cmd/compile: save selector/inst info for generic method/function calls

In the dict info, we need to save the SelectorExpr of a generic method
call when making its sub-dictionary entry. The generic method call will
eventually be transformed into a function call on the method shape
instantiation, so we may not always have the selector info available
when we need it to create a dictionary. We use this SelectorExpr as
needed if the relevant call node has already been transformed.

Similarly, we save the InstExpr of generic function calls, since the
InstExpr will be dropped when the function call is transformed to a call
to a shape instantiation. We use this InstExpr if the relevant function
call has already been transformed.

Added an extra generic function Some2 and a call to it from Some that
exercises the generic function case. The existing test already tests the
method call case.

Fixes #50264

Change-Id: I2c7c7d79a8e33ca36a5e88e64e913c57500c97f9
Reviewed-on: https://go-review.googlesource.com/c/go/+/373754
Reviewed-by: Keith Randall <khr@golang.org>
Trust: Dan Scales <danscales@google.com>
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
This commit is contained in:
Dan Scales 2021-12-21 07:59:16 -08:00
parent e39ab9b01c
commit f154f8b5bb
3 changed files with 113 additions and 39 deletions

View file

@ -96,6 +96,17 @@ func check2(noders []*noder) {
}
}
// Information about sub-dictionary entries in a dictionary
type subDictInfo struct {
// Call or XDOT node that requires a dictionary.
callNode ir.Node
// Saved CallExpr.X node (*ir.SelectorExpr or *InstExpr node) for a generic
// method or function call, since this node will get dropped when the generic
// method/function call is transformed to a call on the instantiated shape
// function. Nil for other kinds of calls or XDOTs.
savedXNode ir.Node
}
// dictInfo is the dictionary format for an instantiation of a generic function with
// particular shapes. shapeParams, derivedTypes, subDictCalls, and itabConvs describe
// the actual dictionary entries in order, and the remaining fields are other info
@ -108,7 +119,7 @@ type dictInfo struct {
// Nodes in the instantiation that requires a subdictionary. Includes
// method and function calls (OCALL), function values (OFUNCINST), method
// values/expressions (OXDOT).
subDictCalls []ir.Node
subDictCalls []subDictInfo
// Nodes in the instantiation that are a conversion from a typeparam/derived
// type to a specific interface.
itabConvs []ir.Node

View file

@ -609,7 +609,7 @@ func (g *genInst) getDictOrSubdict(declInfo *instInfo, n ir.Node, nameNode *ir.N
if declInfo != nil {
entry := -1
for i, de := range declInfo.dictInfo.subDictCalls {
if n == de {
if n == de.callNode {
entry = declInfo.dictInfo.startSubDict + i
break
}
@ -1570,8 +1570,9 @@ func (g *genInst) getDictionarySym(gf *ir.Name, targs []*types.Type, isMeth bool
markTypeUsed(ts, lsym)
}
// Emit an entry for each subdictionary (after substituting targs)
for _, n := range info.subDictCalls {
for _, subDictInfo := range info.subDictCalls {
var sym *types.Sym
n := subDictInfo.callNode
switch n.Op() {
case ir.OCALL, ir.OCALLFUNC, ir.OCALLMETH:
call := n.(*ir.CallExpr)
@ -1618,31 +1619,31 @@ func (g *genInst) getDictionarySym(gf *ir.Name, targs []*types.Type, isMeth bool
} else {
// This is the case of a normal
// method call on a generic type.
recvType := deref(call.X.(*ir.SelectorExpr).X.Type())
genRecvType := recvType.OrigSym().Def.Type()
nameNode = typecheck.Lookdot1(call.X, se.Sel, genRecvType, genRecvType.Methods(), 1).Nname.(*ir.Name)
subtargs := recvType.RParams()
s2targs := make([]*types.Type, len(subtargs))
for i, t := range subtargs {
s2targs[i] = subst.Typ(t)
}
sym = g.getDictionarySym(nameNode, s2targs, true)
assert(subDictInfo.savedXNode == se)
sym = g.getSymForMethodCall(se, &subst)
}
} else {
inst := call.X.(*ir.InstExpr)
var nameNode *ir.Name
var meth *ir.SelectorExpr
var isMeth bool
if meth, isMeth = inst.X.(*ir.SelectorExpr); isMeth {
nameNode = meth.Selection.Nname.(*ir.Name)
inst, ok := call.X.(*ir.InstExpr)
if ok {
// Code hasn't been transformed yet
assert(subDictInfo.savedXNode == inst)
}
// If !ok, then the generic method/function call has
// already been transformed to a shape instantiation
// call. Either way, use the SelectorExpr/InstExpr
// node saved in info.
cex := subDictInfo.savedXNode
if se, ok := cex.(*ir.SelectorExpr); ok {
sym = g.getSymForMethodCall(se, &subst)
} else {
nameNode = inst.X.(*ir.Name)
inst := cex.(*ir.InstExpr)
nameNode := inst.X.(*ir.Name)
subtargs := typecheck.TypesOf(inst.Targs)
for i, t := range subtargs {
subtargs[i] = subst.Typ(t)
}
sym = g.getDictionarySym(nameNode, subtargs, false)
}
subtargs := typecheck.TypesOf(inst.Targs)
for i, t := range subtargs {
subtargs[i] = subst.Typ(t)
}
sym = g.getDictionarySym(nameNode, subtargs, isMeth)
}
case ir.OFUNCINST:
@ -1655,16 +1656,7 @@ func (g *genInst) getDictionarySym(gf *ir.Name, targs []*types.Type, isMeth bool
sym = g.getDictionarySym(nameNode, subtargs, false)
case ir.OXDOT, ir.OMETHEXPR, ir.OMETHVALUE:
selExpr := n.(*ir.SelectorExpr)
recvType := deref(selExpr.Selection.Type.Recv().Type)
genRecvType := recvType.OrigSym().Def.Type()
subtargs := recvType.RParams()
s2targs := make([]*types.Type, len(subtargs))
for i, t := range subtargs {
s2targs[i] = subst.Typ(t)
}
nameNode := typecheck.Lookdot1(selExpr, selExpr.Sel, genRecvType, genRecvType.Methods(), 1).Nname.(*ir.Name)
sym = g.getDictionarySym(nameNode, s2targs, true)
sym = g.getSymForMethodCall(n.(*ir.SelectorExpr), &subst)
default:
assert(false)
@ -1692,6 +1684,24 @@ func (g *genInst) getDictionarySym(gf *ir.Name, targs []*types.Type, isMeth bool
return sym
}
// getSymForMethodCall gets the dictionary sym for a method call, method value, or method
// expression that has selector se. subst gives the substitution from shape types to
// concrete types.
func (g *genInst) getSymForMethodCall(se *ir.SelectorExpr, subst *typecheck.Tsubster) *types.Sym {
// For everything except method expressions, 'recvType = deref(se.X.Type)' would
// also give the receiver type. For method expressions with embedded types, we
// need to look at the type of the selection to get the final receiver type.
recvType := deref(se.Selection.Type.Recv().Type)
genRecvType := recvType.OrigSym().Def.Type()
nameNode := typecheck.Lookdot1(se, se.Sel, genRecvType, genRecvType.Methods(), 1).Nname.(*ir.Name)
subtargs := recvType.RParams()
s2targs := make([]*types.Type, len(subtargs))
for i, t := range subtargs {
s2targs[i] = subst.Typ(t)
}
return g.getDictionarySym(nameNode, s2targs, true)
}
// finalizeSyms finishes up all dictionaries on g.dictSymsToFinalize, by writing out
// any needed LSyms for itabs. The itab lsyms create wrappers which need various
// dictionaries and method instantiations to be complete, so, to avoid recursive
@ -1839,7 +1849,7 @@ func (g *genInst) getInstInfo(st *ir.Func, shapes []*types.Type, instInfo *instI
case ir.OFUNCINST:
if !callMap[n] && hasShapeNodes(n.(*ir.InstExpr).Targs) {
infoPrint(" Closure&subdictionary required at generic function value %v\n", n.(*ir.InstExpr).X)
info.subDictCalls = append(info.subDictCalls, n)
info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: nil})
}
case ir.OMETHEXPR, ir.OMETHVALUE:
if !callMap[n] && !types.IsInterfaceMethod(n.(*ir.SelectorExpr).Selection.Type) &&
@ -1850,7 +1860,7 @@ func (g *genInst) getInstInfo(st *ir.Func, shapes []*types.Type, instInfo *instI
} else {
infoPrint(" Closure&subdictionary required at generic meth value %v\n", n)
}
info.subDictCalls = append(info.subDictCalls, n)
info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: nil})
}
case ir.OCALL:
ce := n.(*ir.CallExpr)
@ -1858,14 +1868,18 @@ func (g *genInst) getInstInfo(st *ir.Func, shapes []*types.Type, instInfo *instI
callMap[ce.X] = true
if hasShapeNodes(ce.X.(*ir.InstExpr).Targs) {
infoPrint(" Subdictionary at generic function/method call: %v - %v\n", ce.X.(*ir.InstExpr).X, n)
info.subDictCalls = append(info.subDictCalls, n)
// Save the instExpr node for the function call,
// since we will lose this information when the
// generic function call is transformed to a call
// on the shape instantiation.
info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: ce.X})
}
}
if ce.X.Op() == ir.OXDOT &&
isShapeDeref(ce.X.(*ir.SelectorExpr).X.Type()) {
callMap[ce.X] = true
infoPrint(" Optional subdictionary at generic bound call: %v\n", n)
info.subDictCalls = append(info.subDictCalls, n)
info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: nil})
}
case ir.OCALLMETH:
ce := n.(*ir.CallExpr)
@ -1874,7 +1888,11 @@ func (g *genInst) getInstInfo(st *ir.Func, shapes []*types.Type, instInfo *instI
callMap[ce.X] = true
if hasShapeTypes(deref(ce.X.(*ir.SelectorExpr).X.Type()).RParams()) {
infoPrint(" Subdictionary at generic method call: %v\n", n)
info.subDictCalls = append(info.subDictCalls, n)
// Save the selector for the method call, since we
// will eventually lose this information when the
// generic method call is transformed into a
// function call on the method shape instantiation.
info.subDictCalls = append(info.subDictCalls, subDictInfo{callNode: n, savedXNode: ce.X})
}
}
case ir.OCONVIFACE:

View file

@ -0,0 +1,45 @@
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
type hello struct{}
func main() {
_ = Some(hello{})
res := Applicative2(func(a int, b int) int {
return 0
})
_ = res
}
type NoneType[T any] struct{}
func (r NoneType[T]) Recover() any {
return nil
}
type Func2[A1, A2, R any] func(a1 A1, a2 A2) R
func Some[T any](v T) any {
_ = Some2[T](v)
return NoneType[T]{}.Recover()
}
//go:noinline
func Some2[T any](v T) any {
return v
}
type Nil struct{}
type ApplicativeFunctor2[H, HT, A1, A2, R any] struct {
h any
}
func Applicative2[A1, A2, R any](fn Func2[A1, A2, R]) ApplicativeFunctor2[Nil, Nil, A1, A2, R] {
return ApplicativeFunctor2[Nil, Nil, A1, A2, R]{Some(Nil{})}
}