
fn convert_arm<'a, 'gcx, 'tcx>(cx: &mut Cx<'a, 'gcx, 'tcx>,
arm: &'tcx hir::Arm) -> Arm<'tcx> {
Arm {
patterns: arm.pats.iter().map(|p| cx.refutable_pat(p)).collect(),
patterns: arm.pats.iter().map(|p| Pattern::from_hir(cx.tcx, p)).collect(),
guard: arm.guard.to_ref(),
body: arm.body.to_ref(),
}

View file

@ -196,5 +196,4 @@ pub fn check_overflow(&self) -> bool {
mod block;
mod expr;
mod pattern;
mod to_ref;

View file

@ -1,328 +0,0 @@
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use hair::*;
use hair::cx::Cx;
use rustc_data_structures::indexed_vec::Idx;
use rustc_const_eval as const_eval;
use rustc::hir::def::Def;
use rustc::hir::pat_util::EnumerateAndAdjustIterator;
use rustc::ty::{self, Ty};
use rustc::mir::repr::*;
use rustc::hir::{self, PatKind};
use syntax::ptr::P;
use syntax_pos::Span;
/// When there are multiple patterns in a single arm, each one has its
/// own node-ids for the bindings. References to the variables always
/// use the node-ids from the first pattern in the arm, so we just
/// remap the ids for all subsequent bindings to the first one.
///
/// Example:
/// ```
/// match foo {
/// Test1(flavor /* def 1 */) |
/// Test2(flavor /* def 2 */) if flavor /* ref 1 */.is_tasty() => { ... }
/// _ => { ... }
/// }
/// ```
struct PatCx<'patcx, 'cx: 'patcx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
cx: &'patcx mut Cx<'cx, 'gcx, 'tcx>,
}
impl<'cx, 'gcx, 'tcx> Cx<'cx, 'gcx, 'tcx> {
pub fn irrefutable_pat(&mut self, pat: &hir::Pat) -> Pattern<'tcx> {
PatCx::new(self).to_pattern(pat)
}
pub fn refutable_pat(&mut self,
pat: &hir::Pat)
-> Pattern<'tcx> {
PatCx::new(self).to_pattern(pat)
}
}
impl<'patcx, 'cx, 'gcx, 'tcx> PatCx<'patcx, 'cx, 'gcx, 'tcx> {
fn new(cx: &'patcx mut Cx<'cx, 'gcx, 'tcx>)
-> PatCx<'patcx, 'cx, 'gcx, 'tcx> {
PatCx {
cx: cx,
}
}
fn to_pattern(&mut self, pat: &hir::Pat) -> Pattern<'tcx> {
let mut ty = self.cx.tcx.node_id_to_type(pat.id);
let kind = match pat.node {
PatKind::Wild => PatternKind::Wild,
PatKind::Lit(ref value) => {
let value = const_eval::eval_const_expr(self.cx.tcx.global_tcx(), value);
PatternKind::Constant { value: value }
}
PatKind::Range(ref lo, ref hi) => {
let lo = const_eval::eval_const_expr(self.cx.tcx.global_tcx(), lo);
let lo = Literal::Value { value: lo };
let hi = const_eval::eval_const_expr(self.cx.tcx.global_tcx(), hi);
let hi = Literal::Value { value: hi };
PatternKind::Range { lo: lo, hi: hi }
},
PatKind::Path(..) => {
match self.cx.tcx.expect_def(pat.id) {
Def::Const(def_id) | Def::AssociatedConst(def_id) => {
let tcx = self.cx.tcx.global_tcx();
let substs = Some(self.cx.tcx.node_id_item_substs(pat.id).substs);
match const_eval::lookup_const_by_id(tcx, def_id, substs) {
Some((const_expr, _const_ty)) => {
match const_eval::const_expr_to_pat(tcx,
const_expr,
pat.id,
pat.span) {
Ok(pat) =>
return self.to_pattern(&pat),
Err(_) =>
span_bug!(
pat.span, "illegal constant"),
}
}
None => {
span_bug!(
pat.span,
"cannot eval constant: {:?}",
def_id)
}
}
}
_ => {
self.variant_or_leaf(pat, vec![])
}
}
}
PatKind::Ref(ref subpattern, _) |
PatKind::Box(ref subpattern) => {
PatternKind::Deref { subpattern: self.to_pattern(subpattern) }
}
PatKind::Slice(ref prefix, ref slice, ref suffix) => {
let ty = self.cx.tcx.node_id_to_type(pat.id);
match ty.sty {
ty::TyRef(_, mt) =>
PatternKind::Deref {
subpattern: Pattern {
ty: mt.ty,
span: pat.span,
kind: Box::new(self.slice_or_array_pattern(pat.span, mt.ty, prefix,
slice, suffix)),
},
},
ty::TySlice(..) |
ty::TyArray(..) =>
self.slice_or_array_pattern(pat.span, ty, prefix, slice, suffix),
ref sty =>
span_bug!(
pat.span,
"unexpanded type for vector pattern: {:?}",
sty),
}
}
PatKind::Tuple(ref subpatterns, ddpos) => {
match self.cx.tcx.node_id_to_type(pat.id).sty {
ty::TyTuple(ref tys) => {
let subpatterns =
subpatterns.iter()
.enumerate_and_adjust(tys.len(), ddpos)
.map(|(i, subpattern)| FieldPattern {
field: Field::new(i),
pattern: self.to_pattern(subpattern),
})
.collect();
PatternKind::Leaf { subpatterns: subpatterns }
}
ref sty => span_bug!(pat.span, "unexpected type for tuple pattern: {:?}", sty),
}
}
PatKind::Binding(bm, ref ident, ref sub) => {
let def_id = self.cx.tcx.expect_def(pat.id).def_id();
let id = self.cx.tcx.map.as_local_node_id(def_id).unwrap();
let var_ty = self.cx.tcx.node_id_to_type(pat.id);
let region = match var_ty.sty {
ty::TyRef(r, _) => Some(r),
_ => None,
};
let (mutability, mode) = match bm {
hir::BindByValue(hir::MutMutable) =>
(Mutability::Mut, BindingMode::ByValue),
hir::BindByValue(hir::MutImmutable) =>
(Mutability::Not, BindingMode::ByValue),
hir::BindByRef(hir::MutMutable) =>
(Mutability::Not, BindingMode::ByRef(region.unwrap(), BorrowKind::Mut)),
hir::BindByRef(hir::MutImmutable) =>
(Mutability::Not, BindingMode::ByRef(region.unwrap(), BorrowKind::Shared)),
};
// A ref x pattern is the same node used for x, and as such it has
// x's type, which is &T, where we want T (the type being matched).
if let hir::BindByRef(_) = bm {
if let ty::TyRef(_, mt) = ty.sty {
ty = mt.ty;
} else {
bug!("`ref {}` has wrong type {}", ident.node, ty);
}
}
PatternKind::Binding {
mutability: mutability,
mode: mode,
name: ident.node,
var: id,
ty: var_ty,
subpattern: self.to_opt_pattern(sub),
}
}
PatKind::TupleStruct(_, ref subpatterns, ddpos) => {
let pat_ty = self.cx.tcx.node_id_to_type(pat.id);
let adt_def = match pat_ty.sty {
ty::TyAdt(adt_def, _) => adt_def,
_ => span_bug!(pat.span, "tuple struct pattern not applied to an ADT"),
};
let variant_def = adt_def.variant_of_def(self.cx.tcx.expect_def(pat.id));
let subpatterns =
subpatterns.iter()
.enumerate_and_adjust(variant_def.fields.len(), ddpos)
.map(|(i, field)| FieldPattern {
field: Field::new(i),
pattern: self.to_pattern(field),
})
.collect();
self.variant_or_leaf(pat, subpatterns)
}
PatKind::Struct(_, ref fields, _) => {
let pat_ty = self.cx.tcx.node_id_to_type(pat.id);
let adt_def = match pat_ty.sty {
ty::TyAdt(adt_def, _) => adt_def,
_ => {
span_bug!(
pat.span,
"struct pattern not applied to an ADT");
}
};
let variant_def = adt_def.variant_of_def(self.cx.tcx.expect_def(pat.id));
let subpatterns =
fields.iter()
.map(|field| {
let index = variant_def.index_of_field_named(field.node.name);
let index = index.unwrap_or_else(|| {
span_bug!(
pat.span,
"no field with name {:?}",
field.node.name);
});
FieldPattern {
field: Field::new(index),
pattern: self.to_pattern(&field.node.pat),
}
})
.collect();
self.variant_or_leaf(pat, subpatterns)
}
};
Pattern {
span: pat.span,
ty: ty,
kind: Box::new(kind),
}
}
fn to_patterns(&mut self, pats: &[P<hir::Pat>]) -> Vec<Pattern<'tcx>> {
pats.iter().map(|p| self.to_pattern(p)).collect()
}
fn to_opt_pattern(&mut self, pat: &Option<P<hir::Pat>>) -> Option<Pattern<'tcx>> {
pat.as_ref().map(|p| self.to_pattern(p))
}
fn slice_or_array_pattern(&mut self,
span: Span,
ty: Ty<'tcx>,
prefix: &[P<hir::Pat>],
slice: &Option<P<hir::Pat>>,
suffix: &[P<hir::Pat>])
-> PatternKind<'tcx> {
match ty.sty {
ty::TySlice(..) => {
// matching a slice or fixed-length array
PatternKind::Slice {
prefix: self.to_patterns(prefix),
slice: self.to_opt_pattern(slice),
suffix: self.to_patterns(suffix),
}
}
ty::TyArray(_, len) => {
// fixed-length array
assert!(len >= prefix.len() + suffix.len());
PatternKind::Array {
prefix: self.to_patterns(prefix),
slice: self.to_opt_pattern(slice),
suffix: self.to_patterns(suffix),
}
}
_ => {
span_bug!(span, "unexpanded macro or bad constant etc");
}
}
}
fn variant_or_leaf(&mut self,
pat: &hir::Pat,
subpatterns: Vec<FieldPattern<'tcx>>)
-> PatternKind<'tcx> {
match self.cx.tcx.expect_def(pat.id) {
Def::Variant(variant_id) | Def::VariantCtor(variant_id, ..) => {
let enum_id = self.cx.tcx.parent_def_id(variant_id).unwrap();
let adt_def = self.cx.tcx.lookup_adt_def(enum_id);
if adt_def.variants.len() > 1 {
PatternKind::Variant {
adt_def: adt_def,
variant_index: adt_def.variant_index_with_id(variant_id),
subpatterns: subpatterns,
}
} else {
PatternKind::Leaf { subpatterns: subpatterns }
}
}
Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
Def::TyAlias(..) | Def::AssociatedTy(..) => {
PatternKind::Leaf { subpatterns: subpatterns }
}
def => {
span_bug!(pat.span, "inappropriate def for pattern: {:?}", def);
}
}
}
}

View file

@ -14,9 +14,7 @@
//! unit-tested and separated from the Rust source and compiler data
//! structures.
use rustc::mir::repr::{BinOp, BorrowKind, Field, Literal, Mutability, UnOp,
TypedConstVal};
use rustc::middle::const_val::ConstVal;
use rustc::mir::repr::{BinOp, BorrowKind, Field, Literal, UnOp, TypedConstVal};
use rustc::hir::def_id::DefId;
use rustc::middle::region::CodeExtent;
use rustc::ty::subst::Substs;
@ -28,6 +26,8 @@
pub mod cx;
pub use rustc_const_eval::pattern::{BindingMode, Pattern, PatternKind, FieldPattern};
#[derive(Clone, Debug)]
pub struct Block<'tcx> {
pub extent: CodeExtent,
@ -266,86 +266,12 @@ pub struct Arm<'tcx> {
pub body: ExprRef<'tcx>,
}
#[derive(Clone, Debug)]
pub struct Pattern<'tcx> {
pub ty: Ty<'tcx>,
pub span: Span,
pub kind: Box<PatternKind<'tcx>>,
}
#[derive(Copy, Clone, Debug)]
pub enum LogicalOp {
And,
Or,
}
#[derive(Clone, Debug)]
pub enum PatternKind<'tcx> {
Wild,
/// x, ref x, x @ P, etc
Binding {
mutability: Mutability,
name: ast::Name,
mode: BindingMode<'tcx>,
var: ast::NodeId,
ty: Ty<'tcx>,
subpattern: Option<Pattern<'tcx>>,
},
/// Foo(...) or Foo{...} or Foo, where `Foo` is a variant name from an adt with >1 variants
Variant {
adt_def: AdtDef<'tcx>,
variant_index: usize,
subpatterns: Vec<FieldPattern<'tcx>>,
},
/// (...), Foo(...), Foo{...}, or Foo, where `Foo` is a variant name from an adt with 1 variant
Leaf {
subpatterns: Vec<FieldPattern<'tcx>>,
},
/// box P, &P, &mut P, etc
Deref {
subpattern: Pattern<'tcx>,
},
Constant {
value: ConstVal,
},
Range {
lo: Literal<'tcx>,
hi: Literal<'tcx>,
},
/// matches against a slice, checking the length and extracting elements
Slice {
prefix: Vec<Pattern<'tcx>>,
slice: Option<Pattern<'tcx>>,
suffix: Vec<Pattern<'tcx>>,
},
/// fixed match against an array, irrefutable
Array {
prefix: Vec<Pattern<'tcx>>,
slice: Option<Pattern<'tcx>>,
suffix: Vec<Pattern<'tcx>>,
},
}
#[derive(Copy, Clone, Debug)]
pub enum BindingMode<'tcx> {
ByValue,
ByRef(&'tcx Region, BorrowKind),
}
#[derive(Clone, Debug)]
pub struct FieldPattern<'tcx> {
pub field: Field,
pub pattern: Pattern<'tcx>,
}
///////////////////////////////////////////////////////////////////////////
// The Mirror trait

View file

@ -21,10 +21,6 @@
const NEG_NEG_128: i8 = -NEG_128;
//~^ ERROR constant evaluation error
//~| attempt to negate with overflow
//~| ERROR constant evaluation error
//~| attempt to negate with overflow
//~| ERROR constant evaluation error
//~| attempt to negate with overflow
fn main() {
match -128i8 {

View file

@ -25,13 +25,11 @@ const fn foo() -> Cake {
Marmor
//~^ ERROR: constant evaluation error [E0080]
//~| unimplemented constant expression: enum variants
//~^^^ ERROR: constant evaluation error [E0080]
//~| unimplemented constant expression: enum variants
}
const WORKS: Cake = Marmor;
const GOO: Cake = foo(); //~ NOTE for expression here
const GOO: Cake = foo();
fn main() {
match BlackForest {

View file

@ -0,0 +1,16 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(slice_patterns)]
fn main() {
let x: &[u32] = &[];
let &[[ref _a, ref _b..]..] = x; //~ ERROR refutable pattern
}

View file

@ -11,26 +11,24 @@
#![feature(rustc_attrs)]
#![feature(slice_patterns)]
#![allow(dead_code)]
#![deny(illegal_floating_point_constant_pattern)]
// Matching against NaN should result in a warning
use std::f64::NAN;
#[rustc_error]
fn main() { //~ ERROR compilation successful
fn main() {
let x = NAN;
match x {
NAN => {},
NAN => {}, //~ ERROR floating point constants cannot be used
//~| WARNING hard error
_ => {},
};
//~^^^ WARNING unmatchable NaN in pattern, use the is_nan method in a guard instead
//~| WARNING floating point constants cannot be used
//~| WARNING this was previously accepted
match [x, 1.0] {
[NAN, _] => {},
[NAN, _] => {}, //~ ERROR floating point constants cannot be used
//~| WARNING hard error
_ => {},
};
//~^^^ WARNING unmatchable NaN in pattern, use the is_nan method in a guard instead
//~| WARNING floating point constants cannot be used
//~| WARNING this was previously accepted
}

View file

@ -0,0 +1,73 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(advanced_slice_patterns, slice_patterns)]
fn main() {
let buf = &[0, 1, 2, 3];
match buf {
b"AAAA" => {},
&[0x41, 0x41, 0x41, 0x41] => {} //~ ERROR unreachable pattern
_ => {}
}
match buf {
&[0x41, 0x41, 0x41, 0x41] => {}
b"AAAA" => {}, //~ ERROR unreachable pattern
_ => {}
}
match buf {
&[_, 0x41, 0x41, 0x41] => {},
b"AAAA" => {}, //~ ERROR unreachable pattern
_ => {}
}
match buf {
&[0x41, .., 0x41] => {}
b"AAAA" => {}, //~ ERROR unreachable pattern
_ => {}
}
match buf { //~ ERROR non-exhaustive
b"AAAA" => {}
}
let buf: &[u8] = buf;
match buf {
b"AAAA" => {},
&[0x41, 0x41, 0x41, 0x41] => {} //~ ERROR unreachable pattern
_ => {}
}
match buf {
&[0x41, 0x41, 0x41, 0x41] => {}
b"AAAA" => {}, //~ ERROR unreachable pattern
_ => {}
}
match buf {
&[_, 0x41, 0x41, 0x41] => {},
b"AAAA" => {}, //~ ERROR unreachable pattern
_ => {}
}
match buf {
&[0x41, .., 0x41] => {}
b"AAAA" => {}, //~ ERROR unreachable pattern
_ => {}
}
match buf { //~ ERROR non-exhaustive
b"AAAA" => {}
}
}

View file

@ -0,0 +1,54 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(slice_patterns)]
fn main() {
let buf = &[0u8; 4];
match buf {
&[0, 1, 0, 0] => unimplemented!(),
b"true" => unimplemented!(),
_ => {}
}
match buf {
b"true" => unimplemented!(),
&[0, 1, 0, 0] => unimplemented!(),
_ => {}
}
match buf {
b"true" => unimplemented!(),
&[0, x, 0, 0] => assert_eq!(x, 0),
_ => unimplemented!(),
}
let buf: &[u8] = buf;
match buf {
&[0, 1, 0, 0] => unimplemented!(),
&[_] => unimplemented!(),
&[_, _, _, _, _, ..] => unimplemented!(),
b"true" => unimplemented!(),
_ => {}
}
match buf {
b"true" => unimplemented!(),
&[0, 1, 0, 0] => unimplemented!(),
_ => {}
}
match buf {
b"true" => unimplemented!(),
&[0, x, 0, 0] => assert_eq!(x, 0),
_ => unimplemented!(),
}
}

View file

@ -144,6 +144,20 @@ fn e() {
assert_eq!(c, 1);
}
fn f() {
let x = &[1, 2, 3, 4, 5];
let [a, [b, [c, ..].., d].., e] = *x;
assert_eq!((a, b, c, d, e), (1, 2, 3, 4, 5));
let x: &[isize] = x;
let (a, b, c, d, e) = match *x {
[a, [b, [c, ..].., d].., e] => (a, b, c, d, e),
_ => unimplemented!()
};
assert_eq!((a, b, c, d, e), (1, 2, 3, 4, 5));
}
pub fn main() {
a();
b();
@ -151,4 +165,5 @@ pub fn main() {
c();
d();
e();
f();
}

View file

@ -0,0 +1,53 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
enum Enum {
A, B, C, D, E, F
}
use Enum::*;
struct S(Enum, ());
struct Sd { x: Enum, y: () }
fn main() {
match (A, ()) {
(A, _) => {}
}
match (A, A) {
(_, A) => {}
}
match ((A, ()), ()) {
((A, ()), _) => {}
}
match ((A, ()), A) {
((A, ()), _) => {}
}
match ((A, ()), ()) {
((A, _), _) => {}
}
match S(A, ()) {
S(A, _) => {}
}
match (Sd { x: A, y: () }) {
Sd { x: A, y: _ } => {}
}
match Some(A) {
Some(A) => (),
None => ()
}
}

View file

@ -0,0 +1,50 @@
error[E0004]: non-exhaustive patterns: `(B, _)`, `(C, _)`, `(D, _)` and 2 more not covered
--> $DIR/issue-35609.rs:20:11
|
20 | match (A, ()) {
| ^^^^^^^ patterns `(B, _)`, `(C, _)`, `(D, _)` and 2 more not covered
error[E0004]: non-exhaustive patterns: `(A, B)`, `(B, B)`, `(C, B)` and 27 more not covered
--> $DIR/issue-35609.rs:24:11
|
24 | match (A, A) {
| ^^^^^^ patterns `(A, B)`, `(B, B)`, `(C, B)` and 27 more not covered
error[E0004]: non-exhaustive patterns: `((B, _), _)`, `((C, _), _)`, `((D, _), _)` and 2 more not covered
--> $DIR/issue-35609.rs:28:11
|
28 | match ((A, ()), ()) {
| ^^^^^^^^^^^^^ patterns `((B, _), _)`, `((C, _), _)`, `((D, _), _)` and 2 more not covered
error[E0004]: non-exhaustive patterns: `((B, _), _)`, `((C, _), _)`, `((D, _), _)` and 2 more not covered
--> $DIR/issue-35609.rs:32:11
|
32 | match ((A, ()), A) {
| ^^^^^^^^^^^^ patterns `((B, _), _)`, `((C, _), _)`, `((D, _), _)` and 2 more not covered
error[E0004]: non-exhaustive patterns: `((B, _), _)`, `((C, _), _)`, `((D, _), _)` and 2 more not covered
--> $DIR/issue-35609.rs:36:11
|
36 | match ((A, ()), ()) {
| ^^^^^^^^^^^^^ patterns `((B, _), _)`, `((C, _), _)`, `((D, _), _)` and 2 more not covered
error[E0004]: non-exhaustive patterns: `S(B, _)`, `S(C, _)`, `S(D, _)` and 2 more not covered
--> $DIR/issue-35609.rs:41:11
|
41 | match S(A, ()) {
| ^^^^^^^^ patterns `S(B, _)`, `S(C, _)`, `S(D, _)` and 2 more not covered
error[E0004]: non-exhaustive patterns: `Sd { x: B, .. }`, `Sd { x: C, .. }`, `Sd { x: D, .. }` and 2 more not covered
--> $DIR/issue-35609.rs:45:11
|
45 | match (Sd { x: A, y: () }) {
| ^^^^^^^^^^^^^^^^^^^^ patterns `Sd { x: B, .. }`, `Sd { x: C, .. }`, `Sd { x: D, .. }` and 2 more not covered
error[E0004]: non-exhaustive patterns: `Some(B)`, `Some(C)`, `Some(D)` and 2 more not covered
--> $DIR/issue-35609.rs:49:11
|
49 | match Some(A) {
| ^^^^^^^ patterns `Some(B)`, `Some(C)`, `Some(D)` and 2 more not covered
error: aborting due to 8 previous errors