[dev.typeparams] cmd/compile/internal/types2: move signature checking into separate file

This only moves functionality from one file into another.
Except for import adjustments there are no changes to the
code.

Change-Id: Id0d20a7537f20abe3a257ad3f550b0cb4499598c
Reviewed-on: https://go-review.googlesource.com/c/go/+/321590
Trust: Robert Griesemer <gri@golang.org>
Run-TryBot: Robert Griesemer <gri@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Robert Findley <rfindley@google.com>
This commit is contained in:
Robert Griesemer 2021-05-20 14:53:21 -07:00
parent cfe0250497
commit 243076da64
2 changed files with 314 additions and 304 deletions

View file

@ -0,0 +1,314 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
)
// Disabled by default, but enabled when running tests (via types_test.go).
var acceptMethodTypeParams bool
// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *syntax.Field, tparams []*syntax.Field, ftyp *syntax.FuncType) {
check.openScope(ftyp, "function")
check.scope.isFunc = true
check.recordScope(ftyp, check.scope)
sig.scope = check.scope
defer check.closeScope()
var recvTyp syntax.Expr // rewritten receiver type; valid if != nil
if recvPar != nil {
// collect generic receiver type parameters, if any
// - a receiver type parameter is like any other type parameter, except that it is declared implicitly
// - the receiver specification acts as local declaration for its type parameters, which may be blank
_, rname, rparams := check.unpackRecv(recvPar.Type, true)
if len(rparams) > 0 {
// Blank identifiers don't get declared and regular type-checking of the instantiated
// parameterized receiver type expression fails in Checker.collectParams of receiver.
// Identify blank type parameters and substitute each with a unique new identifier named
// "n_" (where n is the parameter index) and which cannot conflict with any user-defined
// name.
var smap map[*syntax.Name]*syntax.Name // substitution map from "_" to "!n" identifiers
for i, p := range rparams {
if p.Value == "_" {
new := *p
new.Value = fmt.Sprintf("%d_", i)
rparams[i] = &new // use n_ identifier instead of _ so it can be looked up
if smap == nil {
smap = make(map[*syntax.Name]*syntax.Name)
}
smap[p] = &new
}
}
if smap != nil {
// blank identifiers were found => use rewritten receiver type
recvTyp = isubst(recvPar.Type, smap)
}
// TODO(gri) rework declareTypeParams
sig.rparams = nil
for _, rparam := range rparams {
sig.rparams = check.declareTypeParam(sig.rparams, rparam)
}
// determine receiver type to get its type parameters
// and the respective type parameter bounds
var recvTParams []*TypeName
if rname != nil {
// recv should be a Named type (otherwise an error is reported elsewhere)
// Also: Don't report an error via genericType since it will be reported
// again when we type-check the signature.
// TODO(gri) maybe the receiver should be marked as invalid instead?
if recv := asNamed(check.genericType(rname, false)); recv != nil {
recvTParams = recv.tparams
}
}
// provide type parameter bounds
// - only do this if we have the right number (otherwise an error is reported elsewhere)
if len(sig.rparams) == len(recvTParams) {
// We have a list of *TypeNames but we need a list of Types.
list := make([]Type, len(sig.rparams))
for i, t := range sig.rparams {
list[i] = t.typ
}
smap := makeSubstMap(recvTParams, list)
for i, tname := range sig.rparams {
bound := recvTParams[i].typ.(*TypeParam).bound
// bound is (possibly) parameterized in the context of the
// receiver type declaration. Substitute parameters for the
// current context.
// TODO(gri) should we assume now that bounds always exist?
// (no bound == empty interface)
if bound != nil {
bound = check.subst(tname.pos, bound, smap)
tname.typ.(*TypeParam).bound = bound
}
}
}
}
}
if tparams != nil {
sig.tparams = check.collectTypeParams(tparams)
// Always type-check method type parameters but complain if they are not enabled.
// (A separate check is needed when type-checking interface method signatures because
// they don't have a receiver specification.)
if recvPar != nil && !acceptMethodTypeParams {
check.error(ftyp, "methods cannot have type parameters")
}
}
// Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their
// declarations and then squash that scope into the parent scope (and report any redeclarations at
// that time).
scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)")
var recvList []*Var // TODO(gri) remove the need for making a list here
if recvPar != nil {
recvList, _ = check.collectParams(scope, []*syntax.Field{recvPar}, recvTyp, false) // use rewritten receiver type, if any
}
params, variadic := check.collectParams(scope, ftyp.ParamList, nil, true)
results, _ := check.collectParams(scope, ftyp.ResultList, nil, false)
scope.Squash(func(obj, alt Object) {
var err error_
err.errorf(obj, "%s redeclared in this block", obj.Name())
err.recordAltDecl(alt)
check.report(&err)
})
if recvPar != nil {
// recv parameter list present (may be empty)
// spec: "The receiver is specified via an extra parameter section preceding the
// method name. That parameter section must declare a single parameter, the receiver."
var recv *Var
switch len(recvList) {
case 0:
// error reported by resolver
recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below
default:
// more than one receiver
check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
fallthrough // continue with first receiver
case 1:
recv = recvList[0]
}
// TODO(gri) We should delay rtyp expansion to when we actually need the
// receiver; thus all checks here should be delayed to later.
rtyp, _ := deref(recv.typ)
rtyp = expand(rtyp)
// spec: "The receiver type must be of the form T or *T where T is a type name."
// (ignore invalid types - error was reported before)
if t := rtyp; t != Typ[Invalid] {
var err string
if T := asNamed(t); T != nil {
// spec: "The type denoted by T is called the receiver base type; it must not
// be a pointer or interface type and it must be declared in the same package
// as the method."
if T.obj.pkg != check.pkg {
err = "type not defined in this package"
if check.conf.CompilerErrorMessages {
check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ)
err = ""
}
} else {
switch u := optype(T).(type) {
case *Basic:
// unsafe.Pointer is treated like a regular pointer
if u.kind == UnsafePointer {
err = "unsafe.Pointer"
}
case *Pointer, *Interface:
err = "pointer or interface type"
}
}
} else if T := asBasic(t); T != nil {
err = "basic or unnamed type"
if check.conf.CompilerErrorMessages {
check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ)
err = ""
}
} else {
check.errorf(recv.pos, "invalid receiver type %s", recv.typ)
}
if err != "" {
check.errorf(recv.pos, "invalid receiver type %s (%s)", recv.typ, err)
// ok to continue
}
}
sig.recv = recv
}
sig.params = NewTuple(params...)
sig.results = NewTuple(results...)
sig.variadic = variadic
}
// collectParams declares the parameters of list in scope and returns the corresponding
// variable list. If type0 != nil, it is used instead of the first type in list.
func (check *Checker) collectParams(scope *Scope, list []*syntax.Field, type0 syntax.Expr, variadicOk bool) (params []*Var, variadic bool) {
if list == nil {
return
}
var named, anonymous bool
var typ Type
var prev syntax.Expr
for i, field := range list {
ftype := field.Type
// type-check type of grouped fields only once
if ftype != prev {
prev = ftype
if i == 0 && type0 != nil {
ftype = type0
}
if t, _ := ftype.(*syntax.DotsType); t != nil {
ftype = t.Elem
if variadicOk && i == len(list)-1 {
variadic = true
} else {
check.softErrorf(t, "can only use ... with final parameter in list")
// ignore ... and continue
}
}
typ = check.varType(ftype)
}
// The parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag.
if field.Name != nil {
// named parameter
name := field.Name.Value
if name == "" {
check.error(field.Name, invalidAST+"anonymous parameter")
// ok to continue
}
par := NewParam(field.Name.Pos(), check.pkg, name, typ)
check.declare(scope, field.Name, par, scope.pos)
params = append(params, par)
named = true
} else {
// anonymous parameter
par := NewParam(field.Pos(), check.pkg, "", typ)
check.recordImplicit(field, par)
params = append(params, par)
anonymous = true
}
}
if named && anonymous {
check.error(list[0], invalidAST+"list contains both named and anonymous parameters")
// ok to continue
}
// For a variadic function, change the last parameter's type from T to []T.
// Since we type-checked T rather than ...T, we also need to retro-actively
// record the type for ...T.
if variadic {
last := params[len(params)-1]
last.typ = &Slice{elem: last.typ}
check.recordTypeAndValue(list[len(list)-1].Type, typexpr, last.typ, nil)
}
return
}
// isubst returns an x with identifiers substituted per the substitution map smap.
// isubst only handles the case of (valid) method receiver type expressions correctly.
func isubst(x syntax.Expr, smap map[*syntax.Name]*syntax.Name) syntax.Expr {
switch n := x.(type) {
case *syntax.Name:
if alt := smap[n]; alt != nil {
return alt
}
// case *syntax.StarExpr:
// X := isubst(n.X, smap)
// if X != n.X {
// new := *n
// new.X = X
// return &new
// }
case *syntax.Operation:
if n.Op == syntax.Mul && n.Y == nil {
X := isubst(n.X, smap)
if X != n.X {
new := *n
new.X = X
return &new
}
}
case *syntax.IndexExpr:
Index := isubst(n.Index, smap)
if Index != n.Index {
new := *n
new.Index = Index
return &new
}
case *syntax.ListExpr:
var elems []syntax.Expr
for i, elem := range n.ElemList {
new := isubst(elem, smap)
if new != elem {
if elems == nil {
elems = make([]syntax.Expr, len(n.ElemList))
copy(elems, n.ElemList)
}
elems[i] = new
}
}
if elems != nil {
new := *n
new.ElemList = elems
return &new
}
case *syntax.ParenExpr:
return isubst(n.X, smap) // no need to keep parentheses
default:
// Other receiver type expressions are invalid.
// It's fine to ignore those here as they will
// be checked elsewhere.
}
return x
}

View file

@ -13,9 +13,6 @@ import (
"strings"
)
// Disabled by default, but enabled when running tests (via types_test.go).
var acceptMethodTypeParams bool
// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def, see Checker.definedType, below.
@ -196,238 +193,6 @@ func (check *Checker) genericType(e syntax.Expr, reportErr bool) Type {
return typ
}
// isubst returns an x with identifiers substituted per the substitution map smap.
// isubst only handles the case of (valid) method receiver type expressions correctly.
func isubst(x syntax.Expr, smap map[*syntax.Name]*syntax.Name) syntax.Expr {
switch n := x.(type) {
case *syntax.Name:
if alt := smap[n]; alt != nil {
return alt
}
// case *syntax.StarExpr:
// X := isubst(n.X, smap)
// if X != n.X {
// new := *n
// new.X = X
// return &new
// }
case *syntax.Operation:
if n.Op == syntax.Mul && n.Y == nil {
X := isubst(n.X, smap)
if X != n.X {
new := *n
new.X = X
return &new
}
}
case *syntax.IndexExpr:
Index := isubst(n.Index, smap)
if Index != n.Index {
new := *n
new.Index = Index
return &new
}
case *syntax.ListExpr:
var elems []syntax.Expr
for i, elem := range n.ElemList {
new := isubst(elem, smap)
if new != elem {
if elems == nil {
elems = make([]syntax.Expr, len(n.ElemList))
copy(elems, n.ElemList)
}
elems[i] = new
}
}
if elems != nil {
new := *n
new.ElemList = elems
return &new
}
case *syntax.ParenExpr:
return isubst(n.X, smap) // no need to keep parentheses
default:
// Other receiver type expressions are invalid.
// It's fine to ignore those here as they will
// be checked elsewhere.
}
return x
}
// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *syntax.Field, tparams []*syntax.Field, ftyp *syntax.FuncType) {
check.openScope(ftyp, "function")
check.scope.isFunc = true
check.recordScope(ftyp, check.scope)
sig.scope = check.scope
defer check.closeScope()
var recvTyp syntax.Expr // rewritten receiver type; valid if != nil
if recvPar != nil {
// collect generic receiver type parameters, if any
// - a receiver type parameter is like any other type parameter, except that it is declared implicitly
// - the receiver specification acts as local declaration for its type parameters, which may be blank
_, rname, rparams := check.unpackRecv(recvPar.Type, true)
if len(rparams) > 0 {
// Blank identifiers don't get declared and regular type-checking of the instantiated
// parameterized receiver type expression fails in Checker.collectParams of receiver.
// Identify blank type parameters and substitute each with a unique new identifier named
// "n_" (where n is the parameter index) and which cannot conflict with any user-defined
// name.
var smap map[*syntax.Name]*syntax.Name // substitution map from "_" to "!n" identifiers
for i, p := range rparams {
if p.Value == "_" {
new := *p
new.Value = fmt.Sprintf("%d_", i)
rparams[i] = &new // use n_ identifier instead of _ so it can be looked up
if smap == nil {
smap = make(map[*syntax.Name]*syntax.Name)
}
smap[p] = &new
}
}
if smap != nil {
// blank identifiers were found => use rewritten receiver type
recvTyp = isubst(recvPar.Type, smap)
}
// TODO(gri) rework declareTypeParams
sig.rparams = nil
for _, rparam := range rparams {
sig.rparams = check.declareTypeParam(sig.rparams, rparam)
}
// determine receiver type to get its type parameters
// and the respective type parameter bounds
var recvTParams []*TypeName
if rname != nil {
// recv should be a Named type (otherwise an error is reported elsewhere)
// Also: Don't report an error via genericType since it will be reported
// again when we type-check the signature.
// TODO(gri) maybe the receiver should be marked as invalid instead?
if recv := asNamed(check.genericType(rname, false)); recv != nil {
recvTParams = recv.tparams
}
}
// provide type parameter bounds
// - only do this if we have the right number (otherwise an error is reported elsewhere)
if len(sig.rparams) == len(recvTParams) {
// We have a list of *TypeNames but we need a list of Types.
list := make([]Type, len(sig.rparams))
for i, t := range sig.rparams {
list[i] = t.typ
}
smap := makeSubstMap(recvTParams, list)
for i, tname := range sig.rparams {
bound := recvTParams[i].typ.(*TypeParam).bound
// bound is (possibly) parameterized in the context of the
// receiver type declaration. Substitute parameters for the
// current context.
// TODO(gri) should we assume now that bounds always exist?
// (no bound == empty interface)
if bound != nil {
bound = check.subst(tname.pos, bound, smap)
tname.typ.(*TypeParam).bound = bound
}
}
}
}
}
if tparams != nil {
sig.tparams = check.collectTypeParams(tparams)
// Always type-check method type parameters but complain if they are not enabled.
// (A separate check is needed when type-checking interface method signatures because
// they don't have a receiver specification.)
if recvPar != nil && !acceptMethodTypeParams {
check.error(ftyp, "methods cannot have type parameters")
}
}
// Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their
// declarations and then squash that scope into the parent scope (and report any redeclarations at
// that time).
scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)")
var recvList []*Var // TODO(gri) remove the need for making a list here
if recvPar != nil {
recvList, _ = check.collectParams(scope, []*syntax.Field{recvPar}, recvTyp, false) // use rewritten receiver type, if any
}
params, variadic := check.collectParams(scope, ftyp.ParamList, nil, true)
results, _ := check.collectParams(scope, ftyp.ResultList, nil, false)
scope.Squash(func(obj, alt Object) {
var err error_
err.errorf(obj, "%s redeclared in this block", obj.Name())
err.recordAltDecl(alt)
check.report(&err)
})
if recvPar != nil {
// recv parameter list present (may be empty)
// spec: "The receiver is specified via an extra parameter section preceding the
// method name. That parameter section must declare a single parameter, the receiver."
var recv *Var
switch len(recvList) {
case 0:
// error reported by resolver
recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below
default:
// more than one receiver
check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
fallthrough // continue with first receiver
case 1:
recv = recvList[0]
}
// TODO(gri) We should delay rtyp expansion to when we actually need the
// receiver; thus all checks here should be delayed to later.
rtyp, _ := deref(recv.typ)
rtyp = expand(rtyp)
// spec: "The receiver type must be of the form T or *T where T is a type name."
// (ignore invalid types - error was reported before)
if t := rtyp; t != Typ[Invalid] {
var err string
if T := asNamed(t); T != nil {
// spec: "The type denoted by T is called the receiver base type; it must not
// be a pointer or interface type and it must be declared in the same package
// as the method."
if T.obj.pkg != check.pkg {
err = "type not defined in this package"
if check.conf.CompilerErrorMessages {
check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ)
err = ""
}
} else {
switch u := optype(T).(type) {
case *Basic:
// unsafe.Pointer is treated like a regular pointer
if u.kind == UnsafePointer {
err = "unsafe.Pointer"
}
case *Pointer, *Interface:
err = "pointer or interface type"
}
}
} else if T := asBasic(t); T != nil {
err = "basic or unnamed type"
if check.conf.CompilerErrorMessages {
check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ)
err = ""
}
} else {
check.errorf(recv.pos, "invalid receiver type %s", recv.typ)
}
if err != "" {
check.errorf(recv.pos, "invalid receiver type %s (%s)", recv.typ, err)
// ok to continue
}
}
sig.recv = recv
}
sig.params = NewTuple(params...)
sig.results = NewTuple(results...)
sig.variadic = variadic
}
// goTypeName returns the Go type name for typ and
// removes any occurrences of "types2." from that name.
func goTypeName(typ Type) string {
@ -730,72 +495,3 @@ func (check *Checker) typeList(list []syntax.Expr) []Type {
}
return res
}
// collectParams declares the parameters of list in scope and returns the corresponding
// variable list. If type0 != nil, it is used instead of the first type in list.
func (check *Checker) collectParams(scope *Scope, list []*syntax.Field, type0 syntax.Expr, variadicOk bool) (params []*Var, variadic bool) {
if list == nil {
return
}
var named, anonymous bool
var typ Type
var prev syntax.Expr
for i, field := range list {
ftype := field.Type
// type-check type of grouped fields only once
if ftype != prev {
prev = ftype
if i == 0 && type0 != nil {
ftype = type0
}
if t, _ := ftype.(*syntax.DotsType); t != nil {
ftype = t.Elem
if variadicOk && i == len(list)-1 {
variadic = true
} else {
check.softErrorf(t, "can only use ... with final parameter in list")
// ignore ... and continue
}
}
typ = check.varType(ftype)
}
// The parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag.
if field.Name != nil {
// named parameter
name := field.Name.Value
if name == "" {
check.error(field.Name, invalidAST+"anonymous parameter")
// ok to continue
}
par := NewParam(field.Name.Pos(), check.pkg, name, typ)
check.declare(scope, field.Name, par, scope.pos)
params = append(params, par)
named = true
} else {
// anonymous parameter
par := NewParam(field.Pos(), check.pkg, "", typ)
check.recordImplicit(field, par)
params = append(params, par)
anonymous = true
}
}
if named && anonymous {
check.error(list[0], invalidAST+"list contains both named and anonymous parameters")
// ok to continue
}
// For a variadic function, change the last parameter's type from T to []T.
// Since we type-checked T rather than ...T, we also need to retro-actively
// record the type for ...T.
if variadic {
last := params[len(params)-1]
last.typ = &Slice{elem: last.typ}
check.recordTypeAndValue(list[len(list)-1].Type, typexpr, last.typ, nil)
}
return
}