Commit graph

4 commits

Author SHA1 Message Date
Austin Clements 596120fdc6 cmd/compile: redo IsRuntimePkg/IsReflectPkg predicate
Currently, the types package has IsRuntimePkg and IsReflectPkg
predicates for testing if a Pkg is the runtime or reflect packages.
IsRuntimePkg returns "true" for any "CompilingRuntime" package, which
includes all of the packages imported by the runtime. This isn't
inherently wrong, except that all but one use of it is of the form "is
this Sym a specific runtime.X symbol?" for which we clearly only want
the package "runtime" itself. IsRuntimePkg was introduced (as
isRuntime) in CL 37538 as part of separating the real runtime package
from the compiler built-in fake runtime package. As of that CL, the
"runtime" package couldn't import any other packages, so this was
adequate at the time.

We could fix this by just changing the implementation of IsRuntimePkg,
but the meaning of this API is clearly somewhat ambiguous. Instead, we
replace it with a new RuntimeSymName function that returns the name of
a symbol if it's in package "runtime", or "" if not. This is what
every call site (except one) actually wants, which lets us simplify
the callers, and also more clearly addresses the ambiguity between
package "runtime" and the general concept of a runtime package.

IsReflectPkg doesn't have the same issue of ambiguity, but it
parallels IsRuntimePkg and is used in the same way, so we replace it
with a new ReflectSymName for consistency.

Change-Id: If3a81d7d11732a9ab2cac9488d17508415cfb597
Reviewed-on: https://go-review.googlesource.com/c/go/+/521696
Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
2023-08-22 19:18:21 +00:00
Dan Scales ed7a8332c4 cmd/compile: allow mid-stack inlining when there is a cycle of recursion
We still disallow inlining for an immediately-recursive function, but allow
inlining if a function is in a recursion chain.

If all functions in the recursion chain are simple, then we could inline
forever down the recursion chain (eventually running out of stack on the
compiler), so we add a map to keep track of the functions we have
already inlined at a call site. We stop inlining when we reach a
function that we have already inlined in the recursive chain. Of course,
normally the inlining will have stopped earlier, because of the cost
function.

We could also limit the depth of inlining by a simple count (say, limit
max inlining of 10 at any given site). Would that limit other
opportunities too much?

Added a test in test/inline.go. runtime.BenchmarkStackCopyNoCache() is
also already a good test that triggers the check to stop inlining
when we reach the start of the recursive chain again.

For the bent benchmark suite, the performance improvement was mostly not
statistically significant, but the geomean averaged out to: -0.68%. The text size
increase was less than .1% for all bent benchmarks. The cmd/go text size increase
was 0.02% and the cmd/compile text size increase was .1%.

Fixes #29737

Change-Id: I892fa84bb07a947b3125ec8f25ed0e508bf2bdf5
Reviewed-on: https://go-review.googlesource.com/c/go/+/226818
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
2020-04-03 21:43:52 +00:00
Austin Clements 5a4b6bce37 cmd/compile: improve coverage of nowritebarrierrec check
The current go:nowritebarrierrec checker has two problems that limit
its coverage:

1. It doesn't understand that systemstack calls its argument, which
means there are several cases where we fail to detect prohibited write
barriers.

2. It only observes calls in the AST, so calls constructed during
lowering by SSA aren't followed.

This CL completely rewrites this checker to address these issues.

The current checker runs entirely after walk and uses visitBottomUp,
which introduces several problems for checking across systemstack.
First, visitBottomUp itself doesn't understand systemstack calls, so
the callee may be ordered after the caller, causing the checker to
fail to propagate constraints. Second, many systemstack calls are
passed a closure, which is quite difficult to resolve back to the
function definition after transformclosure and walk have run. Third,
visitBottomUp works exclusively on the AST, so it can't observe calls
created by SSA.

To address these problems, this commit splits the check into two
phases and rewrites it to use a call graph generated during SSA
lowering. The first phase runs before transformclosure/walk and simply
records systemstack arguments when they're easy to get. Then, it
modifies genssa to record static call edges at the point where we're
lowering to Progs (which is the latest point at which position
information is conveniently available). Finally, the second phase runs
after all functions have been lowered and uses a direct BFS walk of
the call graph (combining systemstack calls with static calls) to find
prohibited write barriers and construct nice error messages.

Fixes #22384.
For #22460.

Change-Id: I39668f7f2366ab3c1ab1a71eaf25484d25349540
Reviewed-on: https://go-review.googlesource.com/72773
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2017-10-29 19:36:44 +00:00
Austin Clements a9e6cebde2 cmd/compile, runtime: add go:yeswritebarrierrec pragma
This pragma cancels the effect of go:nowritebarrierrec. This is useful
in the scheduler because there are places where we enter a function
without a valid P (and hence cannot have write barriers), but then
obtain a P. This allows us to annotate the function with
go:nowritebarrierrec and split out the part after we've obtained a P
into a go:yeswritebarrierrec function.

Change-Id: Ic8ce4b6d3c074a1ecd8280ad90eaf39f0ffbcc2a
Reviewed-on: https://go-review.googlesource.com/30938
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
2016-10-15 17:58:11 +00:00