mirror of
https://github.com/golang/go
synced 2024-11-02 13:42:29 +00:00
internal/testmath: add two-sample Welch's t-test for performance tests
This CL copies code from github.com/aclements/go-moremath/stats and github.com/aclements/go-moremath/mathx for Welch's t-test. Several existing tests in the Go repository check performance and scalability, and this import is part of a move toward a more rigorous measurement of both. Note that the copied code is already licensed to Go Authors, so there's no need to worry about additional licensing considerations. For #32986. Change-Id: I058630fab7216d1a589bb182b69fa2231e6f5475 Reviewed-on: https://go-review.googlesource.com/c/go/+/411395 Reviewed-by: Michael Pratt <mpratt@google.com>
This commit is contained in:
parent
24b9039149
commit
6130461149
2 changed files with 217 additions and 1 deletions
|
@ -543,7 +543,10 @@ var depsRules = `
|
|||
internal/fuzz, internal/testlog, runtime/pprof, regexp
|
||||
< testing/internal/testdeps;
|
||||
|
||||
OS, flag, testing, internal/cfg
|
||||
MATH, errors, testing
|
||||
< internal/testmath;
|
||||
|
||||
OS, flag, testing, internal/cfg, internal/testmath
|
||||
< internal/testenv;
|
||||
|
||||
OS, encoding/base64
|
||||
|
|
213
src/internal/testmath/ttest.go
Normal file
213
src/internal/testmath/ttest.go
Normal file
|
@ -0,0 +1,213 @@
|
|||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package testmath
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"math"
|
||||
)
|
||||
|
||||
// A TTestSample is a sample that can be used for a one or two sample
|
||||
// t-test.
|
||||
type TTestSample interface {
|
||||
Weight() float64
|
||||
Mean() float64
|
||||
Variance() float64
|
||||
}
|
||||
|
||||
var (
|
||||
ErrSampleSize = errors.New("sample is too small")
|
||||
ErrZeroVariance = errors.New("sample has zero variance")
|
||||
ErrMismatchedSamples = errors.New("samples have different lengths")
|
||||
)
|
||||
|
||||
// TwoSampleWelchTTest performs a two-sample (unpaired) Welch's t-test
|
||||
// on samples x1 and x2. This t-test does not assume the distributions
|
||||
// have equal variance.
|
||||
func TwoSampleWelchTTest(x1, x2 TTestSample, alt LocationHypothesis) (*TTestResult, error) {
|
||||
n1, n2 := x1.Weight(), x2.Weight()
|
||||
if n1 <= 1 || n2 <= 1 {
|
||||
// TODO: Can we still do this with n == 1?
|
||||
return nil, ErrSampleSize
|
||||
}
|
||||
v1, v2 := x1.Variance(), x2.Variance()
|
||||
if v1 == 0 && v2 == 0 {
|
||||
return nil, ErrZeroVariance
|
||||
}
|
||||
|
||||
dof := math.Pow(v1/n1+v2/n2, 2) /
|
||||
(math.Pow(v1/n1, 2)/(n1-1) + math.Pow(v2/n2, 2)/(n2-1))
|
||||
s := math.Sqrt(v1/n1 + v2/n2)
|
||||
t := (x1.Mean() - x2.Mean()) / s
|
||||
return newTTestResult(int(n1), int(n2), t, dof, alt), nil
|
||||
}
|
||||
|
||||
// A TTestResult is the result of a t-test.
|
||||
type TTestResult struct {
|
||||
// N1 and N2 are the sizes of the input samples. For a
|
||||
// one-sample t-test, N2 is 0.
|
||||
N1, N2 int
|
||||
|
||||
// T is the value of the t-statistic for this t-test.
|
||||
T float64
|
||||
|
||||
// DoF is the degrees of freedom for this t-test.
|
||||
DoF float64
|
||||
|
||||
// AltHypothesis specifies the alternative hypothesis tested
|
||||
// by this test against the null hypothesis that there is no
|
||||
// difference in the means of the samples.
|
||||
AltHypothesis LocationHypothesis
|
||||
|
||||
// P is p-value for this t-test for the given null hypothesis.
|
||||
P float64
|
||||
}
|
||||
|
||||
func newTTestResult(n1, n2 int, t, dof float64, alt LocationHypothesis) *TTestResult {
|
||||
dist := TDist{dof}
|
||||
var p float64
|
||||
switch alt {
|
||||
case LocationDiffers:
|
||||
p = 2 * (1 - dist.CDF(math.Abs(t)))
|
||||
case LocationLess:
|
||||
p = dist.CDF(t)
|
||||
case LocationGreater:
|
||||
p = 1 - dist.CDF(t)
|
||||
}
|
||||
return &TTestResult{N1: n1, N2: n2, T: t, DoF: dof, AltHypothesis: alt, P: p}
|
||||
}
|
||||
|
||||
// A LocationHypothesis specifies the alternative hypothesis of a
|
||||
// location test such as a t-test or a Mann-Whitney U-test. The
|
||||
// default (zero) value is to test against the alternative hypothesis
|
||||
// that they differ.
|
||||
type LocationHypothesis int
|
||||
|
||||
const (
|
||||
// LocationLess specifies the alternative hypothesis that the
|
||||
// location of the first sample is less than the second. This
|
||||
// is a one-tailed test.
|
||||
LocationLess LocationHypothesis = -1
|
||||
|
||||
// LocationDiffers specifies the alternative hypothesis that
|
||||
// the locations of the two samples are not equal. This is a
|
||||
// two-tailed test.
|
||||
LocationDiffers LocationHypothesis = 0
|
||||
|
||||
// LocationGreater specifies the alternative hypothesis that
|
||||
// the location of the first sample is greater than the
|
||||
// second. This is a one-tailed test.
|
||||
LocationGreater LocationHypothesis = 1
|
||||
)
|
||||
|
||||
// A TDist is a Student's t-distribution with V degrees of freedom.
|
||||
type TDist struct {
|
||||
V float64
|
||||
}
|
||||
|
||||
// PDF returns the value at x of the probability distribution function for the
|
||||
// distribution.
|
||||
func (t TDist) PDF(x float64) float64 {
|
||||
return math.Exp(lgamma((t.V+1)/2)-lgamma(t.V/2)) /
|
||||
math.Sqrt(t.V*math.Pi) * math.Pow(1+(x*x)/t.V, -(t.V+1)/2)
|
||||
}
|
||||
|
||||
// CDF returns the value at x of the cumulative distribution function for the
|
||||
// distribution.
|
||||
func (t TDist) CDF(x float64) float64 {
|
||||
if x == 0 {
|
||||
return 0.5
|
||||
} else if x > 0 {
|
||||
return 1 - 0.5*betaInc(t.V/(t.V+x*x), t.V/2, 0.5)
|
||||
} else if x < 0 {
|
||||
return 1 - t.CDF(-x)
|
||||
} else {
|
||||
return math.NaN()
|
||||
}
|
||||
}
|
||||
|
||||
func (t TDist) Bounds() (float64, float64) {
|
||||
return -4, 4
|
||||
}
|
||||
|
||||
func lgamma(x float64) float64 {
|
||||
y, _ := math.Lgamma(x)
|
||||
return y
|
||||
}
|
||||
|
||||
// betaInc returns the value of the regularized incomplete beta
|
||||
// function Iₓ(a, b) = 1 / B(a, b) * ∫₀ˣ tᵃ⁻¹ (1-t)ᵇ⁻¹ dt.
|
||||
//
|
||||
// This is not to be confused with the "incomplete beta function",
|
||||
// which can be computed as BetaInc(x, a, b)*Beta(a, b).
|
||||
//
|
||||
// If x < 0 or x > 1, returns NaN.
|
||||
func betaInc(x, a, b float64) float64 {
|
||||
// Based on Numerical Recipes in C, section 6.4. This uses the
|
||||
// continued fraction definition of I:
|
||||
//
|
||||
// (xᵃ*(1-x)ᵇ)/(a*B(a,b)) * (1/(1+(d₁/(1+(d₂/(1+...))))))
|
||||
//
|
||||
// where B(a,b) is the beta function and
|
||||
//
|
||||
// d_{2m+1} = -(a+m)(a+b+m)x/((a+2m)(a+2m+1))
|
||||
// d_{2m} = m(b-m)x/((a+2m-1)(a+2m))
|
||||
if x < 0 || x > 1 {
|
||||
return math.NaN()
|
||||
}
|
||||
bt := 0.0
|
||||
if 0 < x && x < 1 {
|
||||
// Compute the coefficient before the continued
|
||||
// fraction.
|
||||
bt = math.Exp(lgamma(a+b) - lgamma(a) - lgamma(b) +
|
||||
a*math.Log(x) + b*math.Log(1-x))
|
||||
}
|
||||
if x < (a+1)/(a+b+2) {
|
||||
// Compute continued fraction directly.
|
||||
return bt * betacf(x, a, b) / a
|
||||
} else {
|
||||
// Compute continued fraction after symmetry transform.
|
||||
return 1 - bt*betacf(1-x, b, a)/b
|
||||
}
|
||||
}
|
||||
|
||||
// betacf is the continued fraction component of the regularized
|
||||
// incomplete beta function Iₓ(a, b).
|
||||
func betacf(x, a, b float64) float64 {
|
||||
const maxIterations = 200
|
||||
const epsilon = 3e-14
|
||||
|
||||
raiseZero := func(z float64) float64 {
|
||||
if math.Abs(z) < math.SmallestNonzeroFloat64 {
|
||||
return math.SmallestNonzeroFloat64
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
c := 1.0
|
||||
d := 1 / raiseZero(1-(a+b)*x/(a+1))
|
||||
h := d
|
||||
for m := 1; m <= maxIterations; m++ {
|
||||
mf := float64(m)
|
||||
|
||||
// Even step of the recurrence.
|
||||
numer := mf * (b - mf) * x / ((a + 2*mf - 1) * (a + 2*mf))
|
||||
d = 1 / raiseZero(1+numer*d)
|
||||
c = raiseZero(1 + numer/c)
|
||||
h *= d * c
|
||||
|
||||
// Odd step of the recurrence.
|
||||
numer = -(a + mf) * (a + b + mf) * x / ((a + 2*mf) * (a + 2*mf + 1))
|
||||
d = 1 / raiseZero(1+numer*d)
|
||||
c = raiseZero(1 + numer/c)
|
||||
hfac := d * c
|
||||
h *= hfac
|
||||
|
||||
if math.Abs(hfac-1) < epsilon {
|
||||
return h
|
||||
}
|
||||
}
|
||||
panic("betainc: a or b too big; failed to converge")
|
||||
}
|
Loading…
Reference in a new issue