crypto/tls: support QUIC as a transport

Add a QUICConn type for use by QUIC implementations.

A QUICConn provides unencrypted handshake bytes and connection
secrets to the QUIC layer, and receives handshake bytes.

For #44886

Change-Id: I859dda4cc6d466a1df2fb863a69d3a2a069110d5
Reviewed-on: https://go-review.googlesource.com/c/go/+/493655
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
Run-TryBot: Damien Neil <dneil@google.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: Marten Seemann <martenseemann@gmail.com>
This commit is contained in:
Damien Neil 2022-10-14 10:48:42 -07:00
parent 543e601c11
commit 2cac7e89da
12 changed files with 1118 additions and 50 deletions

41
api/next/44886.txt Normal file
View file

@ -0,0 +1,41 @@
pkg crypto/tls, const QUICEncryptionLevelApplication = 2 #44886
pkg crypto/tls, const QUICEncryptionLevelApplication QUICEncryptionLevel #44886
pkg crypto/tls, const QUICEncryptionLevelHandshake = 1 #44886
pkg crypto/tls, const QUICEncryptionLevelHandshake QUICEncryptionLevel #44886
pkg crypto/tls, const QUICEncryptionLevelInitial = 0 #44886
pkg crypto/tls, const QUICEncryptionLevelInitial QUICEncryptionLevel #44886
pkg crypto/tls, const QUICHandshakeDone = 6 #44886
pkg crypto/tls, const QUICHandshakeDone QUICEventKind #44886
pkg crypto/tls, const QUICNoEvent = 0 #44886
pkg crypto/tls, const QUICNoEvent QUICEventKind #44886
pkg crypto/tls, const QUICSetReadSecret = 1 #44886
pkg crypto/tls, const QUICSetReadSecret QUICEventKind #44886
pkg crypto/tls, const QUICSetWriteSecret = 2 #44886
pkg crypto/tls, const QUICSetWriteSecret QUICEventKind #44886
pkg crypto/tls, const QUICTransportParameters = 4 #44886
pkg crypto/tls, const QUICTransportParameters QUICEventKind #44886
pkg crypto/tls, const QUICTransportParametersRequired = 5 #44886
pkg crypto/tls, const QUICTransportParametersRequired QUICEventKind #44886
pkg crypto/tls, const QUICWriteData = 3 #44886
pkg crypto/tls, const QUICWriteData QUICEventKind #44886
pkg crypto/tls, func QUICClient(*QUICConfig) *QUICConn #44886
pkg crypto/tls, func QUICServer(*QUICConfig) *QUICConn #44886
pkg crypto/tls, method (*QUICConn) Close() error #44886
pkg crypto/tls, method (*QUICConn) ConnectionState() ConnectionState #44886
pkg crypto/tls, method (*QUICConn) HandleData(QUICEncryptionLevel, []uint8) error #44886
pkg crypto/tls, method (*QUICConn) NextEvent() QUICEvent #44886
pkg crypto/tls, method (*QUICConn) SetTransportParameters([]uint8) #44886
pkg crypto/tls, method (*QUICConn) Start(context.Context) error #44886
pkg crypto/tls, method (AlertError) Error() string #44886
pkg crypto/tls, method (QUICEncryptionLevel) String() string #44886
pkg crypto/tls, type AlertError uint8 #44886
pkg crypto/tls, type QUICConfig struct #44886
pkg crypto/tls, type QUICConfig struct, TLSConfig *Config #44886
pkg crypto/tls, type QUICConn struct #44886
pkg crypto/tls, type QUICEncryptionLevel int #44886
pkg crypto/tls, type QUICEvent struct #44886
pkg crypto/tls, type QUICEvent struct, Data []uint8 #44886
pkg crypto/tls, type QUICEvent struct, Kind QUICEventKind #44886
pkg crypto/tls, type QUICEvent struct, Level QUICEncryptionLevel #44886
pkg crypto/tls, type QUICEvent struct, Suite uint16 #44886
pkg crypto/tls, type QUICEventKind int #44886

View file

@ -6,6 +6,16 @@ package tls
import "strconv"
// An AlertError is a TLS alert.
//
// When using a QUIC transport, QUICConn methods will return an error
// which wraps AlertError rather than sending a TLS alert.
type AlertError uint8
func (e AlertError) Error() string {
return alert(e).String()
}
type alert uint8
const (

View file

@ -99,6 +99,7 @@ const (
extensionCertificateAuthorities uint16 = 47
extensionSignatureAlgorithmsCert uint16 = 50
extensionKeyShare uint16 = 51
extensionQUICTransportParameters uint16 = 57
extensionRenegotiationInfo uint16 = 0xff01
)

View file

@ -29,6 +29,7 @@ type Conn struct {
conn net.Conn
isClient bool
handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
quic *quicState // nil for non-QUIC connections
// isHandshakeComplete is true if the connection is currently transferring
// application data (i.e. is not currently processing a handshake).
@ -176,7 +177,8 @@ type halfConn struct {
nextCipher any // next encryption state
nextMac hash.Hash // next MAC algorithm
trafficSecret []byte // current TLS 1.3 traffic secret
level QUICEncryptionLevel // current QUIC encryption level
trafficSecret []byte // current TLS 1.3 traffic secret
}
type permanentError struct {
@ -221,8 +223,9 @@ func (hc *halfConn) changeCipherSpec() error {
return nil
}
func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, level QUICEncryptionLevel, secret []byte) {
hc.trafficSecret = secret
hc.level = level
key, iv := suite.trafficKey(secret)
hc.cipher = suite.aead(key, iv)
for i := range hc.seq {
@ -613,6 +616,10 @@ func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
}
c.input.Reset(nil)
if c.quic != nil {
return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with QUIC transport"))
}
// Read header, payload.
if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
@ -702,6 +709,9 @@ func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
case recordTypeAlert:
if c.quic != nil {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
if len(data) != 2 {
return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
}
@ -819,6 +829,10 @@ func (c *Conn) readFromUntil(r io.Reader, n int) error {
// sendAlertLocked sends a TLS alert message.
func (c *Conn) sendAlertLocked(err alert) error {
if c.quic != nil {
return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
}
switch err {
case alertNoRenegotiation, alertCloseNotify:
c.tmp[0] = alertLevelWarning
@ -953,6 +967,19 @@ var outBufPool = sync.Pool{
// writeRecordLocked writes a TLS record with the given type and payload to the
// connection and updates the record layer state.
func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
if c.quic != nil {
if typ != recordTypeHandshake {
return 0, errors.New("tls: internal error: sending non-handshake message to QUIC transport")
}
c.quicWriteCryptoData(c.out.level, data)
if !c.buffering {
if _, err := c.flush(); err != nil {
return 0, err
}
}
return len(data), nil
}
outBufPtr := outBufPool.Get().(*[]byte)
outBuf := *outBufPtr
defer func() {
@ -1037,28 +1064,40 @@ func (c *Conn) writeChangeCipherRecord() error {
return err
}
// readHandshakeBytes reads handshake data until c.hand contains at least n bytes.
func (c *Conn) readHandshakeBytes(n int) error {
if c.quic != nil {
return c.quicReadHandshakeBytes(n)
}
for c.hand.Len() < n {
if err := c.readRecord(); err != nil {
return err
}
}
return nil
}
// readHandshake reads the next handshake message from
// the record layer. If transcript is non-nil, the message
// is written to the passed transcriptHash.
func (c *Conn) readHandshake(transcript transcriptHash) (any, error) {
for c.hand.Len() < 4 {
if err := c.readRecord(); err != nil {
return nil, err
}
if err := c.readHandshakeBytes(4); err != nil {
return nil, err
}
data := c.hand.Bytes()
n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
if n > maxHandshake {
c.sendAlertLocked(alertInternalError)
return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
}
for c.hand.Len() < 4+n {
if err := c.readRecord(); err != nil {
return nil, err
}
if err := c.readHandshakeBytes(4 + n); err != nil {
return nil, err
}
data = c.hand.Next(4 + n)
return c.unmarshalHandshakeMessage(data, transcript)
}
func (c *Conn) unmarshalHandshakeMessage(data []byte, transcript transcriptHash) (handshakeMessage, error) {
var m handshakeMessage
switch data[0] {
case typeHelloRequest:
@ -1249,7 +1288,6 @@ func (c *Conn) handlePostHandshakeMessage() error {
if err != nil {
return err
}
c.retryCount++
if c.retryCount > maxUselessRecords {
c.sendAlert(alertUnexpectedMessage)
@ -1261,20 +1299,28 @@ func (c *Conn) handlePostHandshakeMessage() error {
return c.handleNewSessionTicket(msg)
case *keyUpdateMsg:
return c.handleKeyUpdate(msg)
default:
c.sendAlert(alertUnexpectedMessage)
return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
}
// The QUIC layer is supposed to treat an unexpected post-handshake CertificateRequest
// as a QUIC-level PROTOCOL_VIOLATION error (RFC 9001, Section 4.4). Returning an
// unexpected_message alert here doesn't provide it with enough information to distinguish
// this condition from other unexpected messages. This is probably fine.
c.sendAlert(alertUnexpectedMessage)
return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
}
func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
if c.quic != nil {
c.sendAlert(alertUnexpectedMessage)
return c.in.setErrorLocked(errors.New("tls: received unexpected key update message"))
}
cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
if cipherSuite == nil {
return c.in.setErrorLocked(c.sendAlert(alertInternalError))
}
newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
c.in.setTrafficSecret(cipherSuite, newSecret)
c.in.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret)
if keyUpdate.updateRequested {
c.out.Lock()
@ -1293,7 +1339,7 @@ func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
}
newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
c.out.setTrafficSecret(cipherSuite, newSecret)
c.out.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret)
}
return nil
@ -1454,12 +1500,15 @@ func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
// this cancellation. In the former case, we need to close the connection.
defer cancel()
// Start the "interrupter" goroutine, if this context might be canceled.
// (The background context cannot).
//
// The interrupter goroutine waits for the input context to be done and
// closes the connection if this happens before the function returns.
if ctx.Done() != nil {
if c.quic != nil {
c.quic.cancelc = handshakeCtx.Done()
c.quic.cancel = cancel
} else if ctx.Done() != nil {
// Start the "interrupter" goroutine, if this context might be canceled.
// (The background context cannot).
//
// The interrupter goroutine waits for the input context to be done and
// closes the connection if this happens before the function returns.
done := make(chan struct{})
interruptRes := make(chan error, 1)
defer func() {
@ -1510,6 +1559,30 @@ func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
panic("tls: internal error: handshake returned an error but is marked successful")
}
if c.quic != nil {
if c.handshakeErr == nil {
c.quicHandshakeComplete()
// Provide the 1-RTT read secret now that the handshake is complete.
// The QUIC layer MUST NOT decrypt 1-RTT packets prior to completing
// the handshake (RFC 9001, Section 5.7).
c.quicSetReadSecret(QUICEncryptionLevelApplication, c.cipherSuite, c.in.trafficSecret)
} else {
var a alert
c.out.Lock()
if !errors.As(c.out.err, &a) {
a = alertInternalError
}
c.out.Unlock()
// Return an error which wraps both the handshake error and
// any alert error we may have sent, or alertInternalError
// if we didn't send an alert.
// Truncate the text of the alert to 0 characters.
c.handshakeErr = fmt.Errorf("%w%.0w", c.handshakeErr, AlertError(a))
}
close(c.quic.blockedc)
close(c.quic.signalc)
}
return c.handshakeErr
}

View file

@ -71,7 +71,6 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, *ecdh.PrivateKey, error) {
vers: clientHelloVersion,
compressionMethods: []uint8{compressionNone},
random: make([]byte, 32),
sessionId: make([]byte, 32),
ocspStapling: true,
scts: true,
serverName: hostnameInSNI(config.ServerName),
@ -114,8 +113,13 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, *ecdh.PrivateKey, error) {
// A random session ID is used to detect when the server accepted a ticket
// and is resuming a session (see RFC 5077). In TLS 1.3, it's always set as
// a compatibility measure (see RFC 8446, Section 4.1.2).
if _, err := io.ReadFull(config.rand(), hello.sessionId); err != nil {
return nil, nil, errors.New("tls: short read from Rand: " + err.Error())
//
// The session ID is not set for QUIC connections (see RFC 9001, Section 8.4).
if c.quic == nil {
hello.sessionId = make([]byte, 32)
if _, err := io.ReadFull(config.rand(), hello.sessionId); err != nil {
return nil, nil, errors.New("tls: short read from Rand: " + err.Error())
}
}
if hello.vers >= VersionTLS12 {
@ -144,6 +148,17 @@ func (c *Conn) makeClientHello() (*clientHelloMsg, *ecdh.PrivateKey, error) {
hello.keyShares = []keyShare{{group: curveID, data: key.PublicKey().Bytes()}}
}
if c.quic != nil {
p, err := c.quicGetTransportParameters()
if err != nil {
return nil, nil, err
}
if p == nil {
p = []byte{}
}
hello.quicTransportParameters = p
}
return hello, key, nil
}
@ -271,7 +286,10 @@ func (c *Conn) loadSession(hello *clientHelloMsg) (cacheKey string,
}
// Try to resume a previously negotiated TLS session, if available.
cacheKey = clientSessionCacheKey(c.conn.RemoteAddr(), c.config)
cacheKey = c.clientSessionCacheKey()
if cacheKey == "" {
return "", nil, nil, nil, nil
}
session, ok := c.config.ClientSessionCache.Get(cacheKey)
if !ok || session == nil {
return cacheKey, nil, nil, nil, nil
@ -722,7 +740,7 @@ func (hs *clientHandshakeState) processServerHello() (bool, error) {
}
}
if err := checkALPN(hs.hello.alpnProtocols, hs.serverHello.alpnProtocol); err != nil {
if err := checkALPN(hs.hello.alpnProtocols, hs.serverHello.alpnProtocol, false); err != nil {
c.sendAlert(alertUnsupportedExtension)
return false, err
}
@ -760,8 +778,12 @@ func (hs *clientHandshakeState) processServerHello() (bool, error) {
// checkALPN ensure that the server's choice of ALPN protocol is compatible with
// the protocols that we advertised in the Client Hello.
func checkALPN(clientProtos []string, serverProto string) error {
func checkALPN(clientProtos []string, serverProto string, quic bool) error {
if serverProto == "" {
if quic && len(clientProtos) > 0 {
// RFC 9001, Section 8.1
return errors.New("tls: server did not select an ALPN protocol")
}
return nil
}
if len(clientProtos) == 0 {
@ -1003,11 +1025,14 @@ func (c *Conn) getClientCertificate(cri *CertificateRequestInfo) (*Certificate,
// clientSessionCacheKey returns a key used to cache sessionTickets that could
// be used to resume previously negotiated TLS sessions with a server.
func clientSessionCacheKey(serverAddr net.Addr, config *Config) string {
if len(config.ServerName) > 0 {
return config.ServerName
func (c *Conn) clientSessionCacheKey() string {
if len(c.config.ServerName) > 0 {
return c.config.ServerName
}
return serverAddr.String()
if c.conn != nil {
return c.conn.RemoteAddr().String()
}
return ""
}
// hostnameInSNI converts name into an appropriate hostname for SNI.

View file

@ -172,6 +172,9 @@ func (hs *clientHandshakeStateTLS13) checkServerHelloOrHRR() error {
// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
func (hs *clientHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
if hs.c.quic != nil {
return nil
}
if hs.sentDummyCCS {
return nil
}
@ -383,10 +386,18 @@ func (hs *clientHandshakeStateTLS13) establishHandshakeKeys() error {
clientSecret := hs.suite.deriveSecret(handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
c.out.setTrafficSecret(hs.suite, clientSecret)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
serverSecret := hs.suite.deriveSecret(handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
c.in.setTrafficSecret(hs.suite, serverSecret)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
if c.quic != nil {
if c.hand.Len() != 0 {
c.sendAlert(alertUnexpectedMessage)
}
c.quicSetWriteSecret(QUICEncryptionLevelHandshake, hs.suite.id, clientSecret)
c.quicSetReadSecret(QUICEncryptionLevelHandshake, hs.suite.id, serverSecret)
}
err = c.config.writeKeyLog(keyLogLabelClientHandshake, hs.hello.random, clientSecret)
if err != nil {
@ -419,12 +430,30 @@ func (hs *clientHandshakeStateTLS13) readServerParameters() error {
return unexpectedMessageError(encryptedExtensions, msg)
}
if err := checkALPN(hs.hello.alpnProtocols, encryptedExtensions.alpnProtocol); err != nil {
c.sendAlert(alertUnsupportedExtension)
if err := checkALPN(hs.hello.alpnProtocols, encryptedExtensions.alpnProtocol, c.quic != nil); err != nil {
// RFC 8446 specifies that no_application_protocol is sent by servers, but
// does not specify how clients handle the selection of an incompatible protocol.
// RFC 9001 Section 8.1 specifies that QUIC clients send no_application_protocol
// in this case. Always sending no_application_protocol seems reasonable.
c.sendAlert(alertNoApplicationProtocol)
return err
}
c.clientProtocol = encryptedExtensions.alpnProtocol
if c.quic != nil {
if encryptedExtensions.quicTransportParameters == nil {
// RFC 9001 Section 8.2.
c.sendAlert(alertMissingExtension)
return errors.New("tls: server did not send a quic_transport_parameters extension")
}
c.quicSetTransportParameters(encryptedExtensions.quicTransportParameters)
} else {
if encryptedExtensions.quicTransportParameters != nil {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: server sent an unexpected quic_transport_parameters extension")
}
}
return nil
}
@ -552,7 +581,7 @@ func (hs *clientHandshakeStateTLS13) readServerFinished() error {
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
c.in.setTrafficSecret(hs.suite, serverSecret)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
err = c.config.writeKeyLog(keyLogLabelClientTraffic, hs.hello.random, hs.trafficSecret)
if err != nil {
@ -648,13 +677,20 @@ func (hs *clientHandshakeStateTLS13) sendClientFinished() error {
return err
}
c.out.setTrafficSecret(hs.suite, hs.trafficSecret)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, hs.trafficSecret)
if !c.config.SessionTicketsDisabled && c.config.ClientSessionCache != nil {
c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
resumptionLabel, hs.transcript)
}
if c.quic != nil {
if c.hand.Len() != 0 {
c.sendAlert(alertUnexpectedMessage)
}
c.quicSetWriteSecret(QUICEncryptionLevelApplication, hs.suite.id, hs.trafficSecret)
}
return nil
}
@ -702,8 +738,10 @@ func (c *Conn) handleNewSessionTicket(msg *newSessionTicketMsgTLS13) error {
scts: c.scts,
}
cacheKey := clientSessionCacheKey(c.conn.RemoteAddr(), c.config)
c.config.ClientSessionCache.Put(cacheKey, session)
cacheKey := c.clientSessionCacheKey()
if cacheKey != "" {
c.config.ClientSessionCache.Put(cacheKey, session)
}
return nil
}

View file

@ -93,6 +93,7 @@ type clientHelloMsg struct {
pskModes []uint8
pskIdentities []pskIdentity
pskBinders [][]byte
quicTransportParameters []byte
}
func (m *clientHelloMsg) marshal() ([]byte, error) {
@ -246,6 +247,13 @@ func (m *clientHelloMsg) marshal() ([]byte, error) {
})
})
}
if m.quicTransportParameters != nil { // marshal zero-length parameters when present
// RFC 9001, Section 8.2
exts.AddUint16(extensionQUICTransportParameters)
exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
exts.AddBytes(m.quicTransportParameters)
})
}
if len(m.pskIdentities) > 0 { // pre_shared_key must be the last extension
// RFC 8446, Section 4.2.11
exts.AddUint16(extensionPreSharedKey)
@ -560,6 +568,11 @@ func (m *clientHelloMsg) unmarshal(data []byte) bool {
if !readUint8LengthPrefixed(&extData, &m.pskModes) {
return false
}
case extensionQUICTransportParameters:
m.quicTransportParameters = make([]byte, len(extData))
if !extData.CopyBytes(m.quicTransportParameters) {
return false
}
case extensionPreSharedKey:
// RFC 8446, Section 4.2.11
if !extensions.Empty() {
@ -860,8 +873,9 @@ func (m *serverHelloMsg) unmarshal(data []byte) bool {
}
type encryptedExtensionsMsg struct {
raw []byte
alpnProtocol string
raw []byte
alpnProtocol string
quicTransportParameters []byte
}
func (m *encryptedExtensionsMsg) marshal() ([]byte, error) {
@ -883,6 +897,13 @@ func (m *encryptedExtensionsMsg) marshal() ([]byte, error) {
})
})
}
if m.quicTransportParameters != nil { // marshal zero-length parameters when present
// draft-ietf-quic-tls-32, Section 8.2
b.AddUint16(extensionQUICTransportParameters)
b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
b.AddBytes(m.quicTransportParameters)
})
}
})
})
@ -921,6 +942,11 @@ func (m *encryptedExtensionsMsg) unmarshal(data []byte) bool {
return false
}
m.alpnProtocol = string(proto)
case extensionQUICTransportParameters:
m.quicTransportParameters = make([]byte, len(extData))
if !extData.CopyBytes(m.quicTransportParameters) {
return false
}
default:
// Ignore unknown extensions.
continue

View file

@ -197,6 +197,9 @@ func (*clientHelloMsg) Generate(rand *rand.Rand, size int) reflect.Value {
m.pskIdentities = append(m.pskIdentities, psk)
m.pskBinders = append(m.pskBinders, randomBytes(rand.Intn(50)+32, rand))
}
if rand.Intn(10) > 5 {
m.quicTransportParameters = randomBytes(rand.Intn(500), rand)
}
if rand.Intn(10) > 5 {
m.earlyData = true
}

View file

@ -218,7 +218,7 @@ func (hs *serverHandshakeState) processClientHello() error {
c.serverName = hs.clientHello.serverName
}
selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols)
selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols, false)
if err != nil {
c.sendAlert(alertNoApplicationProtocol)
return err
@ -279,8 +279,12 @@ func (hs *serverHandshakeState) processClientHello() error {
// negotiateALPN picks a shared ALPN protocol that both sides support in server
// preference order. If ALPN is not configured or the peer doesn't support it,
// it returns "" and no error.
func negotiateALPN(serverProtos, clientProtos []string) (string, error) {
func negotiateALPN(serverProtos, clientProtos []string, quic bool) (string, error) {
if len(serverProtos) == 0 || len(clientProtos) == 0 {
if quic && len(serverProtos) != 0 {
// RFC 9001, Section 8.1
return "", fmt.Errorf("tls: client did not request an application protocol")
}
return "", nil
}
var http11fallback bool

View file

@ -226,6 +226,20 @@ GroupSelection:
return errors.New("tls: invalid client key share")
}
if c.quic != nil {
if hs.clientHello.quicTransportParameters == nil {
// RFC 9001 Section 8.2.
c.sendAlert(alertMissingExtension)
return errors.New("tls: client did not send a quic_transport_parameters extension")
}
c.quicSetTransportParameters(hs.clientHello.quicTransportParameters)
} else {
if hs.clientHello.quicTransportParameters != nil {
c.sendAlert(alertUnsupportedExtension)
return errors.New("tls: client sent an unexpected quic_transport_parameters extension")
}
}
c.serverName = hs.clientHello.serverName
return nil
}
@ -397,6 +411,9 @@ func (hs *serverHandshakeStateTLS13) pickCertificate() error {
// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
func (hs *serverHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
if hs.c.quic != nil {
return nil
}
if hs.sentDummyCCS {
return nil
}
@ -548,10 +565,18 @@ func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
clientSecret := hs.suite.deriveSecret(hs.handshakeSecret,
clientHandshakeTrafficLabel, hs.transcript)
c.in.setTrafficSecret(hs.suite, clientSecret)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
serverSecret := hs.suite.deriveSecret(hs.handshakeSecret,
serverHandshakeTrafficLabel, hs.transcript)
c.out.setTrafficSecret(hs.suite, serverSecret)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
if c.quic != nil {
if c.hand.Len() != 0 {
c.sendAlert(alertUnexpectedMessage)
}
c.quicSetWriteSecret(QUICEncryptionLevelHandshake, hs.suite.id, serverSecret)
c.quicSetReadSecret(QUICEncryptionLevelHandshake, hs.suite.id, clientSecret)
}
err := c.config.writeKeyLog(keyLogLabelClientHandshake, hs.clientHello.random, clientSecret)
if err != nil {
@ -566,7 +591,7 @@ func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
encryptedExtensions := new(encryptedExtensionsMsg)
selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols)
selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols, c.quic != nil)
if err != nil {
c.sendAlert(alertNoApplicationProtocol)
return err
@ -574,6 +599,14 @@ func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
encryptedExtensions.alpnProtocol = selectedProto
c.clientProtocol = selectedProto
if c.quic != nil {
p, err := c.quicGetTransportParameters()
if err != nil {
return err
}
encryptedExtensions.quicTransportParameters = p
}
if _, err := hs.c.writeHandshakeRecord(encryptedExtensions, hs.transcript); err != nil {
return err
}
@ -672,7 +705,15 @@ func (hs *serverHandshakeStateTLS13) sendServerFinished() error {
clientApplicationTrafficLabel, hs.transcript)
serverSecret := hs.suite.deriveSecret(hs.masterSecret,
serverApplicationTrafficLabel, hs.transcript)
c.out.setTrafficSecret(hs.suite, serverSecret)
c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
if c.quic != nil {
if c.hand.Len() != 0 {
// TODO: Handle this in setTrafficSecret?
c.sendAlert(alertUnexpectedMessage)
}
c.quicSetWriteSecret(QUICEncryptionLevelApplication, hs.suite.id, serverSecret)
}
err := c.config.writeKeyLog(keyLogLabelClientTraffic, hs.clientHello.random, hs.trafficSecret)
if err != nil {
@ -887,7 +928,7 @@ func (hs *serverHandshakeStateTLS13) readClientFinished() error {
return errors.New("tls: invalid client finished hash")
}
c.in.setTrafficSecret(hs.suite, hs.trafficSecret)
c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, hs.trafficSecret)
return nil
}

376
src/crypto/tls/quic.go Normal file
View file

@ -0,0 +1,376 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"context"
"errors"
"fmt"
)
// QUICEncryptionLevel represents a QUIC encryption level used to transmit
// handshake messages.
type QUICEncryptionLevel int
const (
QUICEncryptionLevelInitial = QUICEncryptionLevel(iota)
QUICEncryptionLevelHandshake
QUICEncryptionLevelApplication
)
func (l QUICEncryptionLevel) String() string {
switch l {
case QUICEncryptionLevelInitial:
return "Initial"
case QUICEncryptionLevelHandshake:
return "Handshake"
case QUICEncryptionLevelApplication:
return "Application"
default:
return fmt.Sprintf("QUICEncryptionLevel(%v)", int(l))
}
}
// A QUICConn represents a connection which uses a QUIC implementation as the underlying
// transport as described in RFC 9001.
//
// Methods of QUICConn are not safe for concurrent use.
type QUICConn struct {
conn *Conn
}
// A QUICConfig configures a QUICConn.
type QUICConfig struct {
TLSConfig *Config
}
// A QUICEventKind is a type of operation on a QUIC connection.
type QUICEventKind int
const (
// QUICNoEvent indicates that there are no events available.
QUICNoEvent QUICEventKind = iota
// QUICSetReadSecret and QUICSetWriteSecret provide the read and write
// secrets for a given encryption level.
// QUICEvent.Level, QUICEvent.Data, and QUICEvent.Suite are set.
//
// Secrets for the Initial encryption level are derived from the initial
// destination connection ID, and are not provided by the QUICConn.
QUICSetReadSecret
QUICSetWriteSecret
// QUICWriteData provides data to send to the peer in CRYPTO frames.
// QUICEvent.Data is set.
QUICWriteData
// QUICTransportParameters provides the peer's QUIC transport parameters.
// QUICEvent.Data is set.
QUICTransportParameters
// QUICTransportParametersRequired indicates that the caller must provide
// QUIC transport parameters to send to the peer. The caller should set
// the transport parameters with QUICConn.SetTransportParameters and call
// QUICConn.NextEvent again.
//
// If transport parameters are set before calling QUICConn.Start, the
// connection will never generate a QUICTransportParametersRequired event.
QUICTransportParametersRequired
// QUICHandshakeDone indicates that the TLS handshake has completed.
QUICHandshakeDone
)
// A QUICEvent is an event occurring on a QUIC connection.
//
// The type of event is specified by the Kind field.
// The contents of the other fields are kind-specific.
type QUICEvent struct {
Kind QUICEventKind
// Set for QUICSetReadSecret, QUICSetWriteSecret, and QUICWriteData.
Level QUICEncryptionLevel
// Set for QUICTransportParameters, QUICSetReadSecret, QUICSetWriteSecret, and QUICWriteData.
// The contents are owned by crypto/tls, and are valid until the next NextEvent call.
Data []byte
// Set for QUICSetReadSecret and QUICSetWriteSecret.
Suite uint16
}
type quicState struct {
events []QUICEvent
nextEvent int
// eventArr is a statically allocated event array, large enough to handle
// the usual maximum number of events resulting from a single call:
// transport parameters, Initial data, Handshake write and read secrets,
// Handshake data, Application write secret, Application data.
eventArr [7]QUICEvent
started bool
signalc chan struct{} // handshake data is available to be read
blockedc chan struct{} // handshake is waiting for data, closed when done
cancelc <-chan struct{} // handshake has been canceled
cancel context.CancelFunc
// readbuf is shared between HandleData and the handshake goroutine.
// HandshakeCryptoData passes ownership to the handshake goroutine by
// reading from signalc, and reclaims ownership by reading from blockedc.
readbuf []byte
transportParams []byte // to send to the peer
}
// QUICClient returns a new TLS client side connection using QUICTransport as the
// underlying transport. The config cannot be nil.
//
// The config's MinVersion must be at least TLS 1.3.
func QUICClient(config *QUICConfig) *QUICConn {
return newQUICConn(Client(nil, config.TLSConfig))
}
// QUICServer returns a new TLS server side connection using QUICTransport as the
// underlying transport. The config cannot be nil.
//
// The config's MinVersion must be at least TLS 1.3.
func QUICServer(config *QUICConfig) *QUICConn {
return newQUICConn(Server(nil, config.TLSConfig))
}
func newQUICConn(conn *Conn) *QUICConn {
conn.quic = &quicState{
signalc: make(chan struct{}),
blockedc: make(chan struct{}),
}
conn.quic.events = conn.quic.eventArr[:0]
return &QUICConn{
conn: conn,
}
}
// Start starts the client or server handshake protocol.
// It may produce connection events, which may be read with NextEvent.
//
// Start must be called at most once.
func (q *QUICConn) Start(ctx context.Context) error {
if q.conn.quic.started {
return quicError(errors.New("tls: Start called more than once"))
}
q.conn.quic.started = true
if q.conn.config.MinVersion < VersionTLS13 {
return quicError(errors.New("tls: Config MinVersion must be at least TLS 1.13"))
}
go q.conn.HandshakeContext(ctx)
if _, ok := <-q.conn.quic.blockedc; !ok {
return q.conn.handshakeErr
}
return nil
}
// NextEvent returns the next event occurring on the connection.
// It returns an event with a Kind of QUICNoEvent when no events are available.
func (q *QUICConn) NextEvent() QUICEvent {
qs := q.conn.quic
if last := qs.nextEvent - 1; last >= 0 && len(qs.events[last].Data) > 0 {
// Write over some of the previous event's data,
// to catch callers erroniously retaining it.
qs.events[last].Data[0] = 0
}
if qs.nextEvent >= len(qs.events) {
qs.events = qs.events[:0]
qs.nextEvent = 0
return QUICEvent{Kind: QUICNoEvent}
}
e := qs.events[qs.nextEvent]
qs.events[qs.nextEvent] = QUICEvent{} // zero out references to data
qs.nextEvent++
return e
}
// Close closes the connection and stops any in-progress handshake.
func (q *QUICConn) Close() error {
if q.conn.quic.cancel == nil {
return nil // never started
}
q.conn.quic.cancel()
for range q.conn.quic.blockedc {
// Wait for the handshake goroutine to return.
}
return q.conn.handshakeErr
}
// HandleData handles handshake bytes received from the peer.
// It may produce connection events, which may be read with NextEvent.
func (q *QUICConn) HandleData(level QUICEncryptionLevel, data []byte) error {
c := q.conn
if c.in.level != level {
return quicError(c.in.setErrorLocked(errors.New("tls: handshake data received at wrong level")))
}
c.quic.readbuf = data
<-c.quic.signalc
_, ok := <-c.quic.blockedc
if ok {
// The handshake goroutine is waiting for more data.
return nil
}
// The handshake goroutine has exited.
c.hand.Write(c.quic.readbuf)
c.quic.readbuf = nil
for q.conn.hand.Len() >= 4 && q.conn.handshakeErr == nil {
b := q.conn.hand.Bytes()
n := int(b[1])<<16 | int(b[2])<<8 | int(b[3])
if 4+n < len(b) {
return nil
}
if err := q.conn.handlePostHandshakeMessage(); err != nil {
return quicError(err)
}
}
if q.conn.handshakeErr != nil {
return quicError(q.conn.handshakeErr)
}
return nil
}
// ConnectionState returns basic TLS details about the connection.
func (q *QUICConn) ConnectionState() ConnectionState {
return q.conn.ConnectionState()
}
// SetTransportParameters sets the transport parameters to send to the peer.
//
// Server connections may delay setting the transport parameters until after
// receiving the client's transport parameters. See QUICTransportParametersRequired.
func (q *QUICConn) SetTransportParameters(params []byte) {
if params == nil {
params = []byte{}
}
q.conn.quic.transportParams = params
if q.conn.quic.started {
<-q.conn.quic.signalc
<-q.conn.quic.blockedc
}
}
// quicError ensures err is an AlertError.
// If err is not already, quicError wraps it with alertInternalError.
func quicError(err error) error {
if err == nil {
return nil
}
var ae AlertError
if errors.As(err, &ae) {
return err
}
var a alert
if !errors.As(err, &a) {
a = alertInternalError
}
// Return an error wrapping the original error and an AlertError.
// Truncate the text of the alert to 0 characters.
return fmt.Errorf("%w%.0w", err, AlertError(a))
}
func (c *Conn) quicReadHandshakeBytes(n int) error {
for c.hand.Len() < n {
if err := c.quicWaitForSignal(); err != nil {
return err
}
}
return nil
}
func (c *Conn) quicSetReadSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICSetReadSecret,
Level: level,
Suite: suite,
Data: secret,
})
}
func (c *Conn) quicSetWriteSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICSetWriteSecret,
Level: level,
Suite: suite,
Data: secret,
})
}
func (c *Conn) quicWriteCryptoData(level QUICEncryptionLevel, data []byte) {
var last *QUICEvent
if len(c.quic.events) > 0 {
last = &c.quic.events[len(c.quic.events)-1]
}
if last == nil || last.Kind != QUICWriteData || last.Level != level {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICWriteData,
Level: level,
})
last = &c.quic.events[len(c.quic.events)-1]
}
last.Data = append(last.Data, data...)
}
func (c *Conn) quicSetTransportParameters(params []byte) {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICTransportParameters,
Data: params,
})
}
func (c *Conn) quicGetTransportParameters() ([]byte, error) {
if c.quic.transportParams == nil {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICTransportParametersRequired,
})
}
for c.quic.transportParams == nil {
if err := c.quicWaitForSignal(); err != nil {
return nil, err
}
}
return c.quic.transportParams, nil
}
func (c *Conn) quicHandshakeComplete() {
c.quic.events = append(c.quic.events, QUICEvent{
Kind: QUICHandshakeDone,
})
}
// quicWaitForSignal notifies the QUICConn that handshake progress is blocked,
// and waits for a signal that the handshake should proceed.
//
// The handshake may become blocked waiting for handshake bytes
// or for the user to provide transport parameters.
func (c *Conn) quicWaitForSignal() error {
// Drop the handshake mutex while blocked to allow the user
// to call ConnectionState before the handshake completes.
c.handshakeMutex.Unlock()
defer c.handshakeMutex.Lock()
// Send on blockedc to notify the QUICConn that the handshake is blocked.
// Exported methods of QUICConn wait for the handshake to become blocked
// before returning to the user.
select {
case c.quic.blockedc <- struct{}{}:
case <-c.quic.cancelc:
return c.sendAlertLocked(alertCloseNotify)
}
// The QUICConn reads from signalc to notify us that the handshake may
// be able to proceed. (The QUICConn reads, because we close signalc to
// indicate that the handshake has completed.)
select {
case c.quic.signalc <- struct{}{}:
c.hand.Write(c.quic.readbuf)
c.quic.readbuf = nil
case <-c.quic.cancelc:
return c.sendAlertLocked(alertCloseNotify)
}
return nil
}

430
src/crypto/tls/quic_test.go Normal file
View file

@ -0,0 +1,430 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package tls
import (
"context"
"errors"
"reflect"
"testing"
)
type testQUICConn struct {
t *testing.T
conn *QUICConn
readSecret map[QUICEncryptionLevel]suiteSecret
writeSecret map[QUICEncryptionLevel]suiteSecret
gotParams []byte
complete bool
}
func newTestQUICClient(t *testing.T, config *Config) *testQUICConn {
q := &testQUICConn{t: t}
q.conn = QUICClient(&QUICConfig{
TLSConfig: config,
})
t.Cleanup(func() {
q.conn.Close()
})
return q
}
func newTestQUICServer(t *testing.T, config *Config) *testQUICConn {
q := &testQUICConn{t: t}
q.conn = QUICServer(&QUICConfig{
TLSConfig: config,
})
t.Cleanup(func() {
q.conn.Close()
})
return q
}
type suiteSecret struct {
suite uint16
secret []byte
}
func (q *testQUICConn) setReadSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
if _, ok := q.writeSecret[level]; !ok {
q.t.Errorf("SetReadSecret for level %v called before SetWriteSecret", level)
}
if level == QUICEncryptionLevelApplication && !q.complete {
q.t.Errorf("SetReadSecret for level %v called before HandshakeComplete", level)
}
if _, ok := q.readSecret[level]; ok {
q.t.Errorf("SetReadSecret for level %v called twice", level)
}
if q.readSecret == nil {
q.readSecret = map[QUICEncryptionLevel]suiteSecret{}
}
switch level {
case QUICEncryptionLevelHandshake, QUICEncryptionLevelApplication:
q.readSecret[level] = suiteSecret{suite, secret}
default:
q.t.Errorf("SetReadSecret for unexpected level %v", level)
}
}
func (q *testQUICConn) setWriteSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
if _, ok := q.writeSecret[level]; ok {
q.t.Errorf("SetWriteSecret for level %v called twice", level)
}
if q.writeSecret == nil {
q.writeSecret = map[QUICEncryptionLevel]suiteSecret{}
}
switch level {
case QUICEncryptionLevelHandshake, QUICEncryptionLevelApplication:
q.writeSecret[level] = suiteSecret{suite, secret}
default:
q.t.Errorf("SetWriteSecret for unexpected level %v", level)
}
}
var errTransportParametersRequired = errors.New("transport parameters required")
func runTestQUICConnection(ctx context.Context, a, b *testQUICConn, onHandleCryptoData func()) error {
for _, c := range []*testQUICConn{a, b} {
if !c.conn.conn.quic.started {
if err := c.conn.Start(ctx); err != nil {
return err
}
}
}
idleCount := 0
for {
e := a.conn.NextEvent()
switch e.Kind {
case QUICNoEvent:
idleCount++
if idleCount == 2 {
if !a.complete || !b.complete {
return errors.New("handshake incomplete")
}
return nil
}
a, b = b, a
case QUICSetReadSecret:
a.setReadSecret(e.Level, e.Suite, e.Data)
case QUICSetWriteSecret:
a.setWriteSecret(e.Level, e.Suite, e.Data)
case QUICWriteData:
if err := b.conn.HandleData(e.Level, e.Data); err != nil {
return err
}
case QUICTransportParameters:
a.gotParams = e.Data
if a.gotParams == nil {
a.gotParams = []byte{}
}
case QUICTransportParametersRequired:
return errTransportParametersRequired
case QUICHandshakeDone:
a.complete = true
}
if e.Kind != QUICNoEvent {
idleCount = 0
}
}
}
func TestQUICConnection(t *testing.T) {
config := testConfig.Clone()
config.MinVersion = VersionTLS13
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, config)
srv.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
if _, ok := cli.readSecret[QUICEncryptionLevelHandshake]; !ok {
t.Errorf("client has no Handshake secret")
}
if _, ok := cli.readSecret[QUICEncryptionLevelApplication]; !ok {
t.Errorf("client has no Application secret")
}
if _, ok := srv.readSecret[QUICEncryptionLevelHandshake]; !ok {
t.Errorf("server has no Handshake secret")
}
if _, ok := srv.readSecret[QUICEncryptionLevelApplication]; !ok {
t.Errorf("server has no Application secret")
}
for _, level := range []QUICEncryptionLevel{QUICEncryptionLevelHandshake, QUICEncryptionLevelApplication} {
if _, ok := cli.readSecret[level]; !ok {
t.Errorf("client has no %v read secret", level)
}
if _, ok := srv.readSecret[level]; !ok {
t.Errorf("server has no %v read secret", level)
}
if !reflect.DeepEqual(cli.readSecret[level], srv.writeSecret[level]) {
t.Errorf("client read secret does not match server write secret for level %v", level)
}
if !reflect.DeepEqual(cli.writeSecret[level], srv.readSecret[level]) {
t.Errorf("client write secret does not match server read secret for level %v", level)
}
}
}
func TestQUICSessionResumption(t *testing.T) {
clientConfig := testConfig.Clone()
clientConfig.MinVersion = VersionTLS13
clientConfig.ClientSessionCache = NewLRUClientSessionCache(1)
clientConfig.ServerName = "example.go.dev"
serverConfig := testConfig.Clone()
serverConfig.MinVersion = VersionTLS13
cli := newTestQUICClient(t, clientConfig)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, serverConfig)
srv.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != nil {
t.Fatalf("error during first connection handshake: %v", err)
}
if cli.conn.ConnectionState().DidResume {
t.Errorf("first connection unexpectedly used session resumption")
}
cli2 := newTestQUICClient(t, clientConfig)
cli2.conn.SetTransportParameters(nil)
srv2 := newTestQUICServer(t, serverConfig)
srv2.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(context.Background(), cli2, srv2, nil); err != nil {
t.Fatalf("error during second connection handshake: %v", err)
}
if !cli2.conn.ConnectionState().DidResume {
t.Errorf("second connection did not use session resumption")
}
}
func TestQUICPostHandshakeClientAuthentication(t *testing.T) {
// RFC 9001, Section 4.4.
config := testConfig.Clone()
config.MinVersion = VersionTLS13
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, config)
srv.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
certReq := new(certificateRequestMsgTLS13)
certReq.ocspStapling = true
certReq.scts = true
certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
certReqBytes, err := certReq.marshal()
if err != nil {
t.Fatal(err)
}
if err := cli.conn.HandleData(QUICEncryptionLevelApplication, append([]byte{
byte(typeCertificateRequest),
byte(0), byte(0), byte(len(certReqBytes)),
}, certReqBytes...)); err == nil {
t.Fatalf("post-handshake authentication request: got no error, want one")
}
}
func TestQUICPostHandshakeKeyUpdate(t *testing.T) {
// RFC 9001, Section 6.
config := testConfig.Clone()
config.MinVersion = VersionTLS13
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, config)
srv.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
keyUpdate := new(keyUpdateMsg)
keyUpdateBytes, err := keyUpdate.marshal()
if err != nil {
t.Fatal(err)
}
if err := cli.conn.HandleData(QUICEncryptionLevelApplication, append([]byte{
byte(typeKeyUpdate),
byte(0), byte(0), byte(len(keyUpdateBytes)),
}, keyUpdateBytes...)); !errors.Is(err, alertUnexpectedMessage) {
t.Fatalf("key update request: got error %v, want alertUnexpectedMessage", err)
}
}
func TestQUICHandshakeError(t *testing.T) {
clientConfig := testConfig.Clone()
clientConfig.MinVersion = VersionTLS13
clientConfig.InsecureSkipVerify = false
clientConfig.ServerName = "name"
serverConfig := testConfig.Clone()
serverConfig.MinVersion = VersionTLS13
cli := newTestQUICClient(t, clientConfig)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, serverConfig)
srv.conn.SetTransportParameters(nil)
err := runTestQUICConnection(context.Background(), cli, srv, nil)
if !errors.Is(err, AlertError(alertBadCertificate)) {
t.Errorf("connection handshake terminated with error %q, want alertBadCertificate", err)
}
var e *CertificateVerificationError
if !errors.As(err, &e) {
t.Errorf("connection handshake terminated with error %q, want CertificateVerificationError", err)
}
}
// Test that QUICConn.ConnectionState can be used during the handshake,
// and that it reports the application protocol as soon as it has been
// negotiated.
func TestQUICConnectionState(t *testing.T) {
config := testConfig.Clone()
config.MinVersion = VersionTLS13
config.NextProtos = []string{"h3"}
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, config)
srv.conn.SetTransportParameters(nil)
onHandleCryptoData := func() {
cliCS := cli.conn.ConnectionState()
cliWantALPN := ""
if _, ok := cli.readSecret[QUICEncryptionLevelApplication]; ok {
cliWantALPN = "h3"
}
if want, got := cliCS.NegotiatedProtocol, cliWantALPN; want != got {
t.Errorf("cli.ConnectionState().NegotiatedProtocol = %q, want %q", want, got)
}
srvCS := srv.conn.ConnectionState()
srvWantALPN := ""
if _, ok := srv.readSecret[QUICEncryptionLevelHandshake]; ok {
srvWantALPN = "h3"
}
if want, got := srvCS.NegotiatedProtocol, srvWantALPN; want != got {
t.Errorf("srv.ConnectionState().NegotiatedProtocol = %q, want %q", want, got)
}
}
if err := runTestQUICConnection(context.Background(), cli, srv, onHandleCryptoData); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
}
func TestQUICStartContextPropagation(t *testing.T) {
const key = "key"
const value = "value"
ctx := context.WithValue(context.Background(), key, value)
config := testConfig.Clone()
config.MinVersion = VersionTLS13
calls := 0
config.GetConfigForClient = func(info *ClientHelloInfo) (*Config, error) {
calls++
got, _ := info.Context().Value(key).(string)
if got != value {
t.Errorf("GetConfigForClient context key %q has value %q, want %q", key, got, value)
}
return nil, nil
}
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, config)
srv.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(ctx, cli, srv, nil); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
if calls != 1 {
t.Errorf("GetConfigForClient called %v times, want 1", calls)
}
}
func TestQUICDelayedTransportParameters(t *testing.T) {
clientConfig := testConfig.Clone()
clientConfig.MinVersion = VersionTLS13
clientConfig.ClientSessionCache = NewLRUClientSessionCache(1)
clientConfig.ServerName = "example.go.dev"
serverConfig := testConfig.Clone()
serverConfig.MinVersion = VersionTLS13
cliParams := "client params"
srvParams := "server params"
cli := newTestQUICClient(t, clientConfig)
srv := newTestQUICServer(t, serverConfig)
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != errTransportParametersRequired {
t.Fatalf("handshake with no client parameters: %v; want errTransportParametersRequired", err)
}
cli.conn.SetTransportParameters([]byte(cliParams))
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != errTransportParametersRequired {
t.Fatalf("handshake with no server parameters: %v; want errTransportParametersRequired", err)
}
srv.conn.SetTransportParameters([]byte(srvParams))
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
if got, want := string(cli.gotParams), srvParams; got != want {
t.Errorf("client got transport params: %q, want %q", got, want)
}
if got, want := string(srv.gotParams), cliParams; got != want {
t.Errorf("server got transport params: %q, want %q", got, want)
}
}
func TestQUICEmptyTransportParameters(t *testing.T) {
config := testConfig.Clone()
config.MinVersion = VersionTLS13
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
srv := newTestQUICServer(t, config)
srv.conn.SetTransportParameters(nil)
if err := runTestQUICConnection(context.Background(), cli, srv, nil); err != nil {
t.Fatalf("error during connection handshake: %v", err)
}
if cli.gotParams == nil {
t.Errorf("client did not get transport params")
}
if srv.gotParams == nil {
t.Errorf("server did not get transport params")
}
if len(cli.gotParams) != 0 {
t.Errorf("client got transport params: %v, want empty", cli.gotParams)
}
if len(srv.gotParams) != 0 {
t.Errorf("server got transport params: %v, want empty", srv.gotParams)
}
}
func TestQUICCanceledWaitingForData(t *testing.T) {
config := testConfig.Clone()
config.MinVersion = VersionTLS13
cli := newTestQUICClient(t, config)
cli.conn.SetTransportParameters(nil)
cli.conn.Start(context.Background())
for cli.conn.NextEvent().Kind != QUICNoEvent {
}
err := cli.conn.Close()
if !errors.Is(err, alertCloseNotify) {
t.Errorf("conn.Close() = %v, want alertCloseNotify", err)
}
}
func TestQUICCanceledWaitingForTransportParams(t *testing.T) {
config := testConfig.Clone()
config.MinVersion = VersionTLS13
cli := newTestQUICClient(t, config)
cli.conn.Start(context.Background())
for cli.conn.NextEvent().Kind != QUICTransportParametersRequired {
}
err := cli.conn.Close()
if !errors.Is(err, alertCloseNotify) {
t.Errorf("conn.Close() = %v, want alertCloseNotify", err)
}
}