cmd/compile: fix unified IR shapifying recursive instantiated types

Shape-based stenciling in unified IR is done by converting type argument
to its underlying type. So it agressively check that type argument is
not a TFORW. However, for recursive instantiated type argument, it may
still be a TFORW when shapifying happens. Thus the assertion failed,
causing the compiler crashing.

To fix it, just allow fully instantiated type when shapifying.

Fixes #54512
Fixes #54722

Change-Id: I527e3fd696388c8a37454e738f0324f0c2ec16cb
Reviewed-on: https://go-review.googlesource.com/c/go/+/426335
TryBot-Result: Gopher Robot <gobot@golang.org>
Auto-Submit: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Reviewed-by: Heschi Kreinick <heschi@google.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
This commit is contained in:
Cuong Manh Le 2022-08-29 17:25:32 +07:00 committed by Gopher Robot
parent c22865fcfa
commit ddc93a536f
5 changed files with 67 additions and 22 deletions

View file

@ -35,6 +35,7 @@ type DebugFlags struct {
PCTab string `help:"print named pc-value table\nOne of: pctospadj, pctofile, pctoline, pctoinline, pctopcdata"`
Panic int `help:"show all compiler panics"`
Reshape int `help:"print information about expression reshaping"`
Shapify int `help:"print information about shaping recursive types"`
Slice int `help:"print information about slice compilation"`
SoftFloat int `help:"force compiler to emit soft-float code"`
SyncFrames int `help:"how many writer stack frames to include at sync points in unified export data"`

View file

@ -817,7 +817,22 @@ func (dict *readerDict) mangle(sym *types.Sym) *types.Sym {
// If basic is true, then the type argument is used to instantiate a
// type parameter whose constraint is a basic interface.
func shapify(targ *types.Type, basic bool) *types.Type {
base.Assertf(targ.Kind() != types.TFORW, "%v is missing its underlying type", targ)
if targ.Kind() == types.TFORW {
if targ.IsFullyInstantiated() {
// For recursive instantiated type argument, it may still be a TFORW
// when shapifying happens. If we don't have targ's underlying type,
// shapify won't work. The worst case is we end up not reusing code
// optimally in some tricky cases.
if base.Debug.Shapify != 0 {
base.Warn("skipping shaping of recursive type %v", targ)
}
if targ.HasShape() {
return targ
}
} else {
base.Fatalf("%v is missing its underlying type", targ)
}
}
// When a pointer type is used to instantiate a type parameter
// constrained by a basic interface, we know the pointer's element

View file

@ -0,0 +1,15 @@
// compile
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type G[T any] struct {
h H[G[T]]
}
type H[T any] struct{}
var x G[int]

View file

@ -0,0 +1,30 @@
// compile
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type value[V comparable] struct {
node *node[value[V]]
value V
}
type node[V comparable] struct {
index *index[V]
children map[string]*node[V]
}
type index[V comparable] struct {
arrays []array[V]
}
type array[V comparable] struct {
valueMap map[int]V
}
var x value[int]
var y value[*Column]
type Column struct{ column int }

View file

@ -104,27 +104,11 @@ func main() {
F[V]()
F[W]()
// TODO(go.dev/issue/54512): Restore these tests. They currently
// cause problems for shaping with unified IR.
//
// For example, instantiating X[int] requires instantiating shape
// type X[shapify(int)] == X[go.shape.int]. In turn, this requires
// instantiating U[shapify(X[go.shape.int])]. But we're still in the
// process of constructing X[go.shape.int], so we don't yet know its
// underlying type.
//
// Notably, this is a consequence of unified IR writing out type
// declarations with a reference to the full RHS expression (i.e.,
// U[X[A]]) rather than its underlying type (i.e., int), which is
// necessary to support //go:notinheap. Once go.dev/issue/46731 is
// implemented and unified IR is updated, I expect this will just
// work.
//
// type X[A any] U[X[A]]
//
// F[X[int]]()
// F[X[Int]]()
// F[X[GlobalInt]]()
type X[A any] U[X[A]]
F[X[int]]()
F[X[Int]]()
F[X[GlobalInt]]()
for j, tj := range tests {
for i, ti := range tests[:j+1] {