time: rewrite the documentation for layout strings

People continue to be confused by how these work. Address that by some
rejiggering.

Introduce a constant called Layout that both defines the time and
provides a reference point for Parse and Format to refer to. We can
then delete much redundancy, especially for Format's comments, but
Parse tightens a bit too.

Then change the way the concept of the layout string is introduced,
and provide a clearer catalog of what its elements are.

Fixes #38871

Change-Id: Ib967ae70c7d5798a97b865cdda1fda4daed8a99a
Reviewed-on: https://go-review.googlesource.com/c/go/+/320252
Trust: Rob Pike <r@golang.org>
Run-TryBot: Rob Pike <r@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
This commit is contained in:
Rob Pike 2021-05-17 10:30:01 +10:00
parent bfe3573d58
commit 5e191f8f48

View file

@ -7,58 +7,18 @@ package time
import "errors"
// These are predefined layouts for use in Time.Format and time.Parse.
// The reference time used in the layouts is the specific time:
// Mon Jan 2 15:04:05 MST 2006
// which is Unix time 1136239445. Since MST is GMT-0700,
// the reference time can be thought of as
// The reference time used in these layouts is the specific time stamp:
// 01/02 03:04:05PM '06 -0700
// To define your own format, write down what the reference time would look
// like formatted your way; see the values of constants like ANSIC,
// StampMicro or Kitchen for examples. The model is to demonstrate what the
// reference time looks like so that the Format and Parse methods can apply
// the same transformation to a general time value.
// (January 2, 15:04:05, 2006, in time zone seven hours west of GMT).
// That value is recorded as the constant named Layout, listed below. As a Unix
// time, this is 1136239445. Since MST is GMT-0700, the reference would be
// printed by the Unix date command as:
// Mon Jan 2 15:04:05 MST 2006
// It is a regrettable historic error that the date uses the American convention
// of putting the numerical month before the day.
//
// Some valid layouts are invalid time values for time.Parse, due to formats
// such as _ for space padding and Z for zone information.
//
// Within the format string, an underscore _ represents a space that may be
// replaced by a digit if the following number (a day) has two digits; for
// compatibility with fixed-width Unix time formats.
//
// A decimal point followed by one or more zeros represents a fractional
// second, printed to the given number of decimal places.
// Either a comma or decimal point followed by one or more nines represents
// a fractional second, printed to the given number of decimal places, with
// trailing zeros removed.
// When parsing (only), the input may contain a fractional second
// field immediately after the seconds field, even if the layout does not
// signify its presence. In that case either a comma or a decimal point
// followed by a maximal series of digits is parsed as a fractional second.
//
// Numeric time zone offsets format as follows:
// -0700 ±hhmm
// -07:00 ±hh:mm
// -07 ±hh
// Replacing the sign in the format with a Z triggers
// the ISO 8601 behavior of printing Z instead of an
// offset for the UTC zone. Thus:
// Z0700 Z or ±hhmm
// Z07:00 Z or ±hh:mm
// Z07 Z or ±hh
//
// The recognized day of week formats are "Mon" and "Monday".
// The recognized month formats are "Jan" and "January".
//
// The formats 2, _2, and 02 are unpadded, space-padded, and zero-padded
// day of month. The formats __2 and 002 are space-padded and zero-padded
// three-character day of year; there is no unpadded day of year format.
//
// Text in the format string that is not recognized as part of the reference
// time is echoed verbatim during Format and expected to appear verbatim
// in the input to Parse.
//
// The executable example for Time.Format demonstrates the working
// of the layout string in detail and is a good reference.
// The example for Time.Format demonstrates the working of the layout string
// in detail and is a good reference.
//
// Note that the RFC822, RFC850, and RFC1123 formats should be applied
// only to local times. Applying them to UTC times will use "UTC" as the
@ -71,7 +31,65 @@ import "errors"
// permitted by the RFCs and they do accept time formats not formally defined.
// The RFC3339Nano format removes trailing zeros from the seconds field
// and thus may not sort correctly once formatted.
//
// Most programs can use one of the defined constants as the layout passed to
// Format or Parse. The rest of this comment can be ignored unless you are
// creating a custom layout string.
//
// To define your own format, write down what the reference time would look like
// formatted your way; see the values of constants like ANSIC, StampMicro or
// Kitchen for examples. The model is to demonstrate what the reference time
// looks like so that the Format and Parse methods can apply the same
// transformation to a general time value.
//
// Here is a summary of the components of a layout string. Each element shows by
// example the formatting of an element of the reference time. Only these values
// are recognized. Text in the layout string that is not recognized as part of
// the reference time is echoed verbatim during Format and expected to appear
// verbatim in the input to Parse.
//
// Year: "2006" "06"
// Month: "Jan" "January"
// Textual day of the week: "Mon" "Monday"
// Numeric day of the month: "2" "_2" "02"
// Numeric day of the year: "__2" "002"
// Hour: "15" "3" "03" (PM or AM)
// Minute: "4" "04"
// Second: "5" "05"
// AM/PM mark: "PM"
//
// Numeric time zone offsets format as follows:
// "-0700" ±hhmm
// "-07:00" ±hh:mm
// "-07" ±hh
// Replacing the sign in the format with a Z triggers
// the ISO 8601 behavior of printing Z instead of an
// offset for the UTC zone. Thus:
// "Z0700" Z or ±hhmm
// "Z07:00" Z or ±hh:mm
// "Z07" Z or ±hh
//
// Within the format string, the underscores in "_2" and "__2" represent spaces
// that may be replaced by digits if the following number has multiple digits,
// for compatibility with fixed-width Unix time formats. A leading zero represents
// a zero-padded value.
//
// The formats and 002 are space-padded and zero-padded
// three-character day of year; there is no unpadded day of year format.
//
// A decimal point followed by one or more zeros represents a fractional
// second, printed to the given number of decimal places.
// Either a comma or decimal point followed by one or more nines represents
// a fractional second, printed to the given number of decimal places, with
// trailing zeros removed.
// For example "15:04:05,000" or "15:04:05.000" formats or parses with
// millisecond precision.
//
// Some valid layouts are invalid time values for time.Parse, due to formats
// such as _ for space padding and Z for zone information.
//
const (
Layout = "01/02 03:04:05PM '06 -0700" // The reference time, in numerical order.
ANSIC = "Mon Jan _2 15:04:05 2006"
UnixDate = "Mon Jan _2 15:04:05 MST 2006"
RubyDate = "Mon Jan 02 15:04:05 -0700 2006"
@ -531,23 +549,12 @@ func (t Time) GoString() string {
return string(buf)
}
// Format returns a textual representation of the time value formatted
// according to layout, which defines the format by showing how the reference
// time, defined to be
// Mon Jan 2 15:04:05 -0700 MST 2006
// would be displayed if it were the value; it serves as an example of the
// desired output. The same display rules will then be applied to the time
// value.
// Format returns a textual representation of the time value formatted according
// to the layout defined by the argument. See the documentation for the
// constant called Layout to see how to represent the layout format.
//
// A fractional second is represented by adding either a comma or a
// period and zeros to the end of the seconds section of layout string,
// as in "15:04:05,000" or "15:04:05.000" to format a time stamp with
// millisecond precision.
//
// Predefined layouts ANSIC, UnixDate, RFC3339 and others describe standard
// and convenient representations of the reference time. For more information
// about the formats and the definition of the reference time, see the
// documentation for ANSIC and the other constants defined by this package.
// The executable example for Time.Format demonstrates the working
// of the layout string in detail and is a good reference.
func (t Time) Format(layout string) string {
const bufSize = 64
var b []byte
@ -855,21 +862,19 @@ func skip(value, prefix string) (string, error) {
}
// Parse parses a formatted string and returns the time value it represents.
// The layout defines the format by showing how the reference time,
// defined to be
// Mon Jan 2 15:04:05 -0700 MST 2006
// would be interpreted if it were the value; it serves as an example of
// the input format. The same interpretation will then be made to the
// input string.
// See the documentation for the constant called Layout to see how to
// represent the format. The second argument must be parseable using
// the format string (layout) provided as the first argument.
//
// Predefined layouts ANSIC, UnixDate, RFC3339 and others describe standard
// and convenient representations of the reference time. For more information
// about the formats and the definition of the reference time, see the
// documentation for ANSIC and the other constants defined by this package.
// Also, the executable example for Time.Format demonstrates the working
// of the layout string in detail and is a good reference.
// The example for Time.Format demonstrates the working of the layout string
// in detail and is a good reference.
//
// Elements omitted from the value are assumed to be zero or, when
// When parsing (only), the input may contain a fractional second
// field immediately after the seconds field, even if the layout does not
// signify its presence. In that case either a comma or a decimal point
// followed by a maximal series of digits is parsed as a fractional second.
//
// Elements omitted from the layout are assumed to be zero or, when
// zero is impossible, one, so parsing "3:04pm" returns the time
// corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is
// 0, this time is before the zero Time).
@ -879,6 +884,8 @@ func skip(value, prefix string) (string, error) {
// For layouts specifying the two-digit year 06, a value NN >= 69 will be treated
// as 19NN and a value NN < 69 will be treated as 20NN.
//
// The remainder of this comment describes the handling of time zones.
//
// In the absence of a time zone indicator, Parse returns a time in UTC.
//
// When parsing a time with a zone offset like -0700, if the offset corresponds