cmd/compile: sparse conditional constant propagation

sparse conditional constant propagation can discover optimization
opportunities that cannot be found by just combining constant folding
and constant propagation and dead code elimination separately.

This is a re-submit of PR#59575, which fix a broken dominance relationship caught by ssacheck

Updates https://github.com/golang/go/issues/59399

Change-Id: I57482dee38f8e80a610aed4f64295e60c38b7a47
GitHub-Last-Rev: 830016f24e
GitHub-Pull-Request: golang/go#60469
Reviewed-on: https://go-review.googlesource.com/c/go/+/498795
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Keith Randall <khr@google.com>
Reviewed-by: Heschi Kreinick <heschi@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
This commit is contained in:
Yi Yang 2023-08-31 02:48:34 +00:00 committed by Keith Randall
parent a843991fdd
commit 4ee1d542ed
8 changed files with 711 additions and 16 deletions

View file

@ -649,6 +649,8 @@ var genericOps = []opData{
// Plain [] [next]
// If [boolean Value] [then, else]
// First [] [always, never]
// Defer [mem] [nopanic, panic] (control opcode should be OpStaticCall to runtime.deferproc)
//JumpTable [integer Value] [succ1,succ2,..]
var genericBlocks = []blockData{
{name: "Plain"}, // a single successor

View file

@ -112,13 +112,6 @@ func (e Edge) String() string {
}
// BlockKind is the kind of SSA block.
//
// kind controls successors
// ------------------------------------------
// Exit [return mem] []
// Plain [] [next]
// If [boolean Value] [then, else]
// Defer [mem] [nopanic, panic] (control opcode should be OpStaticCall to runtime.deferproc)
type BlockKind int16
// short form print
@ -275,8 +268,7 @@ func (b *Block) truncateValues(i int) {
b.Values = b.Values[:i]
}
// AddEdgeTo adds an edge from block b to block c. Used during building of the
// SSA graph; do not use on an already-completed SSA graph.
// AddEdgeTo adds an edge from block b to block c.
func (b *Block) AddEdgeTo(c *Block) {
i := len(b.Succs)
j := len(c.Preds)

View file

@ -477,6 +477,7 @@ var passes = [...]pass{
{name: "softfloat", fn: softfloat, required: true},
{name: "late opt", fn: opt, required: true}, // TODO: split required rules and optimizing rules
{name: "dead auto elim", fn: elimDeadAutosGeneric},
{name: "sccp", fn: sccp},
{name: "generic deadcode", fn: deadcode, required: true}, // remove dead stores, which otherwise mess up store chain
{name: "check bce", fn: checkbce},
{name: "branchelim", fn: branchelim},

View file

@ -0,0 +1,578 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
)
// ----------------------------------------------------------------------------
// Sparse Conditional Constant Propagation
//
// Described in
// Mark N. Wegman, F. Kenneth Zadeck: Constant Propagation with Conditional Branches.
// TOPLAS 1991.
//
// This algorithm uses three level lattice for SSA value
//
// Top undefined
// / | \
// .. 1 2 3 .. constant
// \ | /
// Bottom not constant
//
// It starts with optimistically assuming that all SSA values are initially Top
// and then propagates constant facts only along reachable control flow paths.
// Since some basic blocks are not visited yet, corresponding inputs of phi become
// Top, we use the meet(phi) to compute its lattice.
//
// Top ∩ any = any
// Bottom ∩ any = Bottom
// ConstantA ∩ ConstantA = ConstantA
// ConstantA ∩ ConstantB = Bottom
//
// Each lattice value is lowered most twice(Top to Constant, Constant to Bottom)
// due to lattice depth, resulting in a fast convergence speed of the algorithm.
// In this way, sccp can discover optimization opportunities that cannot be found
// by just combining constant folding and constant propagation and dead code
// elimination separately.
// Three level lattice holds compile time knowledge about SSA value
const (
top int8 = iota // undefined
constant // constant
bottom // not a constant
)
type lattice struct {
tag int8 // lattice type
val *Value // constant value
}
type worklist struct {
f *Func // the target function to be optimized out
edges []Edge // propagate constant facts through edges
uses []*Value // re-visiting set
visited map[Edge]bool // visited edges
latticeCells map[*Value]lattice // constant lattices
defUse map[*Value][]*Value // def-use chains for some values
defBlock map[*Value][]*Block // use blocks of def
visitedBlock []bool // visited block
}
// sccp stands for sparse conditional constant propagation, it propagates constants
// through CFG conditionally and applies constant folding, constant replacement and
// dead code elimination all together.
func sccp(f *Func) {
var t worklist
t.f = f
t.edges = make([]Edge, 0)
t.visited = make(map[Edge]bool)
t.edges = append(t.edges, Edge{f.Entry, 0})
t.defUse = make(map[*Value][]*Value)
t.defBlock = make(map[*Value][]*Block)
t.latticeCells = make(map[*Value]lattice)
t.visitedBlock = f.Cache.allocBoolSlice(f.NumBlocks())
defer f.Cache.freeBoolSlice(t.visitedBlock)
// build it early since we rely heavily on the def-use chain later
t.buildDefUses()
// pick up either an edge or SSA value from worklilst, process it
for {
if len(t.edges) > 0 {
edge := t.edges[0]
t.edges = t.edges[1:]
if _, exist := t.visited[edge]; !exist {
dest := edge.b
destVisited := t.visitedBlock[dest.ID]
// mark edge as visited
t.visited[edge] = true
t.visitedBlock[dest.ID] = true
for _, val := range dest.Values {
if val.Op == OpPhi || !destVisited {
t.visitValue(val)
}
}
// propagates constants facts through CFG, taking condition test
// into account
if !destVisited {
t.propagate(dest)
}
}
continue
}
if len(t.uses) > 0 {
use := t.uses[0]
t.uses = t.uses[1:]
t.visitValue(use)
continue
}
break
}
// apply optimizations based on discovered constants
constCnt, rewireCnt := t.replaceConst()
if f.pass.debug > 0 {
if constCnt > 0 || rewireCnt > 0 {
fmt.Printf("Phase SCCP for %v : %v constants, %v dce\n", f.Name, constCnt, rewireCnt)
}
}
}
func equals(a, b lattice) bool {
if a == b {
// fast path
return true
}
if a.tag != b.tag {
return false
}
if a.tag == constant {
// The same content of const value may be different, we should
// compare with auxInt instead
v1 := a.val
v2 := b.val
if v1.Op == v2.Op && v1.AuxInt == v2.AuxInt {
return true
} else {
return false
}
}
return true
}
// possibleConst checks if Value can be fold to const. For those Values that can
// never become constants(e.g. StaticCall), we don't make futile efforts.
func possibleConst(val *Value) bool {
if isConst(val) {
return true
}
switch val.Op {
case OpCopy:
return true
case OpPhi:
return true
case
// negate
OpNeg8, OpNeg16, OpNeg32, OpNeg64, OpNeg32F, OpNeg64F,
OpCom8, OpCom16, OpCom32, OpCom64,
// math
OpFloor, OpCeil, OpTrunc, OpRoundToEven, OpSqrt,
// conversion
OpTrunc16to8, OpTrunc32to8, OpTrunc32to16, OpTrunc64to8,
OpTrunc64to16, OpTrunc64to32, OpCvt32to32F, OpCvt32to64F,
OpCvt64to32F, OpCvt64to64F, OpCvt32Fto32, OpCvt32Fto64,
OpCvt64Fto32, OpCvt64Fto64, OpCvt32Fto64F, OpCvt64Fto32F,
OpCvtBoolToUint8,
OpZeroExt8to16, OpZeroExt8to32, OpZeroExt8to64, OpZeroExt16to32,
OpZeroExt16to64, OpZeroExt32to64, OpSignExt8to16, OpSignExt8to32,
OpSignExt8to64, OpSignExt16to32, OpSignExt16to64, OpSignExt32to64,
// bit
OpCtz8, OpCtz16, OpCtz32, OpCtz64,
// mask
OpSlicemask,
// safety check
OpIsNonNil,
// not
OpNot:
return true
case
// add
OpAdd64, OpAdd32, OpAdd16, OpAdd8,
OpAdd32F, OpAdd64F,
// sub
OpSub64, OpSub32, OpSub16, OpSub8,
OpSub32F, OpSub64F,
// mul
OpMul64, OpMul32, OpMul16, OpMul8,
OpMul32F, OpMul64F,
// div
OpDiv32F, OpDiv64F,
OpDiv8, OpDiv16, OpDiv32, OpDiv64,
OpDiv8u, OpDiv16u, OpDiv32u, OpDiv64u,
OpMod8, OpMod16, OpMod32, OpMod64,
OpMod8u, OpMod16u, OpMod32u, OpMod64u,
// compare
OpEq64, OpEq32, OpEq16, OpEq8,
OpEq32F, OpEq64F,
OpLess64, OpLess32, OpLess16, OpLess8,
OpLess64U, OpLess32U, OpLess16U, OpLess8U,
OpLess32F, OpLess64F,
OpLeq64, OpLeq32, OpLeq16, OpLeq8,
OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U,
OpLeq32F, OpLeq64F,
OpEqB, OpNeqB,
// shift
OpLsh64x64, OpRsh64x64, OpRsh64Ux64, OpLsh32x64,
OpRsh32x64, OpRsh32Ux64, OpLsh16x64, OpRsh16x64,
OpRsh16Ux64, OpLsh8x64, OpRsh8x64, OpRsh8Ux64,
// safety check
OpIsInBounds, OpIsSliceInBounds,
// bit
OpAnd8, OpAnd16, OpAnd32, OpAnd64,
OpOr8, OpOr16, OpOr32, OpOr64,
OpXor8, OpXor16, OpXor32, OpXor64:
return true
default:
return false
}
}
func (t *worklist) getLatticeCell(val *Value) lattice {
if !possibleConst(val) {
// they are always worst
return lattice{bottom, nil}
}
lt, exist := t.latticeCells[val]
if !exist {
return lattice{top, nil} // optimistically for un-visited value
}
return lt
}
func isConst(val *Value) bool {
switch val.Op {
case OpConst64, OpConst32, OpConst16, OpConst8,
OpConstBool, OpConst32F, OpConst64F:
return true
default:
return false
}
}
// buildDefUses builds def-use chain for some values early, because once the
// lattice of a value is changed, we need to update lattices of use. But we don't
// need all uses of it, only uses that can become constants would be added into
// re-visit worklist since no matter how many times they are revisited, uses which
// can't become constants lattice remains unchanged, i.e. Bottom.
func (t *worklist) buildDefUses() {
for _, block := range t.f.Blocks {
for _, val := range block.Values {
for _, arg := range val.Args {
// find its uses, only uses that can become constants take into account
if possibleConst(arg) && possibleConst(val) {
if _, exist := t.defUse[arg]; !exist {
t.defUse[arg] = make([]*Value, 0, arg.Uses)
}
t.defUse[arg] = append(t.defUse[arg], val)
}
}
}
for _, ctl := range block.ControlValues() {
// for control values that can become constants, find their use blocks
if possibleConst(ctl) {
t.defBlock[ctl] = append(t.defBlock[ctl], block)
}
}
}
}
// addUses finds all uses of value and appends them into work list for further process
func (t *worklist) addUses(val *Value) {
for _, use := range t.defUse[val] {
if val == use {
// Phi may refer to itself as uses, ignore them to avoid re-visiting phi
// for performance reason
continue
}
t.uses = append(t.uses, use)
}
for _, block := range t.defBlock[val] {
if t.visitedBlock[block.ID] {
t.propagate(block)
}
}
}
// meet meets all of phi arguments and computes result lattice
func (t *worklist) meet(val *Value) lattice {
optimisticLt := lattice{top, nil}
for i := 0; i < len(val.Args); i++ {
edge := Edge{val.Block, i}
// If incoming edge for phi is not visited, assume top optimistically.
// According to rules of meet:
// Top ∩ any = any
// Top participates in meet() but does not affect the result, so here
// we will ignore Top and only take other lattices into consideration.
if _, exist := t.visited[edge]; exist {
lt := t.getLatticeCell(val.Args[i])
if lt.tag == constant {
if optimisticLt.tag == top {
optimisticLt = lt
} else {
if !equals(optimisticLt, lt) {
// ConstantA ∩ ConstantB = Bottom
return lattice{bottom, nil}
}
}
} else if lt.tag == bottom {
// Bottom ∩ any = Bottom
return lattice{bottom, nil}
} else {
// Top ∩ any = any
}
} else {
// Top ∩ any = any
}
}
// ConstantA ∩ ConstantA = ConstantA or Top ∩ any = any
return optimisticLt
}
func computeLattice(f *Func, val *Value, args ...*Value) lattice {
// In general, we need to perform constant evaluation based on constant args:
//
// res := lattice{constant, nil}
// switch op {
// case OpAdd16:
// res.val = newConst(argLt1.val.AuxInt16() + argLt2.val.AuxInt16())
// case OpAdd32:
// res.val = newConst(argLt1.val.AuxInt32() + argLt2.val.AuxInt32())
// case OpDiv8:
// if !isDivideByZero(argLt2.val.AuxInt8()) {
// res.val = newConst(argLt1.val.AuxInt8() / argLt2.val.AuxInt8())
// }
// ...
// }
//
// However, this would create a huge switch for all opcodes that can be
// evaluated during compile time. Moreover, some operations can be evaluated
// only if its arguments satisfy additional conditions(e.g. divide by zero).
// It's fragile and error prone. We did a trick by reusing the existing rules
// in generic rules for compile-time evaluation. But generic rules rewrite
// original value, this behavior is undesired, because the lattice of values
// may change multiple times, once it was rewritten, we lose the opportunity
// to change it permanently, which can lead to errors. For example, We cannot
// change its value immediately after visiting Phi, because some of its input
// edges may still not be visited at this moment.
constValue := f.newValue(val.Op, val.Type, f.Entry, val.Pos)
constValue.AddArgs(args...)
matched := rewriteValuegeneric(constValue)
if matched {
if isConst(constValue) {
return lattice{constant, constValue}
}
}
// Either we can not match generic rules for given value or it does not
// satisfy additional constraints(e.g. divide by zero), in these cases, clean
// up temporary value immediately in case they are not dominated by their args.
constValue.reset(OpInvalid)
return lattice{bottom, nil}
}
func (t *worklist) visitValue(val *Value) {
if !possibleConst(val) {
// fast fail for always worst Values, i.e. there is no lowering happen
// on them, their lattices must be initially worse Bottom.
return
}
oldLt := t.getLatticeCell(val)
defer func() {
// re-visit all uses of value if its lattice is changed
newLt := t.getLatticeCell(val)
if !equals(newLt, oldLt) {
if int8(oldLt.tag) > int8(newLt.tag) {
t.f.Fatalf("Must lower lattice\n")
}
t.addUses(val)
}
}()
switch val.Op {
// they are constant values, aren't they?
case OpConst64, OpConst32, OpConst16, OpConst8,
OpConstBool, OpConst32F, OpConst64F: //TODO: support ConstNil ConstString etc
t.latticeCells[val] = lattice{constant, val}
// lattice value of copy(x) actually means lattice value of (x)
case OpCopy:
t.latticeCells[val] = t.getLatticeCell(val.Args[0])
// phi should be processed specially
case OpPhi:
t.latticeCells[val] = t.meet(val)
// fold 1-input operations:
case
// negate
OpNeg8, OpNeg16, OpNeg32, OpNeg64, OpNeg32F, OpNeg64F,
OpCom8, OpCom16, OpCom32, OpCom64,
// math
OpFloor, OpCeil, OpTrunc, OpRoundToEven, OpSqrt,
// conversion
OpTrunc16to8, OpTrunc32to8, OpTrunc32to16, OpTrunc64to8,
OpTrunc64to16, OpTrunc64to32, OpCvt32to32F, OpCvt32to64F,
OpCvt64to32F, OpCvt64to64F, OpCvt32Fto32, OpCvt32Fto64,
OpCvt64Fto32, OpCvt64Fto64, OpCvt32Fto64F, OpCvt64Fto32F,
OpCvtBoolToUint8,
OpZeroExt8to16, OpZeroExt8to32, OpZeroExt8to64, OpZeroExt16to32,
OpZeroExt16to64, OpZeroExt32to64, OpSignExt8to16, OpSignExt8to32,
OpSignExt8to64, OpSignExt16to32, OpSignExt16to64, OpSignExt32to64,
// bit
OpCtz8, OpCtz16, OpCtz32, OpCtz64,
// mask
OpSlicemask,
// safety check
OpIsNonNil,
// not
OpNot:
lt1 := t.getLatticeCell(val.Args[0])
if lt1.tag == constant {
// here we take a shortcut by reusing generic rules to fold constants
t.latticeCells[val] = computeLattice(t.f, val, lt1.val)
} else {
t.latticeCells[val] = lattice{lt1.tag, nil}
}
// fold 2-input operations
case
// add
OpAdd64, OpAdd32, OpAdd16, OpAdd8,
OpAdd32F, OpAdd64F,
// sub
OpSub64, OpSub32, OpSub16, OpSub8,
OpSub32F, OpSub64F,
// mul
OpMul64, OpMul32, OpMul16, OpMul8,
OpMul32F, OpMul64F,
// div
OpDiv32F, OpDiv64F,
OpDiv8, OpDiv16, OpDiv32, OpDiv64,
OpDiv8u, OpDiv16u, OpDiv32u, OpDiv64u, //TODO: support div128u
// mod
OpMod8, OpMod16, OpMod32, OpMod64,
OpMod8u, OpMod16u, OpMod32u, OpMod64u,
// compare
OpEq64, OpEq32, OpEq16, OpEq8,
OpEq32F, OpEq64F,
OpLess64, OpLess32, OpLess16, OpLess8,
OpLess64U, OpLess32U, OpLess16U, OpLess8U,
OpLess32F, OpLess64F,
OpLeq64, OpLeq32, OpLeq16, OpLeq8,
OpLeq64U, OpLeq32U, OpLeq16U, OpLeq8U,
OpLeq32F, OpLeq64F,
OpEqB, OpNeqB,
// shift
OpLsh64x64, OpRsh64x64, OpRsh64Ux64, OpLsh32x64,
OpRsh32x64, OpRsh32Ux64, OpLsh16x64, OpRsh16x64,
OpRsh16Ux64, OpLsh8x64, OpRsh8x64, OpRsh8Ux64,
// safety check
OpIsInBounds, OpIsSliceInBounds,
// bit
OpAnd8, OpAnd16, OpAnd32, OpAnd64,
OpOr8, OpOr16, OpOr32, OpOr64,
OpXor8, OpXor16, OpXor32, OpXor64:
lt1 := t.getLatticeCell(val.Args[0])
lt2 := t.getLatticeCell(val.Args[1])
if lt1.tag == constant && lt2.tag == constant {
// here we take a shortcut by reusing generic rules to fold constants
t.latticeCells[val] = computeLattice(t.f, val, lt1.val, lt2.val)
} else {
if lt1.tag == bottom || lt2.tag == bottom {
t.latticeCells[val] = lattice{bottom, nil}
} else {
t.latticeCells[val] = lattice{top, nil}
}
}
default:
// Any other type of value cannot be a constant, they are always worst(Bottom)
}
}
// propagate propagates constants facts through CFG. If the block has single successor,
// add the successor anyway. If the block has multiple successors, only add the
// branch destination corresponding to lattice value of condition value.
func (t *worklist) propagate(block *Block) {
switch block.Kind {
case BlockExit, BlockRet, BlockRetJmp, BlockInvalid:
// control flow ends, do nothing then
break
case BlockDefer:
// we know nothing about control flow, add all branch destinations
t.edges = append(t.edges, block.Succs...)
case BlockFirst:
fallthrough // always takes the first branch
case BlockPlain:
t.edges = append(t.edges, block.Succs[0])
case BlockIf, BlockJumpTable:
cond := block.ControlValues()[0]
condLattice := t.getLatticeCell(cond)
if condLattice.tag == bottom {
// we know nothing about control flow, add all branch destinations
t.edges = append(t.edges, block.Succs...)
} else if condLattice.tag == constant {
// add branchIdx destinations depends on its condition
var branchIdx int64
if block.Kind == BlockIf {
branchIdx = 1 - condLattice.val.AuxInt
} else {
branchIdx = condLattice.val.AuxInt
}
t.edges = append(t.edges, block.Succs[branchIdx])
} else {
// condition value is not visited yet, don't propagate it now
}
default:
t.f.Fatalf("All kind of block should be processed above.")
}
}
// rewireSuccessor rewires corresponding successors according to constant value
// discovered by previous analysis. As the result, some successors become unreachable
// and thus can be removed in further deadcode phase
func rewireSuccessor(block *Block, constVal *Value) bool {
switch block.Kind {
case BlockIf:
block.removeEdge(int(constVal.AuxInt))
block.Kind = BlockPlain
block.Likely = BranchUnknown
block.ResetControls()
return true
case BlockJumpTable:
idx := int(constVal.AuxInt)
targetBlock := block.Succs[idx].b
for len(block.Succs) > 0 {
block.removeEdge(0)
}
block.AddEdgeTo(targetBlock)
block.Kind = BlockPlain
block.Likely = BranchUnknown
block.ResetControls()
return true
default:
return false
}
}
// replaceConst will replace non-constant values that have been proven by sccp
// to be constants.
func (t *worklist) replaceConst() (int, int) {
constCnt, rewireCnt := 0, 0
for val, lt := range t.latticeCells {
if lt.tag == constant {
if !isConst(val) {
if t.f.pass.debug > 0 {
fmt.Printf("Replace %v with %v\n", val.LongString(), lt.val.LongString())
}
val.reset(lt.val.Op)
val.AuxInt = lt.val.AuxInt
constCnt++
}
// If const value controls this block, rewires successors according to its value
ctrlBlock := t.defBlock[val]
for _, block := range ctrlBlock {
if rewireSuccessor(block, lt.val) {
rewireCnt++
if t.f.pass.debug > 0 {
fmt.Printf("Rewire %v %v successors\n", block.Kind, block)
}
}
}
}
}
return constCnt, rewireCnt
}

View file

@ -0,0 +1,95 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/compile/internal/types"
"strings"
"testing"
)
func TestSCCPBasic(t *testing.T) {
c := testConfig(t)
fun := c.Fun("b1",
Bloc("b1",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("v1", OpConst64, c.config.Types.Int64, 20, nil),
Valu("v2", OpConst64, c.config.Types.Int64, 21, nil),
Valu("v3", OpConst64F, c.config.Types.Float64, 21.0, nil),
Valu("v4", OpConstBool, c.config.Types.Bool, 1, nil),
Valu("t1", OpAdd64, c.config.Types.Int64, 0, nil, "v1", "v2"),
Valu("t2", OpDiv64, c.config.Types.Int64, 0, nil, "t1", "v1"),
Valu("t3", OpAdd64, c.config.Types.Int64, 0, nil, "t1", "t2"),
Valu("t4", OpSub64, c.config.Types.Int64, 0, nil, "t3", "v2"),
Valu("t5", OpMul64, c.config.Types.Int64, 0, nil, "t4", "v2"),
Valu("t6", OpMod64, c.config.Types.Int64, 0, nil, "t5", "v2"),
Valu("t7", OpAnd64, c.config.Types.Int64, 0, nil, "t6", "v2"),
Valu("t8", OpOr64, c.config.Types.Int64, 0, nil, "t7", "v2"),
Valu("t9", OpXor64, c.config.Types.Int64, 0, nil, "t8", "v2"),
Valu("t10", OpNeg64, c.config.Types.Int64, 0, nil, "t9"),
Valu("t11", OpCom64, c.config.Types.Int64, 0, nil, "t10"),
Valu("t12", OpNeg64, c.config.Types.Int64, 0, nil, "t11"),
Valu("t13", OpFloor, c.config.Types.Float64, 0, nil, "v3"),
Valu("t14", OpSqrt, c.config.Types.Float64, 0, nil, "t13"),
Valu("t15", OpCeil, c.config.Types.Float64, 0, nil, "t14"),
Valu("t16", OpTrunc, c.config.Types.Float64, 0, nil, "t15"),
Valu("t17", OpRoundToEven, c.config.Types.Float64, 0, nil, "t16"),
Valu("t18", OpTrunc64to32, c.config.Types.Int64, 0, nil, "t12"),
Valu("t19", OpCvt64Fto64, c.config.Types.Float64, 0, nil, "t17"),
Valu("t20", OpCtz64, c.config.Types.Int64, 0, nil, "v2"),
Valu("t21", OpSlicemask, c.config.Types.Int64, 0, nil, "t20"),
Valu("t22", OpIsNonNil, c.config.Types.Int64, 0, nil, "v2"),
Valu("t23", OpNot, c.config.Types.Bool, 0, nil, "v4"),
Valu("t24", OpEq64, c.config.Types.Bool, 0, nil, "v1", "v2"),
Valu("t25", OpLess64, c.config.Types.Bool, 0, nil, "v1", "v2"),
Valu("t26", OpLeq64, c.config.Types.Bool, 0, nil, "v1", "v2"),
Valu("t27", OpEqB, c.config.Types.Bool, 0, nil, "v4", "v4"),
Valu("t28", OpLsh64x64, c.config.Types.Int64, 0, nil, "v2", "v1"),
Valu("t29", OpIsInBounds, c.config.Types.Int64, 0, nil, "v2", "v1"),
Valu("t30", OpIsSliceInBounds, c.config.Types.Int64, 0, nil, "v2", "v1"),
Goto("b2")),
Bloc("b2",
Exit("mem")))
sccp(fun.f)
CheckFunc(fun.f)
for name, value := range fun.values {
if strings.HasPrefix(name, "t") {
if !isConst(value) {
t.Errorf("Must be constant: %v", value.LongString())
}
}
}
}
func TestSCCPIf(t *testing.T) {
c := testConfig(t)
fun := c.Fun("b1",
Bloc("b1",
Valu("mem", OpInitMem, types.TypeMem, 0, nil),
Valu("v1", OpConst64, c.config.Types.Int64, 0, nil),
Valu("v2", OpConst64, c.config.Types.Int64, 1, nil),
Valu("cmp", OpLess64, c.config.Types.Bool, 0, nil, "v1", "v2"),
If("cmp", "b2", "b3")),
Bloc("b2",
Valu("v3", OpConst64, c.config.Types.Int64, 3, nil),
Goto("b4")),
Bloc("b3",
Valu("v4", OpConst64, c.config.Types.Int64, 4, nil),
Goto("b4")),
Bloc("b4",
Valu("merge", OpPhi, c.config.Types.Int64, 0, nil, "v3", "v4"),
Exit("mem")))
sccp(fun.f)
CheckFunc(fun.f)
for _, b := range fun.blocks {
for _, v := range b.Values {
if v == fun.values["merge"] {
if !isConst(v) {
t.Errorf("Must be constant: %v", v.LongString())
}
}
}
}
}

View file

@ -137,6 +137,10 @@ func g4(a [100]int) {
useInt(a[i+50])
// The following are out of bounds.
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
useInt(a[i-11]) // ERROR "Found IsInBounds$"
useInt(a[i+51]) // ERROR "Found IsInBounds$"
}

View file

@ -72,7 +72,7 @@ func ui64x8() {
}
// s390x:"CLGIJ\t[$]2, R[0-9]+, [$]255, "
for i := uint64(0); i >= 256; i-- {
for i := uint64(257); i >= 256; i-- {
dummy()
}
@ -145,7 +145,7 @@ func ui32x8() {
}
// s390x:"CLIJ\t[$]2, R[0-9]+, [$]255, "
for i := uint32(0); i >= 256; i-- {
for i := uint32(257); i >= 256; i-- {
dummy()
}

View file

@ -58,7 +58,7 @@ func f4(a [10]int) int {
func f5(a [10]int) int {
x := 0
for i := -10; i < len(a); i += 2 { // ERROR "Induction variable: limits \[-10,8\], increment 2$"
x += a[i]
x += a[i+10]
}
return x
}
@ -66,7 +66,7 @@ func f5(a [10]int) int {
func f5_int32(a [10]int) int {
x := 0
for i := int32(-10); i < int32(len(a)); i += 2 { // ERROR "Induction variable: limits \[-10,8\], increment 2$"
x += a[i]
x += a[i+10]
}
return x
}
@ -74,7 +74,7 @@ func f5_int32(a [10]int) int {
func f5_int16(a [10]int) int {
x := 0
for i := int16(-10); i < int16(len(a)); i += 2 { // ERROR "Induction variable: limits \[-10,8\], increment 2$"
x += a[i]
x += a[i+10]
}
return x
}
@ -82,7 +82,7 @@ func f5_int16(a [10]int) int {
func f5_int8(a [10]int) int {
x := 0
for i := int8(-10); i < int8(len(a)); i += 2 { // ERROR "Induction variable: limits \[-10,8\], increment 2$"
x += a[i]
x += a[i+10]
}
return x
}
@ -201,6 +201,10 @@ func h2(a []byte) {
func k0(a [100]int) [100]int {
for i := 10; i < 90; i++ { // ERROR "Induction variable: limits \[10,90\), increment 1$"
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
a[i-11] = i
a[i-10] = i // ERROR "(\([0-9]+\) )?Proved IsInBounds$"
a[i-5] = i // ERROR "(\([0-9]+\) )?Proved IsInBounds$"
@ -214,6 +218,10 @@ func k0(a [100]int) [100]int {
func k1(a [100]int) [100]int {
for i := 10; i < 90; i++ { // ERROR "Induction variable: limits \[10,90\), increment 1$"
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
useSlice(a[:i-11])
useSlice(a[:i-10]) // ERROR "(\([0-9]+\) )?Proved IsSliceInBounds$"
useSlice(a[:i-5]) // ERROR "(\([0-9]+\) )?Proved IsSliceInBounds$"
@ -229,6 +237,10 @@ func k1(a [100]int) [100]int {
func k2(a [100]int) [100]int {
for i := 10; i < 90; i++ { // ERROR "Induction variable: limits \[10,90\), increment 1$"
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
useSlice(a[i-11:])
useSlice(a[i-10:]) // ERROR "(\([0-9]+\) )?Proved IsSliceInBounds$"
useSlice(a[i-5:]) // ERROR "(\([0-9]+\) )?Proved IsSliceInBounds$"
@ -243,6 +255,10 @@ func k2(a [100]int) [100]int {
func k3(a [100]int) [100]int {
for i := -10; i < 90; i++ { // ERROR "Induction variable: limits \[-10,90\), increment 1$"
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
a[i+9] = i
a[i+10] = i // ERROR "(\([0-9]+\) )?Proved IsInBounds$"
a[i+11] = i
@ -252,6 +268,10 @@ func k3(a [100]int) [100]int {
func k3neg(a [100]int) [100]int {
for i := 89; i > -11; i-- { // ERROR "Induction variable: limits \(-11,89\], increment 1$"
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
a[i+9] = i
a[i+10] = i // ERROR "(\([0-9]+\) )?Proved IsInBounds$"
a[i+11] = i
@ -261,6 +281,10 @@ func k3neg(a [100]int) [100]int {
func k3neg2(a [100]int) [100]int {
for i := 89; i >= -10; i-- { // ERROR "Induction variable: limits \[-10,89\], increment 1$"
if a[0] == 0xdeadbeef {
// This is a trick to prohibit sccp to optimize out the following out of bound check
continue
}
a[i+9] = i
a[i+10] = i // ERROR "(\([0-9]+\) )?Proved IsInBounds$"
a[i+11] = i
@ -411,7 +435,6 @@ func nobce3(a [100]int64) [100]int64 {
min := int64((-1) << 63)
max := int64((1 << 63) - 1)
for i := min; i < max; i++ { // ERROR "Induction variable: limits \[-9223372036854775808,9223372036854775807\), increment 1$"
a[i] = i
}
return a
}