regexp: use rune

Public API of syntax tree changes.

R=golang-dev, r, gri
CC=golang-dev
https://golang.org/cl/5302046
This commit is contained in:
Russ Cox 2011-10-25 22:20:57 -07:00
parent 81b014818c
commit 3e52dadfd7
9 changed files with 121 additions and 121 deletions

View file

@ -90,15 +90,15 @@ func (m *machine) match(i input, pos int) bool {
m.matchcap[i] = -1
}
runq, nextq := &m.q0, &m.q1
rune, rune1 := endOfText, endOfText
r, r1 := endOfText, endOfText
width, width1 := 0, 0
rune, width = i.step(pos)
if rune != endOfText {
rune1, width1 = i.step(pos + width)
r, width = i.step(pos)
if r != endOfText {
r1, width1 = i.step(pos + width)
}
var flag syntax.EmptyOp
if pos == 0 {
flag = syntax.EmptyOpContext(-1, rune)
flag = syntax.EmptyOpContext(-1, r)
} else {
flag = i.context(pos)
}
@ -112,15 +112,15 @@ func (m *machine) match(i input, pos int) bool {
// Have match; finished exploring alternatives.
break
}
if len(m.re.prefix) > 0 && rune1 != m.re.prefixRune && i.canCheckPrefix() {
if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
// Match requires literal prefix; fast search for it.
advance := i.index(m.re, pos)
if advance < 0 {
break
}
pos += advance
rune, width = i.step(pos)
rune1, width1 = i.step(pos + width)
r, width = i.step(pos)
r1, width1 = i.step(pos + width)
}
}
if !m.matched {
@ -129,8 +129,8 @@ func (m *machine) match(i input, pos int) bool {
}
m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
}
flag = syntax.EmptyOpContext(rune, rune1)
m.step(runq, nextq, pos, pos+width, rune, flag)
flag = syntax.EmptyOpContext(r, r1)
m.step(runq, nextq, pos, pos+width, r, flag)
if width == 0 {
break
}
@ -140,9 +140,9 @@ func (m *machine) match(i input, pos int) bool {
break
}
pos += width
rune, width = rune1, width1
if rune != endOfText {
rune1, width1 = i.step(pos + width)
r, width = r1, width1
if r != endOfText {
r1, width1 = i.step(pos + width)
}
runq, nextq = nextq, runq
}
@ -166,7 +166,7 @@ func (m *machine) clear(q *queue) {
// The step processes the rune c (which may be endOfText),
// which starts at position pos and ends at nextPos.
// nextCond gives the setting for the empty-width flags after c.
func (m *machine) step(runq, nextq *queue, pos, nextPos, c int, nextCond syntax.EmptyOp) {
func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
longest := m.re.longest
for j := 0; j < len(runq.dense); j++ {
d := &runq.dense[j]

View file

@ -83,7 +83,7 @@ type Regexp struct {
prefix string // required prefix in unanchored matches
prefixBytes []byte // prefix, as a []byte
prefixComplete bool // prefix is the entire regexp
prefixRune int // first rune in prefix
prefixRune rune // first rune in prefix
cond syntax.EmptyOp // empty-width conditions required at start of match
numSubexp int
longest bool
@ -224,13 +224,13 @@ func (re *Regexp) NumSubexp() int {
return re.numSubexp
}
const endOfText = -1
const endOfText rune = -1
// input abstracts different representations of the input text. It provides
// one-character lookahead.
type input interface {
step(pos int) (rune int, width int) // advance one rune
canCheckPrefix() bool // can we look ahead without losing info?
step(pos int) (r rune, width int) // advance one rune
canCheckPrefix() bool // can we look ahead without losing info?
hasPrefix(re *Regexp) bool
index(re *Regexp, pos int) int
context(pos int) syntax.EmptyOp
@ -245,11 +245,11 @@ func newInputString(str string) *inputString {
return &inputString{str: str}
}
func (i *inputString) step(pos int) (int, int) {
func (i *inputString) step(pos int) (rune, int) {
if pos < len(i.str) {
c := i.str[pos]
if c < utf8.RuneSelf {
return int(c), 1
return rune(c), 1
}
return utf8.DecodeRuneInString(i.str[pos:])
}
@ -269,7 +269,7 @@ func (i *inputString) index(re *Regexp, pos int) int {
}
func (i *inputString) context(pos int) syntax.EmptyOp {
r1, r2 := -1, -1
r1, r2 := endOfText, endOfText
if pos > 0 && pos <= len(i.str) {
r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
}
@ -288,11 +288,11 @@ func newInputBytes(str []byte) *inputBytes {
return &inputBytes{str: str}
}
func (i *inputBytes) step(pos int) (int, int) {
func (i *inputBytes) step(pos int) (rune, int) {
if pos < len(i.str) {
c := i.str[pos]
if c < utf8.RuneSelf {
return int(c), 1
return rune(c), 1
}
return utf8.DecodeRune(i.str[pos:])
}
@ -312,7 +312,7 @@ func (i *inputBytes) index(re *Regexp, pos int) int {
}
func (i *inputBytes) context(pos int) syntax.EmptyOp {
r1, r2 := -1, -1
r1, r2 := endOfText, endOfText
if pos > 0 && pos <= len(i.str) {
r1, _ = utf8.DecodeLastRune(i.str[:pos])
}
@ -333,7 +333,7 @@ func newInputReader(r io.RuneReader) *inputReader {
return &inputReader{r: r}
}
func (i *inputReader) step(pos int) (int, int) {
func (i *inputReader) step(pos int) (rune, int) {
if !i.atEOT && pos != i.pos {
return endOfText, 0

View file

@ -91,8 +91,8 @@ func (c *compiler) init() {
c.inst(InstFail)
}
var anyRuneNotNL = []int{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
var anyRune = []int{0, unicode.MaxRune}
var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
var anyRune = []rune{0, unicode.MaxRune}
func (c *compiler) compile(re *Regexp) frag {
switch re.Op {
@ -262,12 +262,12 @@ func (c *compiler) empty(op EmptyOp) frag {
return f
}
func (c *compiler) rune(rune []int, flags Flags) frag {
func (c *compiler) rune(r []rune, flags Flags) frag {
f := c.inst(InstRune)
i := &c.p.Inst[f.i]
i.Rune = rune
i.Rune = r
flags &= FoldCase // only relevant flag is FoldCase
if len(rune) != 1 || unicode.SimpleFold(rune[0]) == rune[0] {
if len(r) != 1 || unicode.SimpleFold(r[0]) == r[0] {
// and sometimes not even that
flags &^= FoldCase
}
@ -276,11 +276,11 @@ func (c *compiler) rune(rune []int, flags Flags) frag {
// Special cases for exec machine.
switch {
case flags&FoldCase == 0 && (len(rune) == 1 || len(rune) == 2 && rune[0] == rune[1]):
case flags&FoldCase == 0 && (len(r) == 1 || len(r) == 2 && r[0] == r[1]):
i.Op = InstRune1
case len(rune) == 2 && rune[0] == 0 && rune[1] == unicode.MaxRune:
case len(r) == 2 && r[0] == 0 && r[1] == unicode.MaxRune:
i.Op = InstRuneAny
case len(rune) == 4 && rune[0] == 0 && rune[1] == '\n'-1 && rune[2] == '\n'+1 && rune[3] == unicode.MaxRune:
case len(r) == 4 && r[0] == 0 && r[1] == '\n'-1 && r[2] == '\n'+1 && r[3] == unicode.MaxRune:
i.Op = InstRuneAnyNotNL
}

View file

@ -57,7 +57,7 @@ sub ComputeClass($) {
sub PrintClass($$@) {
my ($cname, $name, @ranges) = @_;
print "var code$cname = []int{ /* $name */\n";
print "var code$cname = []rune{ /* $name */\n";
for (my $i=0; $i<@ranges; $i++) {
my @a = @{$ranges[$i]};
printf "\t0x%x, 0x%x,\n", $a[0], $a[1];

View file

@ -82,7 +82,7 @@ type parser struct {
free *Regexp
numCap int // number of capturing groups seen
wholeRegexp string
tmpClass []int // temporary char class work space
tmpClass []rune // temporary char class work space
}
func (p *parser) newRegexp(op Op) *Regexp {
@ -149,7 +149,7 @@ func (p *parser) push(re *Regexp) *Regexp {
// If r >= 0 and there's a node left over, maybeConcat uses it
// to push r with the given flags.
// maybeConcat reports whether r was pushed.
func (p *parser) maybeConcat(r int, flags Flags) bool {
func (p *parser) maybeConcat(r rune, flags Flags) bool {
n := len(p.stack)
if n < 2 {
return false
@ -178,7 +178,7 @@ func (p *parser) maybeConcat(r int, flags Flags) bool {
}
// newLiteral returns a new OpLiteral Regexp with the given flags
func (p *parser) newLiteral(r int, flags Flags) *Regexp {
func (p *parser) newLiteral(r rune, flags Flags) *Regexp {
re := p.newRegexp(OpLiteral)
re.Flags = flags
if flags&FoldCase != 0 {
@ -190,7 +190,7 @@ func (p *parser) newLiteral(r int, flags Flags) *Regexp {
}
// minFoldRune returns the minimum rune fold-equivalent to r.
func minFoldRune(r int) int {
func minFoldRune(r rune) rune {
if r < minFold || r > maxFold {
return r
}
@ -206,7 +206,7 @@ func minFoldRune(r int) int {
// literal pushes a literal regexp for the rune r on the stack
// and returns that regexp.
func (p *parser) literal(r int) {
func (p *parser) literal(r rune) {
p.push(p.newLiteral(r, p.flags))
}
@ -369,7 +369,7 @@ func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp {
}
// Round 1: Factor out common literal prefixes.
var str []int
var str []rune
var strflags Flags
start := 0
out := sub[:0]
@ -380,7 +380,7 @@ func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp {
//
// Invariant: sub[start:i] consists of regexps that all begin
// with str as modified by strflags.
var istr []int
var istr []rune
var iflags Flags
if i < len(sub) {
istr, iflags = p.leadingString(sub[i])
@ -543,7 +543,7 @@ func (p *parser) factor(sub []*Regexp, flags Flags) []*Regexp {
// leadingString returns the leading literal string that re begins with.
// The string refers to storage in re or its children.
func (p *parser) leadingString(re *Regexp) ([]int, Flags) {
func (p *parser) leadingString(re *Regexp) ([]rune, Flags) {
if re.Op == OpConcat && len(re.Sub) > 0 {
re = re.Sub[0]
}
@ -639,7 +639,7 @@ func literalRegexp(s string, flags Flags) *Regexp {
for _, c := range s {
if len(re.Rune) >= cap(re.Rune) {
// string is too long to fit in Rune0. let Go handle it
re.Rune = []int(s)
re.Rune = []rune(s)
break
}
re.Rune = append(re.Rune, c)
@ -662,7 +662,7 @@ func Parse(s string, flags Flags) (*Regexp, os.Error) {
var (
p parser
err os.Error
c int
c rune
op Op
lastRepeat string
min, max int
@ -935,7 +935,7 @@ func (p *parser) parsePerlFlags(s string) (rest string, err os.Error) {
}
// Non-capturing group. Might also twiddle Perl flags.
var c int
var c rune
t = t[2:] // skip (?
flags := p.flags
sign := +1
@ -1049,7 +1049,7 @@ func isCharClass(re *Regexp) bool {
}
// does re match r?
func matchRune(re *Regexp, r int) bool {
func matchRune(re *Regexp, r rune) bool {
switch re.Op {
case OpLiteral:
return len(re.Rune) == 1 && re.Rune[0] == r
@ -1186,7 +1186,7 @@ func (p *parser) parseRightParen() os.Error {
// parseEscape parses an escape sequence at the beginning of s
// and returns the rune.
func (p *parser) parseEscape(s string) (r int, rest string, err os.Error) {
func (p *parser) parseEscape(s string) (r rune, rest string, err os.Error) {
t := s[1:]
if t == "" {
return 0, "", &Error{ErrTrailingBackslash, ""}
@ -1221,7 +1221,7 @@ Switch:
if t == "" || t[0] < '0' || t[0] > '7' {
break
}
r = r*8 + int(t[0]) - '0'
r = r*8 + rune(t[0]) - '0'
t = t[1:]
}
return r, t, nil
@ -1302,7 +1302,7 @@ Switch:
// parseClassChar parses a character class character at the beginning of s
// and returns it.
func (p *parser) parseClassChar(s, wholeClass string) (r int, rest string, err os.Error) {
func (p *parser) parseClassChar(s, wholeClass string) (r rune, rest string, err os.Error) {
if s == "" {
return 0, "", &Error{Code: ErrMissingBracket, Expr: wholeClass}
}
@ -1318,13 +1318,13 @@ func (p *parser) parseClassChar(s, wholeClass string) (r int, rest string, err o
type charGroup struct {
sign int
class []int
class []rune
}
// parsePerlClassEscape parses a leading Perl character class escape like \d
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parsePerlClassEscape(s string, r []int) (out []int, rest string) {
func (p *parser) parsePerlClassEscape(s string, r []rune) (out []rune, rest string) {
if p.flags&PerlX == 0 || len(s) < 2 || s[0] != '\\' {
return
}
@ -1338,7 +1338,7 @@ func (p *parser) parsePerlClassEscape(s string, r []int) (out []int, rest string
// parseNamedClass parses a leading POSIX named character class like [:alnum:]
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parseNamedClass(s string, r []int) (out []int, rest string, err os.Error) {
func (p *parser) parseNamedClass(s string, r []rune) (out []rune, rest string, err os.Error) {
if len(s) < 2 || s[0] != '[' || s[1] != ':' {
return
}
@ -1356,7 +1356,7 @@ func (p *parser) parseNamedClass(s string, r []int) (out []int, rest string, err
return p.appendGroup(r, g), s, nil
}
func (p *parser) appendGroup(r []int, g charGroup) []int {
func (p *parser) appendGroup(r []rune, g charGroup) []rune {
if p.flags&FoldCase == 0 {
if g.sign < 0 {
r = appendNegatedClass(r, g.class)
@ -1401,7 +1401,7 @@ func unicodeTable(name string) (*unicode.RangeTable, *unicode.RangeTable) {
// parseUnicodeClass parses a leading Unicode character class like \p{Han}
// from the beginning of s. If one is present, it appends the characters to r
// and returns the new slice r and the remainder of the string.
func (p *parser) parseUnicodeClass(s string, r []int) (out []int, rest string, err os.Error) {
func (p *parser) parseUnicodeClass(s string, r []rune) (out []rune, rest string, err os.Error) {
if p.flags&UnicodeGroups == 0 || len(s) < 2 || s[0] != '\\' || s[1] != 'p' && s[1] != 'P' {
return
}
@ -1533,7 +1533,7 @@ func (p *parser) parseClass(s string) (rest string, err os.Error) {
// Single character or simple range.
rng := t
var lo, hi int
var lo, hi rune
if lo, t, err = p.parseClassChar(t, s); err != nil {
return "", err
}
@ -1570,7 +1570,7 @@ func (p *parser) parseClass(s string) (rest string, err os.Error) {
// cleanClass sorts the ranges (pairs of elements of r),
// merges them, and eliminates duplicates.
func cleanClass(rp *[]int) []int {
func cleanClass(rp *[]rune) []rune {
// Sort by lo increasing, hi decreasing to break ties.
sort.Sort(ranges{rp})
@ -1601,7 +1601,7 @@ func cleanClass(rp *[]int) []int {
}
// appendLiteral returns the result of appending the literal x to the class r.
func appendLiteral(r []int, x int, flags Flags) []int {
func appendLiteral(r []rune, x rune, flags Flags) []rune {
if flags&FoldCase != 0 {
return appendFoldedRange(r, x, x)
}
@ -1609,7 +1609,7 @@ func appendLiteral(r []int, x int, flags Flags) []int {
}
// appendRange returns the result of appending the range lo-hi to the class r.
func appendRange(r []int, lo, hi int) []int {
func appendRange(r []rune, lo, hi rune) []rune {
// Expand last range or next to last range if it overlaps or abuts.
// Checking two ranges helps when appending case-folded
// alphabets, so that one range can be expanding A-Z and the
@ -1642,7 +1642,7 @@ const (
// appendFoldedRange returns the result of appending the range lo-hi
// and its case folding-equivalent runes to the class r.
func appendFoldedRange(r []int, lo, hi int) []int {
func appendFoldedRange(r []rune, lo, hi rune) []rune {
// Optimizations.
if lo <= minFold && hi >= maxFold {
// Range is full: folding can't add more.
@ -1677,7 +1677,7 @@ func appendFoldedRange(r []int, lo, hi int) []int {
// appendClass returns the result of appending the class x to the class r.
// It assume x is clean.
func appendClass(r []int, x []int) []int {
func appendClass(r []rune, x []rune) []rune {
for i := 0; i < len(x); i += 2 {
r = appendRange(r, x[i], x[i+1])
}
@ -1685,7 +1685,7 @@ func appendClass(r []int, x []int) []int {
}
// appendFolded returns the result of appending the case folding of the class x to the class r.
func appendFoldedClass(r []int, x []int) []int {
func appendFoldedClass(r []rune, x []rune) []rune {
for i := 0; i < len(x); i += 2 {
r = appendFoldedRange(r, x[i], x[i+1])
}
@ -1694,8 +1694,8 @@ func appendFoldedClass(r []int, x []int) []int {
// appendNegatedClass returns the result of appending the negation of the class x to the class r.
// It assumes x is clean.
func appendNegatedClass(r []int, x []int) []int {
nextLo := 0
func appendNegatedClass(r []rune, x []rune) []rune {
nextLo := rune('\u0000')
for i := 0; i < len(x); i += 2 {
lo, hi := x[i], x[i+1]
if nextLo <= lo-1 {
@ -1710,9 +1710,9 @@ func appendNegatedClass(r []int, x []int) []int {
}
// appendTable returns the result of appending x to the class r.
func appendTable(r []int, x *unicode.RangeTable) []int {
func appendTable(r []rune, x *unicode.RangeTable) []rune {
for _, xr := range x.R16 {
lo, hi, stride := int(xr.Lo), int(xr.Hi), int(xr.Stride)
lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
if stride == 1 {
r = appendRange(r, lo, hi)
continue
@ -1722,7 +1722,7 @@ func appendTable(r []int, x *unicode.RangeTable) []int {
}
}
for _, xr := range x.R32 {
lo, hi, stride := int(xr.Lo), int(xr.Hi), int(xr.Stride)
lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
if stride == 1 {
r = appendRange(r, lo, hi)
continue
@ -1735,10 +1735,10 @@ func appendTable(r []int, x *unicode.RangeTable) []int {
}
// appendNegatedTable returns the result of appending the negation of x to the class r.
func appendNegatedTable(r []int, x *unicode.RangeTable) []int {
nextLo := 0 // lo end of next class to add
func appendNegatedTable(r []rune, x *unicode.RangeTable) []rune {
nextLo := rune('\u0000') // lo end of next class to add
for _, xr := range x.R16 {
lo, hi, stride := int(xr.Lo), int(xr.Hi), int(xr.Stride)
lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
if stride == 1 {
if nextLo <= lo-1 {
r = appendRange(r, nextLo, lo-1)
@ -1754,7 +1754,7 @@ func appendNegatedTable(r []int, x *unicode.RangeTable) []int {
}
}
for _, xr := range x.R32 {
lo, hi, stride := int(xr.Lo), int(xr.Hi), int(xr.Stride)
lo, hi, stride := rune(xr.Lo), rune(xr.Hi), rune(xr.Stride)
if stride == 1 {
if nextLo <= lo-1 {
r = appendRange(r, nextLo, lo-1)
@ -1777,9 +1777,9 @@ func appendNegatedTable(r []int, x *unicode.RangeTable) []int {
// negateClass overwrites r and returns r's negation.
// It assumes the class r is already clean.
func negateClass(r []int) []int {
nextLo := 0 // lo end of next class to add
w := 0 // write index
func negateClass(r []rune) []rune {
nextLo := rune('\u0000') // lo end of next class to add
w := 0 // write index
for i := 0; i < len(r); i += 2 {
lo, hi := r[i], r[i+1]
if nextLo <= lo-1 {
@ -1801,9 +1801,9 @@ func negateClass(r []int) []int {
// ranges implements sort.Interface on a []rune.
// The choice of receiver type definition is strange
// but avoids an allocation since we already have
// a *[]int.
// a *[]rune.
type ranges struct {
p *[]int
p *[]rune
}
func (ra ranges) Less(i, j int) bool {
@ -1835,7 +1835,7 @@ func checkUTF8(s string) os.Error {
return nil
}
func nextRune(s string) (c int, t string, err os.Error) {
func nextRune(s string) (c rune, t string, err os.Error) {
c, size := utf8.DecodeRuneInString(s)
if c == utf8.RuneError && size == 1 {
return 0, "", &Error{Code: ErrInvalidUTF8, Expr: s}
@ -1843,11 +1843,11 @@ func nextRune(s string) (c int, t string, err os.Error) {
return c, s[size:], nil
}
func isalnum(c int) bool {
func isalnum(c rune) bool {
return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z'
}
func unhex(c int) int {
func unhex(c rune) rune {
if '0' <= c && c <= '9' {
return c - '0'
}

View file

@ -371,10 +371,10 @@ func dumpRegexp(b *bytes.Buffer, re *Regexp) {
b.WriteByte('}')
}
func mkCharClass(f func(int) bool) string {
func mkCharClass(f func(rune) bool) string {
re := &Regexp{Op: OpCharClass}
lo := -1
for i := 0; i <= unicode.MaxRune; i++ {
lo := rune(-1)
for i := rune(0); i <= unicode.MaxRune; i++ {
if f(i) {
if lo < 0 {
lo = i
@ -392,12 +392,12 @@ func mkCharClass(f func(int) bool) string {
return dump(re)
}
func isUpperFold(rune int) bool {
if unicode.IsUpper(rune) {
func isUpperFold(r rune) bool {
if unicode.IsUpper(r) {
return true
}
c := unicode.SimpleFold(rune)
for c != rune {
c := unicode.SimpleFold(r)
for c != r {
if unicode.IsUpper(c) {
return true
}
@ -407,8 +407,8 @@ func isUpperFold(rune int) bool {
}
func TestFoldConstants(t *testing.T) {
last := -1
for i := 0; i <= unicode.MaxRune; i++ {
last := rune(-1)
for i := rune(0); i <= unicode.MaxRune; i++ {
if unicode.SimpleFold(i) == i {
continue
}
@ -427,8 +427,8 @@ func TestAppendRangeCollapse(t *testing.T) {
// into the earlier ones (it looks back two ranges), so that
// the slice never grows very large.
// Note that we are not calling cleanClass.
var r []int
for i := 'A'; i <= 'Z'; i++ {
var r []rune
for i := rune('A'); i <= 'Z'; i++ {
r = appendRange(r, i, i)
r = appendRange(r, i+'a'-'A', i+'a'-'A')
}

View file

@ -3,17 +3,17 @@
package syntax
var code1 = []int{ /* \d */
var code1 = []rune{ /* \d */
0x30, 0x39,
}
var code2 = []int{ /* \s */
var code2 = []rune{ /* \s */
0x9, 0xa,
0xc, 0xd,
0x20, 0x20,
}
var code3 = []int{ /* \w */
var code3 = []rune{ /* \w */
0x30, 0x39,
0x41, 0x5a,
0x5f, 0x5f,
@ -28,71 +28,71 @@ var perlGroup = map[string]charGroup{
`\w`: {+1, code3},
`\W`: {-1, code3},
}
var code4 = []int{ /* [:alnum:] */
var code4 = []rune{ /* [:alnum:] */
0x30, 0x39,
0x41, 0x5a,
0x61, 0x7a,
}
var code5 = []int{ /* [:alpha:] */
var code5 = []rune{ /* [:alpha:] */
0x41, 0x5a,
0x61, 0x7a,
}
var code6 = []int{ /* [:ascii:] */
var code6 = []rune{ /* [:ascii:] */
0x0, 0x7f,
}
var code7 = []int{ /* [:blank:] */
var code7 = []rune{ /* [:blank:] */
0x9, 0x9,
0x20, 0x20,
}
var code8 = []int{ /* [:cntrl:] */
var code8 = []rune{ /* [:cntrl:] */
0x0, 0x1f,
0x7f, 0x7f,
}
var code9 = []int{ /* [:digit:] */
var code9 = []rune{ /* [:digit:] */
0x30, 0x39,
}
var code10 = []int{ /* [:graph:] */
var code10 = []rune{ /* [:graph:] */
0x21, 0x7e,
}
var code11 = []int{ /* [:lower:] */
var code11 = []rune{ /* [:lower:] */
0x61, 0x7a,
}
var code12 = []int{ /* [:print:] */
var code12 = []rune{ /* [:print:] */
0x20, 0x7e,
}
var code13 = []int{ /* [:punct:] */
var code13 = []rune{ /* [:punct:] */
0x21, 0x2f,
0x3a, 0x40,
0x5b, 0x60,
0x7b, 0x7e,
}
var code14 = []int{ /* [:space:] */
var code14 = []rune{ /* [:space:] */
0x9, 0xd,
0x20, 0x20,
}
var code15 = []int{ /* [:upper:] */
var code15 = []rune{ /* [:upper:] */
0x41, 0x5a,
}
var code16 = []int{ /* [:word:] */
var code16 = []rune{ /* [:word:] */
0x30, 0x39,
0x41, 0x5a,
0x5f, 0x5f,
0x61, 0x7a,
}
var code17 = []int{ /* [:xdigit:] */
var code17 = []rune{ /* [:xdigit:] */
0x30, 0x39,
0x41, 0x46,
0x61, 0x66,

View file

@ -51,7 +51,7 @@ const (
// at the beginning of the text.
// Passing r2 == -1 indicates that the position is
// at the end of the text.
func EmptyOpContext(r1, r2 int) EmptyOp {
func EmptyOpContext(r1, r2 rune) EmptyOp {
var op EmptyOp
if r1 < 0 {
op |= EmptyBeginText | EmptyBeginLine
@ -76,7 +76,7 @@ func EmptyOpContext(r1, r2 int) EmptyOp {
// IsWordChar reports whether r is consider a ``word character''
// during the evaluation of the \b and \B zero-width assertions.
// These assertions are ASCII-only: the word characters are [A-Za-z0-9_].
func IsWordChar(r int) bool {
func IsWordChar(r rune) bool {
return 'A' <= r && r <= 'Z' || 'a' <= r && r <= 'z' || '0' <= r && r <= '9' || r == '_'
}
@ -85,7 +85,7 @@ type Inst struct {
Op InstOp
Out uint32 // all but InstMatch, InstFail
Arg uint32 // InstAlt, InstAltMatch, InstCapture, InstEmptyWidth
Rune []int
Rune []rune
}
func (p *Prog) String() string {
@ -161,7 +161,7 @@ Loop:
// MatchRune returns true if the instruction matches (and consumes) r.
// It should only be called when i.Op == InstRune.
func (i *Inst) MatchRune(r int) bool {
func (i *Inst) MatchRune(r rune) bool {
rune := i.Rune
// Special case: single-rune slice is from literal string, not char class.
@ -210,17 +210,17 @@ func (i *Inst) MatchRune(r int) bool {
// As per re2's Prog::IsWordChar. Determines whether rune is an ASCII word char.
// Since we act on runes, it would be easy to support Unicode here.
func wordRune(rune int) bool {
return rune == '_' ||
('A' <= rune && rune <= 'Z') ||
('a' <= rune && rune <= 'z') ||
('0' <= rune && rune <= '9')
func wordRune(r rune) bool {
return r == '_' ||
('A' <= r && r <= 'Z') ||
('a' <= r && r <= 'z') ||
('0' <= r && r <= '9')
}
// MatchEmptyWidth returns true if the instruction matches
// an empty string between the runes before and after.
// It should only be called when i.Op == InstEmptyWidth.
func (i *Inst) MatchEmptyWidth(before int, after int) bool {
func (i *Inst) MatchEmptyWidth(before rune, after rune) bool {
switch EmptyOp(i.Arg) {
case EmptyBeginLine:
return before == '\n' || before == -1

View file

@ -22,8 +22,8 @@ type Regexp struct {
Flags Flags
Sub []*Regexp // subexpressions, if any
Sub0 [1]*Regexp // storage for short Sub
Rune []int // matched runes, for OpLiteral, OpCharClass
Rune0 [2]int // storage for short Rune
Rune []rune // matched runes, for OpLiteral, OpCharClass
Rune0 [2]rune // storage for short Rune
Min, Max int // min, max for OpRepeat
Cap int // capturing index, for OpCapture
Name string // capturing name, for OpCapture
@ -252,7 +252,7 @@ func (re *Regexp) String() string {
const meta = `\.+*?()|[]{}^$`
func escape(b *bytes.Buffer, r int, force bool) {
func escape(b *bytes.Buffer, r rune, force bool) {
if unicode.IsPrint(r) {
if strings.IndexRune(meta, r) >= 0 || force {
b.WriteRune('\\')
@ -277,7 +277,7 @@ func escape(b *bytes.Buffer, r int, force bool) {
default:
if r < 0x100 {
b.WriteString(`\x`)
s := strconv.Itob(r, 16)
s := strconv.Itob(int(r), 16)
if len(s) == 1 {
b.WriteRune('0')
}
@ -285,7 +285,7 @@ func escape(b *bytes.Buffer, r int, force bool) {
break
}
b.WriteString(`\x{`)
b.WriteString(strconv.Itob(r, 16))
b.WriteString(strconv.Itob(int(r), 16))
b.WriteString(`}`)
}
}