[dev.typeparams] cmd/compile/internal/types2: support local defined types

This CL changes types2's instance hashing logic to include position
information for function-scope defined types as disambiguation. This
isn't ideal, but it worked for getting nested.go passing.

Updates #46592.

Change-Id: Id83ba0001f44af69b81260306cc8b05e44fc4f09
Reviewed-on: https://go-review.googlesource.com/c/go/+/327170
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Trust: Matthew Dempsky <mdempsky@google.com>
Trust: Robert Griesemer <gri@golang.org>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Robert Griesemer <gri@golang.org>
Reviewed-by: Robert Findley <rfindley@google.com>
This commit is contained in:
Matthew Dempsky 2021-06-11 01:09:47 -07:00
parent dd95a4e3db
commit 1ba2074440
4 changed files with 169 additions and 10 deletions

View file

@ -425,14 +425,19 @@ func (subst *subster) typ(typ Type) Type {
return typ
}
var instanceHashing = 0
// TODO(gri) Eventually, this should be more sophisticated.
// It won't work correctly for locally declared types.
func instantiatedHash(typ *Named, targs []Type) string {
assert(instanceHashing == 0)
instanceHashing++
var buf bytes.Buffer
writeTypeName(&buf, typ.obj, nil)
buf.WriteByte('[')
writeTypeList(&buf, targs, nil, nil)
buf.WriteByte(']')
instanceHashing--
// With respect to the represented type, whether a
// type is fully expanded or stored as instance

View file

@ -350,17 +350,33 @@ func writeTParamList(buf *bytes.Buffer, list []*TypeName, qf Qualifier, visited
}
func writeTypeName(buf *bytes.Buffer, obj *TypeName, qf Qualifier) {
s := "<Named w/o object>"
if obj != nil {
if obj.pkg != nil {
writePackage(buf, obj.pkg, qf)
}
// TODO(gri): function-local named types should be displayed
// differently from named types at package level to avoid
// ambiguity.
s = obj.name
if obj == nil {
buf.WriteString("<Named w/o object>")
return
}
if obj.pkg != nil {
writePackage(buf, obj.pkg, qf)
}
buf.WriteString(obj.name)
if instanceHashing != 0 {
// For local defined types, use the (original!) TypeName's position
// to disambiguate. This is overkill, and could probably instead
// just be the pointer value (if we assume a non-moving GC) or
// a unique ID (like cmd/compile uses). But this works for now,
// and is convenient for debugging.
// TODO(mdempsky): I still don't fully understand why typ.orig.orig
// can differ from typ.orig, or whether looping more than twice is
// ever necessary.
typ := obj.typ.(*Named)
for typ.orig != typ {
typ = typ.orig
}
if orig := typ.obj; orig.pkg != nil && orig.parent != orig.pkg.scope {
fmt.Fprintf(buf, "@%q", orig.pos)
}
}
buf.WriteString(s)
}
func writeTuple(buf *bytes.Buffer, tup *Tuple, variadic bool, qf Qualifier, visited []Type) {

134
test/typeparam/nested.go Normal file
View file

@ -0,0 +1,134 @@
// run -gcflags=all="-d=unified -G"
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This test case stress tests a number of subtle cases involving
// nested type-parameterized declarations. At a high-level, it
// declares a generic function that contains a generic type
// declaration:
//
// func F[A intish]() {
// type T[B intish] struct{}
//
// // store reflect.Type tuple (A, B, F[A].T[B]) in tests
// }
//
// It then instantiates this function with a variety of type arguments
// for A and B. Particularly tricky things like shadowed types.
//
// From this data it tests two things:
//
// 1. Given tuples (A, B, F[A].T[B]) and (A', B', F[A'].T[B']),
// F[A].T[B] should be identical to F[A'].T[B'] iff (A, B) is
// identical to (A', B').
//
// 2. A few of the instantiations are constructed to be identical, and
// it tests that exactly these pairs are duplicated (by golden
// output comparison to nested.out).
//
// In both cases, we're effectively using the compiler's existing
// runtime.Type handling (which is well tested) of type identity of A
// and B as a way to help bootstrap testing and validate its new
// runtime.Type handling of F[A].T[B].
//
// This isn't perfect, but it smoked out a handful of issues in
// gotypes2 and unified IR.
package main
import (
"fmt"
"reflect"
)
type test struct {
TArgs [2]reflect.Type
Instance reflect.Type
}
var tests []test
type intish interface{ ~int }
type Int int
type GlobalInt = Int // allow access to global Int, even when shadowed
func F[A intish]() {
add := func(B, T interface{}) {
tests = append(tests, test{
TArgs: [2]reflect.Type{
reflect.TypeOf(A(0)),
reflect.TypeOf(B),
},
Instance: reflect.TypeOf(T),
})
}
type Int int
type T[B intish] struct{}
add(int(0), T[int]{})
add(Int(0), T[Int]{})
add(GlobalInt(0), T[GlobalInt]{})
add(A(0), T[A]{}) // NOTE: intentionally dups with int and GlobalInt
type U[_ any] int
type V U[int]
type W V
add(U[int](0), T[U[int]]{})
add(U[Int](0), T[U[Int]]{})
add(U[GlobalInt](0), T[U[GlobalInt]]{})
add(U[A](0), T[U[A]]{}) // NOTE: intentionally dups with U[int] and U[GlobalInt]
add(V(0), T[V]{})
add(W(0), T[W]{})
}
func main() {
type Int int
F[int]()
F[Int]()
F[GlobalInt]()
type U[_ any] int
type V U[int]
type W V
F[U[int]]()
F[U[Int]]()
F[U[GlobalInt]]()
F[V]()
F[W]()
type X[A any] U[X[A]]
F[X[int]]()
F[X[Int]]()
F[X[GlobalInt]]()
for j, tj := range tests {
for i, ti := range tests[:j+1] {
if (ti.TArgs == tj.TArgs) != (ti.Instance == tj.Instance) {
fmt.Printf("FAIL: %d,%d: %s, but %s\n", i, j, eq(ti.TArgs, tj.TArgs), eq(ti.Instance, tj.Instance))
}
// The test is constructed so we should see a few identical types.
// See "NOTE" comments above.
if i != j && ti.Instance == tj.Instance {
fmt.Printf("%d,%d: %v\n", i, j, ti.Instance)
}
}
}
}
func eq(a, b interface{}) string {
op := "=="
if a != b {
op = "!="
}
return fmt.Sprintf("%v %s %v", a, op, b)
}

View file

@ -0,0 +1,4 @@
0,3: main.T·2[int;int]
4,7: main.T·2[int;"".U·3[int;int]]
22,23: main.T·2["".Int;"".Int]
26,27: main.T·2["".Int;"".U·3["".Int;"".Int]]