cmd/compile: fix case where func-valued field of a generic type is called

Added test example orderedmap.go (binary search tree) that requires this
fix (calling function compare in _Map).

Also added new tests slices.go and metrics.go that just work.

Change-Id: Ifa5f42ab6eee9aa54c40f0eca19e00a87f8f608a
Reviewed-on: https://go-review.googlesource.com/c/go/+/301829
Trust: Dan Scales <danscales@google.com>
Trust: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
Dan Scales 2021-03-14 13:46:23 -07:00
parent c236095638
commit 96aecdcb36
4 changed files with 807 additions and 0 deletions

View file

@ -389,6 +389,13 @@ func (subst *subster) node(n ir.Node) ir.Node {
typecheck.Callee(call.X)
call.SetTypecheck(0)
typecheck.Call(call)
} else if call.X.Op() == ir.ODOT || call.X.Op() == ir.ODOTPTR {
// An OXDOT for a generic receiver was resolved to
// an access to a field which has a function
// value. Typecheck the call to that function, now
// that the OXDOT was resolved.
call.SetTypecheck(0)
typecheck.Call(call)
} else if call.X.Op() != ir.OFUNCINST {
// A call with an OFUNCINST will get typechecked
// in stencil() once we have created & attached the

196
test/typeparam/metrics.go Normal file
View file

@ -0,0 +1,196 @@
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package metrics provides tracking arbitrary metrics composed of
// values of comparable types.
package main
import (
"fmt"
"sort"
"sync"
)
// _Metric1 tracks metrics of values of some type.
type _Metric1[T comparable] struct {
mu sync.Mutex
m map[T]int
}
// Add adds another instance of some value.
func (m *_Metric1[T]) Add(v T) {
m.mu.Lock()
defer m.mu.Unlock()
if m.m == nil {
m.m = make(map[T]int)
}
m.m[v]++
}
// Count returns the number of instances we've seen of v.
func (m *_Metric1[T]) Count(v T) int {
m.mu.Lock()
defer m.mu.Unlock()
return m.m[v]
}
// Metrics returns all the values we've seen, in an indeterminate order.
func (m *_Metric1[T]) Metrics() []T {
return _Keys(m.m)
}
type key2[T1, T2 comparable] struct {
f1 T1
f2 T2
}
// _Metric2 tracks metrics of pairs of values.
type _Metric2[T1, T2 comparable] struct {
mu sync.Mutex
m map[key2[T1, T2]]int
}
// Add adds another instance of some pair of values.
func (m *_Metric2[T1, T2]) Add(v1 T1, v2 T2) {
m.mu.Lock()
defer m.mu.Unlock()
if m.m == nil {
m.m = make(map[key2[T1, T2]]int)
}
m.m[key2[T1, T2]{v1, v2}]++
}
// Count returns the number of instances we've seen of v1/v2.
func (m *_Metric2[T1, T2]) Count(v1 T1, v2 T2) int {
m.mu.Lock()
defer m.mu.Unlock()
return m.m[key2[T1, T2]{v1, v2}]
}
// Metrics returns all the values we've seen, in an indeterminate order.
func (m *_Metric2[T1, T2]) Metrics() (r1 []T1, r2 []T2) {
for _, k := range _Keys(m.m) {
r1 = append(r1, k.f1)
r2 = append(r2, k.f2)
}
return r1, r2
}
type key3[T1, T2, T3 comparable] struct {
f1 T1
f2 T2
f3 T3
}
// _Metric3 tracks metrics of triplets of values.
type _Metric3[T1, T2, T3 comparable] struct {
mu sync.Mutex
m map[key3[T1, T2, T3]]int
}
// Add adds another instance of some triplet of values.
func (m *_Metric3[T1, T2, T3]) Add(v1 T1, v2 T2, v3 T3) {
m.mu.Lock()
defer m.mu.Unlock()
if m.m == nil {
m.m = make(map[key3[T1, T2, T3]]int)
}
m.m[key3[T1, T2, T3]{v1, v2, v3}]++
}
// Count returns the number of instances we've seen of v1/v2/v3.
func (m *_Metric3[T1, T2, T3]) Count(v1 T1, v2 T2, v3 T3) int {
m.mu.Lock()
defer m.mu.Unlock()
return m.m[key3[T1, T2, T3]{v1, v2, v3}]
}
// Metrics returns all the values we've seen, in an indeterminate order.
func (m *_Metric3[T1, T2, T3]) Metrics() (r1 []T1, r2 []T2, r3 []T3) {
for k := range m.m {
r1 = append(r1, k.f1)
r2 = append(r2, k.f2)
r3 = append(r3, k.f3)
}
return r1, r2, r3
}
type S struct{ a, b, c string }
func TestMetrics() {
m1 := _Metric1[string]{}
if got := m1.Count("a"); got != 0 {
panic(fmt.Sprintf("Count(%q) = %d, want 0", "a", got))
}
m1.Add("a")
m1.Add("a")
if got := m1.Count("a"); got != 2 {
panic(fmt.Sprintf("Count(%q) = %d, want 2", "a", got))
}
if got, want := m1.Metrics(), []string{"a"}; !_SlicesEqual(got, want) {
panic(fmt.Sprintf("Metrics = %v, want %v", got, want))
}
m2 := _Metric2[int, float64]{}
m2.Add(1, 1)
m2.Add(2, 2)
m2.Add(3, 3)
m2.Add(3, 3)
k1, k2 := m2.Metrics()
sort.Ints(k1)
w1 := []int{1, 2, 3}
if !_SlicesEqual(k1, w1) {
panic(fmt.Sprintf("_Metric2.Metrics first slice = %v, want %v", k1, w1))
}
sort.Float64s(k2)
w2 := []float64{1, 2, 3}
if !_SlicesEqual(k2, w2) {
panic(fmt.Sprintf("_Metric2.Metrics first slice = %v, want %v", k2, w2))
}
m3 := _Metric3[string, S, S]{}
m3.Add("a", S{"d", "e", "f"}, S{"g", "h", "i"})
m3.Add("a", S{"d", "e", "f"}, S{"g", "h", "i"})
m3.Add("a", S{"d", "e", "f"}, S{"g", "h", "i"})
m3.Add("b", S{"d", "e", "f"}, S{"g", "h", "i"})
if got := m3.Count("a", S{"d", "e", "f"}, S{"g", "h", "i"}); got != 3 {
panic(fmt.Sprintf("Count(%v, %v, %v) = %d, want 3", "a", S{"d", "e", "f"}, S{"g", "h", "i"}, got))
}
}
func main() {
TestMetrics()
}
// _Equal reports whether two slices are equal: the same length and all
// elements equal. All floating point NaNs are considered equal.
func _SlicesEqual[Elem comparable](s1, s2 []Elem) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if v1 != v2 {
isNaN := func(f Elem) bool { return f != f }
if !isNaN(v1) || !isNaN(v2) {
return false
}
}
}
return true
}
// _Keys returns the keys of the map m.
// The keys will be an indeterminate order.
func _Keys[K comparable, V any](m map[K]V) []K {
r := make([]K, 0, len(m))
for k := range m {
r = append(r, k)
}
return r
}

View file

@ -0,0 +1,286 @@
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package orderedmap provides an ordered map, implemented as a binary tree.
package main
import (
"bytes"
"context"
"fmt"
"runtime"
)
type Ordered interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr,
float32, float64,
string
}
// _Map is an ordered map.
type _Map[K, V any] struct {
root *node[K, V]
compare func(K, K) int
}
// node is the type of a node in the binary tree.
type node[K, V any] struct {
key K
val V
left, right *node[K, V]
}
// _New returns a new map. It takes a comparison function that compares two
// keys and returns < 0 if the first is less, == 0 if they are equal,
// > 0 if the first is greater.
func _New[K, V any](compare func(K, K) int) *_Map[K, V] {
return &_Map[K, V]{compare: compare}
}
// _NewOrdered returns a new map whose key is an ordered type.
// This is like _New, but does not require providing a compare function.
// The map compare function uses the obvious key ordering.
func _NewOrdered[K Ordered, V any]() *_Map[K, V] {
return _New[K, V](func(k1, k2 K) int {
switch {
case k1 < k2:
return -1
case k1 == k2:
return 0
default:
return 1
}
})
}
// find looks up key in the map, returning either a pointer to the slot of the
// node holding key, or a pointer to the slot where should a node would go.
func (m *_Map[K, V]) find(key K) **node[K, V] {
pn := &m.root
for *pn != nil {
switch cmp := m.compare(key, (*pn).key); {
case cmp < 0:
pn = &(*pn).left
case cmp > 0:
pn = &(*pn).right
default:
return pn
}
}
return pn
}
// Insert inserts a new key/value into the map.
// If the key is already present, the value is replaced.
// Reports whether this is a new key.
func (m *_Map[K, V]) Insert(key K, val V) bool {
pn := m.find(key)
if *pn != nil {
(*pn).val = val
return false
}
*pn = &node[K, V]{key: key, val: val}
return true
}
// Find returns the value associated with a key, or the zero value
// if not present. The found result reports whether the key was found.
func (m *_Map[K, V]) Find(key K) (V, bool) {
pn := m.find(key)
if *pn == nil {
var zero V
return zero, false
}
return (*pn).val, true
}
// keyValue is a pair of key and value used while iterating.
type keyValue[K, V any] struct {
key K
val V
}
// iterate returns an iterator that traverses the map.
func (m *_Map[K, V]) Iterate() *_Iterator[K, V] {
sender, receiver := _Ranger[keyValue[K, V]]()
var f func(*node[K, V]) bool
f = func(n *node[K, V]) bool {
if n == nil {
return true
}
// Stop the traversal if Send fails, which means that
// nothing is listening to the receiver.
return f(n.left) &&
sender.Send(context.Background(), keyValue[K, V]{n.key, n.val}) &&
f(n.right)
}
go func() {
f(m.root)
sender.Close()
}()
return &_Iterator[K, V]{receiver}
}
// _Iterator is used to iterate over the map.
type _Iterator[K, V any] struct {
r *_Receiver[keyValue[K, V]]
}
// Next returns the next key and value pair, and a boolean that reports
// whether they are valid. If not valid, we have reached the end of the map.
func (it *_Iterator[K, V]) Next() (K, V, bool) {
keyval, ok := it.r.Next(context.Background())
if !ok {
var zerok K
var zerov V
return zerok, zerov, false
}
return keyval.key, keyval.val, true
}
func TestMap() {
m := _New[[]byte, int](bytes.Compare)
if _, found := m.Find([]byte("a")); found {
panic(fmt.Sprintf("unexpectedly found %q in empty map", []byte("a")))
}
if !m.Insert([]byte("a"), 'a') {
panic(fmt.Sprintf("key %q unexpectedly already present", []byte("a")))
}
if !m.Insert([]byte("c"), 'c') {
panic(fmt.Sprintf("key %q unexpectedly already present", []byte("c")))
}
if !m.Insert([]byte("b"), 'b') {
panic(fmt.Sprintf("key %q unexpectedly already present", []byte("b")))
}
if m.Insert([]byte("c"), 'x') {
panic(fmt.Sprintf("key %q unexpectedly not present", []byte("c")))
}
if v, found := m.Find([]byte("a")); !found {
panic(fmt.Sprintf("did not find %q", []byte("a")))
} else if v != 'a' {
panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("a"), v, 'a'))
}
if v, found := m.Find([]byte("c")); !found {
panic(fmt.Sprintf("did not find %q", []byte("c")))
} else if v != 'x' {
panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("c"), v, 'x'))
}
if _, found := m.Find([]byte("d")); found {
panic(fmt.Sprintf("unexpectedly found %q", []byte("d")))
}
gather := func(it *_Iterator[[]byte, int]) []int {
var r []int
for {
_, v, ok := it.Next()
if !ok {
return r
}
r = append(r, v)
}
}
got := gather(m.Iterate())
want := []int{'a', 'b', 'x'}
if !_SliceEqual(got, want) {
panic(fmt.Sprintf("Iterate returned %v, want %v", got, want))
}
}
func main() {
TestMap()
}
// _Equal reports whether two slices are equal: the same length and all
// elements equal. All floating point NaNs are considered equal.
func _SliceEqual[Elem comparable](s1, s2 []Elem) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if v1 != v2 {
isNaN := func(f Elem) bool { return f != f }
if !isNaN(v1) || !isNaN(v2) {
return false
}
}
}
return true
}
// Ranger returns a Sender and a Receiver. The Receiver provides a
// Next method to retrieve values. The Sender provides a Send method
// to send values and a Close method to stop sending values. The Next
// method indicates when the Sender has been closed, and the Send
// method indicates when the Receiver has been freed.
//
// This is a convenient way to exit a goroutine sending values when
// the receiver stops reading them.
func _Ranger[Elem any]() (*_Sender[Elem], *_Receiver[Elem]) {
c := make(chan Elem)
d := make(chan struct{})
s := &_Sender[Elem]{
values: c,
done: d,
}
r := &_Receiver[Elem] {
values: c,
done: d,
}
runtime.SetFinalizer(r, (*_Receiver[Elem]).finalize)
return s, r
}
// A _Sender is used to send values to a Receiver.
type _Sender[Elem any] struct {
values chan<- Elem
done <-chan struct{}
}
// Send sends a value to the receiver. It reports whether the value was sent.
// The value will not be sent if the context is closed or the receiver
// is freed.
func (s *_Sender[Elem]) Send(ctx context.Context, v Elem) bool {
select {
case <-ctx.Done():
return false
case s.values <- v:
return true
case <-s.done:
return false
}
}
// Close tells the receiver that no more values will arrive.
// After Close is called, the _Sender may no longer be used.
func (s *_Sender[Elem]) Close() {
close(s.values)
}
// A _Receiver receives values from a _Sender.
type _Receiver[Elem any] struct {
values <-chan Elem
done chan<- struct{}
}
// Next returns the next value from the channel. The bool result indicates
// whether the value is valid.
func (r *_Receiver[Elem]) Next(ctx context.Context) (v Elem, ok bool) {
select {
case <-ctx.Done():
case v, ok = <-r.values:
}
return v, ok
}
// finalize is a finalizer for the receiver.
func (r *_Receiver[Elem]) finalize() {
close(r.done)
}

318
test/typeparam/slices.go Normal file
View file

@ -0,0 +1,318 @@
// run -gcflags=-G=3
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package slices provides functions for basic operations on
// slices of any element type.
package main
import (
"fmt"
"math"
"strings"
)
type Ordered interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr,
float32, float64,
string
}
type Integer interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr
}
// Max returns the maximum of two values of some ordered type.
func _Max[T Ordered](a, b T) T {
if a > b {
return a
}
return b
}
// Min returns the minimum of two values of some ordered type.
func _Min[T Ordered](a, b T) T {
if a < b {
return a
}
return b
}
// _Equal reports whether two slices are equal: the same length and all
// elements equal. All floating point NaNs are considered equal.
func _Equal[Elem comparable](s1, s2 []Elem) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if v1 != v2 {
isNaN := func(f Elem) bool { return f != f }
if !isNaN(v1) || !isNaN(v2) {
return false
}
}
}
return true
}
// _EqualFn reports whether two slices are equal using a comparision
// function on each element.
func _EqualFn[Elem any](s1, s2 []Elem, eq func(Elem, Elem) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if !eq(v1, v2) {
return false
}
}
return true
}
// _Map turns a []Elem1 to a []Elem2 using a mapping function.
func _Map[Elem1, Elem2 any](s []Elem1, f func(Elem1) Elem2) []Elem2 {
r := make([]Elem2, len(s))
for i, v := range s {
r[i] = f(v)
}
return r
}
// _Reduce reduces a []Elem1 to a single value of type Elem2 using
// a reduction function.
func _Reduce[Elem1, Elem2 any](s []Elem1, initializer Elem2, f func(Elem2, Elem1) Elem2) Elem2 {
r := initializer
for _, v := range s {
r = f(r, v)
}
return r
}
// _Filter filters values from a slice using a filter function.
func _Filter[Elem any](s []Elem, f func(Elem) bool) []Elem {
var r []Elem
for _, v := range s {
if f(v) {
r = append(r, v)
}
}
return r
}
// _Max returns the maximum element in a slice of some ordered type.
// If the slice is empty it returns the zero value of the element type.
func _SliceMax[Elem Ordered](s []Elem) Elem {
if len(s) == 0 {
var zero Elem
return zero
}
return _Reduce(s[1:], s[0], _Max[Elem])
}
// _Min returns the minimum element in a slice of some ordered type.
// If the slice is empty it returns the zero value of the element type.
func _SliceMin[Elem Ordered](s []Elem) Elem {
if len(s) == 0 {
var zero Elem
return zero
}
return _Reduce(s[1:], s[0], _Min[Elem])
}
// _Append adds values to the end of a slice, returning a new slice.
// This is like the predeclared append function; it's an example
// of how to write it using generics. We used to write code like
// this before append was added to the language, but we had to write
// a separate copy for each type.
func _Append[T any](s []T, t ...T) []T {
lens := len(s)
tot := lens + len(t)
if tot <= cap(s) {
s = s[:tot]
} else {
news := make([]T, tot, tot + tot/2)
_Copy(news, s)
s = news
}
_Copy(s[lens:tot], t)
return s
}
// _Copy copies values from t to s, stopping when either slice is full,
// returning the number of values copied. This is like the predeclared
// copy function; it's an example of how to write it using generics.
func _Copy[T any](s, t []T) int {
i := 0
for ; i < len(s) && i < len(t); i++ {
s[i] = t[i]
}
return i
}
func TestEqual() {
s1 := []int{1, 2, 3}
if !_Equal(s1, s1) {
panic(fmt.Sprintf("_Equal(%v, %v) = false, want true", s1, s1))
}
s2 := []int{1, 2, 3}
if !_Equal(s1, s2) {
panic(fmt.Sprintf("_Equal(%v, %v) = false, want true", s1, s2))
}
s2 = append(s2, 4)
if _Equal(s1, s2) {
panic(fmt.Sprintf("_Equal(%v, %v) = true, want false", s1, s2))
}
s3 := []float64{1, 2, math.NaN()}
if !_Equal(s3, s3) {
panic(fmt.Sprintf("_Equal(%v, %v) = false, want true", s3, s3))
}
if _Equal(s1, nil) {
panic(fmt.Sprintf("_Equal(%v, nil) = true, want false", s1))
}
if _Equal(nil, s1) {
panic(fmt.Sprintf("_Equal(nil, %v) = true, want false", s1))
}
if !_Equal(s1[:0], nil) {
panic(fmt.Sprintf("_Equal(%v, nil = false, want true", s1[:0]))
}
}
func offByOne[Elem Integer](a, b Elem) bool {
return a == b + 1 || a == b - 1
}
func TestEqualFn() {
s1 := []int{1, 2, 3}
s2 := []int{2, 3, 4}
if _EqualFn(s1, s1, offByOne[int]) {
panic(fmt.Sprintf("_EqualFn(%v, %v, offByOne) = true, want false", s1, s1))
}
if !_EqualFn(s1, s2, offByOne[int]) {
panic(fmt.Sprintf("_EqualFn(%v, %v, offByOne) = false, want true", s1, s2))
}
if !_EqualFn(s1[:0], nil, offByOne[int]) {
panic(fmt.Sprintf("_EqualFn(%v, nil, offByOne) = false, want true", s1[:0]))
}
s3 := []string{"a", "b", "c"}
s4 := []string{"A", "B", "C"}
if !_EqualFn(s3, s4, strings.EqualFold) {
panic(fmt.Sprintf("_EqualFn(%v, %v, strings.EqualFold) = false, want true", s3, s4))
}
}
func TestMap() {
s1 := []int{1, 2, 3}
s2 := _Map(s1, func(i int) float64 { return float64(i) * 2.5 })
if want := []float64{2.5, 5, 7.5}; !_Equal(s2, want) {
panic(fmt.Sprintf("_Map(%v, ...) = %v, want %v", s1, s2, want))
}
s3 := []string{"Hello", "World"}
s4 := _Map(s3, strings.ToLower)
if want := []string{"hello", "world"}; !_Equal(s4, want) {
panic(fmt.Sprintf("_Map(%v, strings.ToLower) = %v, want %v", s3, s4, want))
}
s5 := _Map(nil, func(i int) int { return i })
if len(s5) != 0 {
panic(fmt.Sprintf("_Map(nil, identity) = %v, want empty slice", s5))
}
}
func TestReduce() {
s1 := []int{1, 2, 3}
r := _Reduce(s1, 0, func(f float64, i int) float64 { return float64(i) * 2.5 + f })
if want := 15.0; r != want {
panic(fmt.Sprintf("_Reduce(%v, 0, ...) = %v, want %v", s1, r, want))
}
if got := _Reduce(nil, 0, func(i, j int) int { return i + j}); got != 0 {
panic(fmt.Sprintf("_Reduce(nil, 0, add) = %v, want 0", got))
}
}
func TestFilter() {
s1 := []int{1, 2, 3}
s2 := _Filter(s1, func(i int) bool { return i%2 == 0 })
if want := []int{2}; !_Equal(s2, want) {
panic(fmt.Sprintf("_Filter(%v, even) = %v, want %v", s1, s2, want))
}
if s3 := _Filter(s1[:0], func(i int) bool { return true }); len(s3) > 0 {
panic(fmt.Sprintf("_Filter(%v, identity) = %v, want empty slice", s1[:0], s3))
}
}
func TestMax() {
s1 := []int{1, 2, 3, -5}
if got, want := _SliceMax(s1), 3; got != want {
panic(fmt.Sprintf("_Max(%v) = %d, want %d", s1, got, want))
}
s2 := []string{"aaa", "a", "aa", "aaaa"}
if got, want := _SliceMax(s2), "aaaa"; got != want {
panic(fmt.Sprintf("_Max(%v) = %q, want %q", s2, got, want))
}
if got, want := _SliceMax(s2[:0]), ""; got != want {
panic(fmt.Sprintf("_Max(%v) = %q, want %q", s2[:0], got, want))
}
}
func TestMin() {
s1 := []int{1, 2, 3, -5}
if got, want := _SliceMin(s1), -5; got != want {
panic(fmt.Sprintf("_Min(%v) = %d, want %d", s1, got, want))
}
s2 := []string{"aaa", "a", "aa", "aaaa"}
if got, want := _SliceMin(s2), "a"; got != want {
panic(fmt.Sprintf("_Min(%v) = %q, want %q", s2, got, want))
}
if got, want := _SliceMin(s2[:0]), ""; got != want {
panic(fmt.Sprintf("_Min(%v) = %q, want %q", s2[:0], got, want))
}
}
func TestAppend() {
s := []int{1, 2, 3}
s = _Append(s, 4, 5, 6)
want := []int{1, 2, 3, 4, 5, 6}
if !_Equal(s, want) {
panic(fmt.Sprintf("after _Append got %v, want %v", s, want))
}
}
func TestCopy() {
s1 := []int{1, 2, 3}
s2 := []int{4, 5}
if got := _Copy(s1, s2); got != 2 {
panic(fmt.Sprintf("_Copy returned %d, want 2", got))
}
want := []int{4, 5, 3}
if !_Equal(s1, want) {
panic(fmt.Sprintf("after _Copy got %v, want %v", s1, want))
}
}
func main() {
TestEqual()
TestEqualFn()
TestMap()
TestReduce()
TestFilter()
TestMax()
TestMin()
TestAppend()
TestCopy()
}