Implement type compatibility and fix places where I thought

types were supposed to be identical but only needed to be
compatible.  This gets rid of the Type.literal method.  I
renamed the Type.rep method to Type.lit because I believe it
corresponds to the term "literal" as used in the spec.

R=rsc
APPROVED=rsc
DELTA=228  (57 added, 35 deleted, 136 changed)
OCL=32606
CL=32608
This commit is contained in:
Austin Clements 2009-07-31 17:11:34 -07:00
parent d11173d452
commit 458e23e151
4 changed files with 167 additions and 145 deletions

View file

@ -16,15 +16,17 @@ import (
type Value interface
type Type interface {
// literal returns this type with all names recursively
// stripped. This should only be used when determining
// assignment compatibility. To strip a named type for use in
// a type switch, use .rep().
literal() Type;
// rep returns the representative type. If this is a named
// type, this is the unnamed underlying type. Otherwise, this
// is an identity operation.
rep() Type;
// compat returns whether this type is compatible with another
// type. If conv is false, this is normal compatibility,
// where two named types are compatible only if they are the
// same named type. If conv if true, this is conversion
// compatibility, where two named types are conversion
// compatible if their definitions are conversion compatible.
compat(o Type, conv bool) bool;
// lit returns this type's literal. If this is a named type,
// this is the unnamed underlying type. Otherwise, this is an
// identity operation.
lit() Type;
// isBoolean returns true if this is a boolean type.
isBoolean() bool;
// isInteger returns true if this is an integer type.

View file

@ -230,7 +230,7 @@ func (a *exprCompiler) convertTo(t Type) *exprCompiler {
}
// Check bounds
if t, ok := t.rep().(BoundedType); ok {
if t, ok := t.lit().(BoundedType); ok {
if rat.Cmp(t.minVal()) < 0 {
a.diag("constant %v underflows %v", ratToString(rat), t);
return nil;
@ -244,7 +244,7 @@ func (a *exprCompiler) convertTo(t Type) *exprCompiler {
// Convert rat to type t.
res := a.copy();
res.t = t;
switch t := t.rep().(type) {
switch t := t.lit().(type) {
case *uintType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
@ -410,7 +410,7 @@ func (a *assignCompiler) compile(lt Type) (func(lv Value, f *Frame)) {
rt = a.rs[i].t;
}
if lt.literal() != rt.literal() {
if !lt.compat(rt, false) {
if len(a.rs) == 1 {
a.rs[0].diag("illegal operand types for %s\n\t%v\n\t%v", a.errOp, lt, rt);
} else {
@ -606,8 +606,8 @@ func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) {
}
// Type check object
if lt, ok := l.t.rep().(*PtrType); ok {
if et, ok := lt.Elem.rep().(*ArrayType); ok {
if lt, ok := l.t.lit().(*PtrType); ok {
if et, ok := lt.Elem.lit().(*ArrayType); ok {
// Automatic dereference
nl := l.copy();
nl.t = et;
@ -620,7 +620,7 @@ func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) {
intIndex := false;
var maxIndex int64 = -1;
switch lt := l.t.rep().(type) {
switch lt := l.t.lit().(type) {
case *ArrayType:
at = lt.Elem;
intIndex = true;
@ -649,7 +649,7 @@ func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) {
// XXX(Spec) It's unclear if ideal floats with no
// fractional part are allowed here. 6g allows it. I
// believe that's wrong.
switch _ := r.t.rep().(type) {
switch _ := r.t.lit().(type) {
case *idealIntType:
val := r.asIdealInt()();
if val.IsNeg() || (maxIndex != -1 && val.Cmp(bignum.Int(maxIndex)) >= 0) {
@ -683,7 +683,7 @@ func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) {
a.t = at;
// Compile
switch lt := l.t.rep().(type) {
switch lt := l.t.lit().(type) {
case *ArrayType:
a.t = lt.Elem;
// TODO(austin) Bounds check
@ -750,7 +750,7 @@ func (a *exprCompiler) DoCallExpr(x *ast.CallExpr) {
// type of that type is still whatever it's defined to. Thus,
// in "type Foo int", Foo is still an integer type and in
// "type Foo func()", Foo is a function type.
lt, ok := l.t.rep().(*FuncType);
lt, ok := l.t.lit().(*FuncType);
if !ok {
a.diag("cannot call non-function type %v", l.t);
return;
@ -807,7 +807,7 @@ func (a *exprCompiler) DoStarExpr(x *ast.StarExpr) {
return;
}
switch vt := v.t.rep().(type) {
switch vt := v.t.lit().(type) {
case *PtrType:
a.t = vt.Elem;
a.genStarOp(v);
@ -956,12 +956,9 @@ func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
}
}
// XXX(Spec) "The operand types in binary operations must be
// compatible" should say the types must be *identical*.
// Useful type predicates
same := func() bool {
return l.t == r.t;
compat := func() bool {
return l.t.compat(r.t, false);
};
integers := func() bool {
return l.t.isInteger() && r.t.isInteger();
@ -980,21 +977,21 @@ func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
// Type check
switch op {
case token.ADD:
if !same() || (!integers() && !floats() && !strings()) {
if !compat() || (!integers() && !floats() && !strings()) {
a.diagOpTypes(op, origlt, origrt);
return;
}
a.t = l.t;
case token.SUB, token.MUL, token.QUO:
if !same() || (!integers() && !floats()) {
if !compat() || (!integers() && !floats()) {
a.diagOpTypes(op, origlt, origrt);
return;
}
a.t = l.t;
case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
if !same() || !integers() {
if !compat() || !integers() {
a.diagOpTypes(op, origlt, origrt);
return;
}
@ -1037,7 +1034,7 @@ func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
log.Crashf("conversion to uintType succeeded, but conversion to idealIntType failed");
}
}
} else if _, ok := r.t.rep().(*uintType); !ok {
} else if _, ok := r.t.lit().(*uintType); !ok {
a.diag("right operand of shift must be unsigned");
return;
}
@ -1089,7 +1086,7 @@ func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
// to everything except arrays and structs, and there
// are some restrictions on when it applies to slices.
if !same() || (!integers() && !floats() && !strings()) {
if !compat() || (!integers() && !floats() && !strings()) {
a.diagOpTypes(op, origlt, origrt);
return;
}
@ -1118,10 +1115,6 @@ func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
// is very difficult to parse. It's explained much
// better in the Comparison Compatibility section.
// XXX(Spec) Comparison compatibility: "Values of any
// type may be compared to other values of compatible
// static type." Should be *identical* static type.
// XXX(Spec) Comparison compatibility: "Function
// values are equal if they refer to the same
// function." is rather vague. It should probably be
@ -1136,7 +1129,7 @@ func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
// TODO(austin) Deal with remaining special cases
if !same() {
if !compat() {
a.diagOpTypes(op, origlt, origrt);
return;
}
@ -1302,7 +1295,7 @@ func (a *compiler) compileArrayLen(b *block, expr ast.Expr) (int64, bool) {
}
}
switch _ := lenExpr.t.rep().(type) {
switch _ := lenExpr.t.lit().(type) {
case *intType:
return lenExpr.evalInt(nil), true;
case *uintType:
@ -1394,7 +1387,7 @@ func CompileExpr(scope *Scope, expr ast.Expr) (*Expr, os.Error) {
if ec == nil {
return nil, errors.GetError(scanner.Sorted);
}
switch t := ec.t.rep().(type) {
switch t := ec.t.lit().(type) {
case *boolType:
return &Expr{t, func(f *Frame, out Value) { out.(BoolValue).Set(ec.evalBool(f)) }}, nil;
case *uintType:
@ -1424,7 +1417,7 @@ func CompileExpr(scope *Scope, expr ast.Expr) (*Expr, os.Error) {
*/
func (a *exprCompiler) genConstant(v Value) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *boolType:
val := v.(BoolValue).Get();
a.evalBool = func(f *Frame) bool { return val };
@ -1462,7 +1455,7 @@ func (a *exprCompiler) genConstant(v Value) {
func (a *exprCompiler) genIdentOp(level int, index int) {
a.evalAddr = func(f *Frame) Value { return f.Get(level, index) };
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *boolType:
a.evalBool = func(f *Frame) bool { return f.Get(level, index).(BoolValue).Get() };
case *uintType:
@ -1487,7 +1480,7 @@ func (a *exprCompiler) genIdentOp(level int, index int) {
func (a *exprCompiler) genIndexArray(l *exprCompiler, r *exprCompiler) {
lf := l.asArray();
rf := r.asInt();
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *boolType:
a.evalBool = func(f *Frame) bool { return lf(f).Elem(rf(f)).(BoolValue).Get() };
case *uintType:
@ -1511,7 +1504,7 @@ func (a *exprCompiler) genIndexArray(l *exprCompiler, r *exprCompiler) {
func (a *exprCompiler) genFuncCall(call func(f *Frame) []Value) {
a.exec = func(f *Frame) { call(f) };
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *boolType:
a.evalBool = func(f *Frame) bool { return call(f)[0].(BoolValue).Get() };
case *uintType:
@ -1538,7 +1531,7 @@ func (a *exprCompiler) genFuncCall(call func(f *Frame) []Value) {
func (a *exprCompiler) genStarOp(v *exprCompiler) {
vf := v.asPtr();
a.evalAddr = func(f *Frame) Value { return vf(f) };
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *boolType:
a.evalBool = func(f *Frame) bool { return vf(f).(BoolValue).Get() };
case *uintType:
@ -1561,7 +1554,7 @@ func (a *exprCompiler) genStarOp(v *exprCompiler) {
}
func (a *exprCompiler) genUnaryOpNeg(v *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
vf := v.asUint();
a.evalUint = func(f *Frame) uint64 { return -vf(f) };
@ -1585,7 +1578,7 @@ func (a *exprCompiler) genUnaryOpNeg(v *exprCompiler) {
}
func (a *exprCompiler) genUnaryOpNot(v *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *boolType:
vf := v.asBool();
a.evalBool = func(f *Frame) bool { return !vf(f) };
@ -1595,7 +1588,7 @@ func (a *exprCompiler) genUnaryOpNot(v *exprCompiler) {
}
func (a *exprCompiler) genUnaryOpXor(v *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
vf := v.asUint();
a.evalUint = func(f *Frame) uint64 { return ^vf(f) };
@ -1612,7 +1605,7 @@ func (a *exprCompiler) genUnaryOpXor(v *exprCompiler) {
}
func (a *exprCompiler) genBinOpAdd(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1645,7 +1638,7 @@ func (a *exprCompiler) genBinOpAdd(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpSub(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1674,7 +1667,7 @@ func (a *exprCompiler) genBinOpSub(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpMul(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1703,7 +1696,7 @@ func (a *exprCompiler) genBinOpMul(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpQuo(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1732,7 +1725,7 @@ func (a *exprCompiler) genBinOpQuo(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpRem(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1752,7 +1745,7 @@ func (a *exprCompiler) genBinOpRem(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpAnd(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1772,7 +1765,7 @@ func (a *exprCompiler) genBinOpAnd(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpOr(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1792,7 +1785,7 @@ func (a *exprCompiler) genBinOpOr(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1812,7 +1805,7 @@ func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1832,7 +1825,7 @@ func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1847,7 +1840,7 @@ func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler) {
switch _ := a.t.rep().(type) {
switch _ := a.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1862,7 +1855,7 @@ func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpLss(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.rep().(type) {
switch _ := l.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1895,7 +1888,7 @@ func (a *exprCompiler) genBinOpLss(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpGtr(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.rep().(type) {
switch _ := l.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1928,7 +1921,7 @@ func (a *exprCompiler) genBinOpGtr(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpLeq(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.rep().(type) {
switch _ := l.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1961,7 +1954,7 @@ func (a *exprCompiler) genBinOpLeq(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpGeq(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.rep().(type) {
switch _ := l.t.lit().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
@ -1994,7 +1987,7 @@ func (a *exprCompiler) genBinOpGeq(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpEql(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.rep().(type) {
switch _ := l.t.lit().(type) {
case *boolType:
lf := l.asBool();
rf := r.asBool();
@ -2039,7 +2032,7 @@ func (a *exprCompiler) genBinOpEql(l *exprCompiler, r *exprCompiler) {
}
func (a *exprCompiler) genBinOpNeq(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.rep().(type) {
switch _ := l.t.lit().(type) {
case *boolType:
lf := l.asBool();
rf := r.asBool();
@ -2084,7 +2077,7 @@ func (a *exprCompiler) genBinOpNeq(l *exprCompiler, r *exprCompiler) {
}
func genAssign(lt Type, r *exprCompiler) (func(lv Value, f *Frame)) {
switch _ := lt.rep().(type) {
switch _ := lt.lit().(type) {
case *boolType:
rf := r.asBool();
return func(lv Value, f *Frame) { lv.(BoolValue).Set(rf(f)) };

View file

@ -86,7 +86,7 @@ func (b *block) DefineType(name string, pos token.Position, t Type) Type {
}
// We take the representative type of t because multiple
// levels of naming are useless.
nt := &NamedType{pos, name, t.rep()};
nt := &NamedType{pos, name, t.lit()};
b.defs[name] = nt;
return nt;
}

View file

@ -127,11 +127,12 @@ type boolType struct {
var BoolType = universe.DefineType("bool", universePos, &boolType{});
func (t *boolType) literal() Type {
return t;
func (t *boolType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*boolType);
return ok;
}
func (t *boolType) rep() Type {
func (t *boolType) lit() Type {
return t;
}
@ -181,11 +182,12 @@ func init() {
universe.defs["byte"] = universe.defs["uint8"];
}
func (t *uintType) literal() Type {
return t;
func (t *uintType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*uintType);
return ok && t == t2;;
}
func (t *uintType) rep() Type {
func (t *uintType) lit() Type {
return t;
}
@ -241,11 +243,12 @@ var (
IntType = universe.DefineType("int", universePos, &intType{commonType{}, 0, "int"});
)
func (t *intType) literal() Type {
return t;
func (t *intType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*intType);
return ok && t == t2;
}
func (t *intType) rep() Type {
func (t *intType) lit() Type {
return t;
}
@ -285,11 +288,12 @@ type idealIntType struct {
var IdealIntType Type = &idealIntType{}
func (t *idealIntType) literal() Type {
return t;
func (t *idealIntType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*idealIntType);
return ok;
}
func (t *idealIntType) rep() Type {
func (t *idealIntType) lit() Type {
return t;
}
@ -326,11 +330,12 @@ var (
FloatType = universe.DefineType("float", universePos, &floatType{commonType{}, 0, "float"});
)
func (t *floatType) literal() Type {
return t;
func (t *floatType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*floatType);
return ok && t == t2;
}
func (t *floatType) rep() Type {
func (t *floatType) lit() Type {
return t;
}
@ -389,11 +394,12 @@ type idealFloatType struct {
var IdealFloatType Type = &idealFloatType{};
func (t *idealFloatType) literal() Type {
return t;
func (t *idealFloatType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*idealFloatType);
return ok;
}
func (t *idealFloatType) rep() Type {
func (t *idealFloatType) lit() Type {
return t;
}
@ -421,11 +427,12 @@ type stringType struct {
var StringType = universe.DefineType("string", universePos, &stringType{});
func (t *stringType) literal() Type {
return t;
func (t *stringType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*stringType);
return ok;
}
func (t *stringType) rep() Type {
func (t *stringType) lit() Type {
return t;
}
@ -443,15 +450,14 @@ type ArrayType struct {
commonType;
Len int64;
Elem Type;
lit Type;
}
var arrayTypes = make(map[int64] map[Type] *ArrayType);
func NewArrayType(len int64, elem Type) *ArrayType {
// Two array types are identical if they have identical
// element types and the same array length.
// Two array types are identical if they have identical element types
// and the same array length.
func NewArrayType(len int64, elem Type) *ArrayType {
ts, ok := arrayTypes[len];
if !ok {
ts = make(map[Type] *ArrayType);
@ -459,20 +465,21 @@ func NewArrayType(len int64, elem Type) *ArrayType {
}
t, ok := ts[elem];
if !ok {
t = &ArrayType{commonType{}, len, elem, nil};
t = &ArrayType{commonType{}, len, elem};
ts[elem] = t;
}
return t;
}
func (t *ArrayType) literal() Type {
if t.lit == nil {
t.lit = NewArrayType(t.Len, t.Elem.literal());
func (t *ArrayType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*ArrayType);
if !ok {
return false;
}
return t.lit;
return t.Len == t2.Len && t.Elem.compat(t2.Elem, conv);
}
func (t *ArrayType) rep() Type {
func (t *ArrayType) lit() Type {
return t;
}
@ -489,31 +496,30 @@ func (t *ArrayType) Zero() Value
type PtrType struct {
commonType;
Elem Type;
lit Type;
}
var ptrTypes = make(map[Type] *PtrType)
func NewPtrType(elem Type) *PtrType {
// Two pointer types are identical if they have identical base
// types.
// Two pointer types are identical if they have identical base types.
func NewPtrType(elem Type) *PtrType {
t, ok := ptrTypes[elem];
if !ok {
t = &PtrType{commonType{}, elem, nil};
t = &PtrType{commonType{}, elem};
ptrTypes[elem] = t;
}
return t;
}
func (t *PtrType) literal() Type {
if t.lit == nil {
t.lit = NewPtrType(t.Elem.literal());
func (t *PtrType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*PtrType);
if !ok {
return false;
}
return t.lit;
return t.Elem.compat(t2.Elem, conv);
}
func (t *PtrType) rep() Type {
func (t *PtrType) lit() Type {
return t;
}
@ -533,19 +539,17 @@ type FuncType struct {
In []Type;
Variadic bool;
Out []Type;
lit Type;
}
var funcTypes = newTypeArrayMap();
var variadicFuncTypes = newTypeArrayMap();
func NewFuncType(in []Type, variadic bool, out []Type) *FuncType {
// Two function types are identical if they have the same
// number of parameters and result values and if corresponding
// parameter and result types are identical. All "..."
// parameters have identical type. Parameter and result names
// are not required to match.
// Two function types are identical if they have the same number of
// parameters and result values and if corresponding parameter and
// result types are identical. All "..." parameters have identical
// type. Parameter and result names are not required to match.
func NewFuncType(in []Type, variadic bool, out []Type) *FuncType {
inMap := funcTypes;
if variadic {
inMap = variadicFuncTypes;
@ -562,29 +566,33 @@ func NewFuncType(in []Type, variadic bool, out []Type) *FuncType {
return tI.(*FuncType);
}
t := &FuncType{commonType{}, in, variadic, out, nil};
t := &FuncType{commonType{}, in, variadic, out};
outMap.Put(out, t);
return t;
}
func (t *FuncType) literal() Type {
if t.lit == nil {
in := make([]Type, len(t.In));
for i := 0; i < len(in); i++ {
in[i] = t.In[i].literal();
}
out := make([]Type, len(t.Out));
for i := 0; i < len(out); i++ {
out[i] = t.Out[i].literal();
}
t.lit = NewFuncType(in, t.Variadic, out);
func (t *FuncType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*FuncType);
if !ok {
return false;
}
return t.lit;
if len(t.In) != len(t2.In) || t.Variadic != t2.Variadic || len(t.Out) != len(t2.Out) {
return false;
}
for i := range t.In {
if !t.In[i].compat(t2.In[i], conv) {
return false;
}
}
for i := range t.Out {
if !t.Out[i].compat(t2.Out[i], conv) {
return false;
}
}
return true;
}
func (t *FuncType) rep() Type {
func (t *FuncType) lit() Type {
return t;
}
@ -683,12 +691,28 @@ type NamedType struct {
//methods map[string] XXX;
}
func (t *NamedType) literal() Type {
return t.def.literal();
func (t *NamedType) compat(o Type, conv bool) bool {
t2, ok := o.(*NamedType);
if ok {
if conv {
// Two named types are conversion compatible
// if their literals are conversion
// compatible.
return t.def.compat(t2.def, conv);
} else {
// Two named types are compatible if their
// type names originate in the same type
// declaration.
return t == t2;
}
}
// A named and an unnamed type are compatible if the
// respective type literals are compatible.
return o.compat(t.def, conv);
}
func (t *NamedType) rep() Type {
return t.def.rep();
func (t *NamedType) lit() Type {
return t.def.lit();
}
func (t *NamedType) isBoolean() bool {
@ -725,7 +749,6 @@ func (t *NamedType) Zero() Value {
type MultiType struct {
commonType;
Elems []Type;
lit Type;
}
var multiTypes = newTypeArrayMap()
@ -735,26 +758,30 @@ func NewMultiType(elems []Type) *MultiType {
return t.(*MultiType);
}
t := &MultiType{commonType{}, elems, nil};
t := &MultiType{commonType{}, elems};
multiTypes.Put(elems, t);
return t;
}
var EmptyType Type = NewMultiType([]Type{});
func (t *MultiType) literal() Type {
if t.lit == nil {
elems := make([]Type, len(t.Elems));
for i, e := range t.Elems {
elems[i] = e.literal();
}
t.lit = NewMultiType(elems);
func (t *MultiType) compat(o Type, conv bool) bool {
t2, ok := o.lit().(*MultiType);
if !ok {
return false;
}
return t.lit;
if len(t.Elems) != len(t2.Elems) {
return false;
}
for i := range t.Elems {
if !t.Elems[i].compat(t2.Elems[i], conv) {
return false;
}
}
return true;
}
func (t *MultiType) rep() Type {
var EmptyType Type = NewMultiType([]Type{});
func (t *MultiType) lit() Type {
return t;
}