[dev.ssa] cmd/compile/internal/ssa: handle dead code a different way

Instead of trying to delete dead code as soon as we find it, just
mark it as dead using a PlainAndDead block kind.  The deadcode pass
will do the real removal.

This way is somewhat more efficient because we don't need to mess
with successor and predecessor lists of all the dead blocks.

Fixes #12347

Change-Id: Ia42d6b5f9cdb3215a51737b3eb117c00bd439b13
Reviewed-on: https://go-review.googlesource.com/14033
Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com>
This commit is contained in:
Keith Randall 2015-08-28 16:45:17 -07:00
parent 9654873a76
commit 186cf1b9ba
9 changed files with 154 additions and 127 deletions

View file

@ -99,6 +99,13 @@ func checkFunc(f *Func) {
if !b.Control.Type.IsMemory() {
f.Fatalf("call block %s has non-memory control value %s", b, b.Control.LongString())
}
case BlockFirst:
if len(b.Succs) != 2 {
f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs))
}
if b.Control != nil {
f.Fatalf("plain/dead block %s has a control value", b)
}
}
if len(b.Succs) > 2 && b.Likely != BranchUnknown {
f.Fatalf("likeliness prediction %d for block %s with %d successors: %s", b.Likely, b, len(b.Succs))

View file

@ -29,7 +29,11 @@ func findlive(f *Func) (reachable []bool, live []bool) {
b := p[len(p)-1]
p = p[:len(p)-1]
// Mark successors as reachable
for _, c := range b.Succs {
s := b.Succs
if b.Kind == BlockFirst {
s = s[:1]
}
for _, c := range s {
if !reachable[c.ID] {
reachable[c.ID] = true
p = append(p, c) // push
@ -103,6 +107,37 @@ func deadcode(f *Func) {
b.Values = b.Values[:i]
}
// Get rid of edges from dead to live code.
for _, b := range f.Blocks {
if reachable[b.ID] {
continue
}
for _, c := range b.Succs {
if reachable[c.ID] {
c.removePred(b)
}
}
}
// Get rid of dead edges from live code.
for _, b := range f.Blocks {
if !reachable[b.ID] {
continue
}
if b.Kind != BlockFirst {
continue
}
c := b.Succs[1]
b.Succs[1] = nil
b.Succs = b.Succs[:1]
b.Kind = BlockPlain
if reachable[c.ID] {
// Note: c must be reachable through some other edge.
c.removePred(b)
}
}
// Remove unreachable blocks. Return dead block ids to allocator.
i := 0
for _, b := range f.Blocks {
@ -113,11 +148,10 @@ func deadcode(f *Func) {
if len(b.Values) > 0 {
b.Fatalf("live values in unreachable block %v: %v", b, b.Values)
}
s := b.Succs
b.Preds = nil
b.Succs = nil
for _, c := range s {
f.removePredecessor(b, c)
}
b.Control = nil
b.Kind = BlockDead
f.bid.put(b.ID)
}
}
@ -132,94 +166,68 @@ func deadcode(f *Func) {
// TODO: save dead Values and Blocks for reuse? Or should we just let GC handle it?
}
// There was an edge b->c. c has been removed from b's successors.
// Fix up c to handle that fact.
func (f *Func) removePredecessor(b, c *Block) {
work := [][2]*Block{{b, c}}
for len(work) > 0 {
b, c := work[0][0], work[0][1]
work = work[1:]
// Find index of b in c's predecessor list
// TODO: This could conceivably cause O(n^2) work. Imagine a very
// wide phi in (for example) the return block. If we determine that
// lots of panics won't happen, we remove each edge at a cost of O(n) each.
var i int
found := false
for j, p := range c.Preds {
if p == b {
i = j
found = true
break
}
}
if !found {
f.Fatalf("can't find predecessor %v of %v\n", b, c)
// removePred removes the predecessor p from b's predecessor list.
func (b *Block) removePred(p *Block) {
var i int
found := false
for j, q := range b.Preds {
if q == p {
i = j
found = true
break
}
}
// TODO: the above loop could make the deadcode pass take quadratic time
if !found {
b.Fatalf("can't find predecessor %v of %v\n", p, b)
}
n := len(c.Preds) - 1
c.Preds[i] = c.Preds[n]
c.Preds[n] = nil // aid GC
c.Preds = c.Preds[:n]
n := len(b.Preds) - 1
b.Preds[i] = b.Preds[n]
b.Preds[n] = nil // aid GC
b.Preds = b.Preds[:n]
// rewrite phi ops to match the new predecessor list
for _, v := range c.Values {
if v.Op != OpPhi {
continue
}
v.Args[i] = v.Args[n]
v.Args[n] = nil // aid GC
v.Args = v.Args[:n]
if n == 1 {
v.Op = OpCopy
// Note: this is trickier than it looks. Replacing
// a Phi with a Copy can in general cause problems because
// Phi and Copy don't have exactly the same semantics.
// Phi arguments always come from a predecessor block,
// whereas copies don't. This matters in loops like:
// 1: x = (Phi y)
// y = (Add x 1)
// goto 1
// If we replace Phi->Copy, we get
// 1: x = (Copy y)
// y = (Add x 1)
// goto 1
// (Phi y) refers to the *previous* value of y, whereas
// (Copy y) refers to the *current* value of y.
// The modified code has a cycle and the scheduler
// will barf on it.
//
// Fortunately, this situation can only happen for dead
// code loops. So although the value graph is transiently
// bad, we'll throw away the bad part by the end of
// the next deadcode phase.
// Proof: If we have a potential bad cycle, we have a
// situation like this:
// x = (Phi z)
// y = (op1 x ...)
// z = (op2 y ...)
// Where opX are not Phi ops. But such a situation
// implies a cycle in the dominator graph. In the
// example, x.Block dominates y.Block, y.Block dominates
// z.Block, and z.Block dominates x.Block (treating
// "dominates" as reflexive). Cycles in the dominator
// graph can only happen in an unreachable cycle.
}
// rewrite phi ops to match the new predecessor list
for _, v := range b.Values {
if v.Op != OpPhi {
continue
}
if n == 0 {
// c is now dead--recycle its values
for _, v := range c.Values {
f.vid.put(v.ID)
}
c.Values = nil
// Also kill any successors of c now, to spare later processing.
for _, succ := range c.Succs {
work = append(work, [2]*Block{c, succ})
}
c.Succs = nil
c.Kind = BlockDead
c.Control = nil
v.Args[i] = v.Args[n]
v.Args[n] = nil // aid GC
v.Args = v.Args[:n]
if n == 1 {
v.Op = OpCopy
// Note: this is trickier than it looks. Replacing
// a Phi with a Copy can in general cause problems because
// Phi and Copy don't have exactly the same semantics.
// Phi arguments always come from a predecessor block,
// whereas copies don't. This matters in loops like:
// 1: x = (Phi y)
// y = (Add x 1)
// goto 1
// If we replace Phi->Copy, we get
// 1: x = (Copy y)
// y = (Add x 1)
// goto 1
// (Phi y) refers to the *previous* value of y, whereas
// (Copy y) refers to the *current* value of y.
// The modified code has a cycle and the scheduler
// will barf on it.
//
// Fortunately, this situation can only happen for dead
// code loops. We know the code we're working with is
// not dead, so we're ok.
// Proof: If we have a potential bad cycle, we have a
// situation like this:
// x = (Phi z)
// y = (op1 x ...)
// z = (op2 y ...)
// Where opX are not Phi ops. But such a situation
// implies a cycle in the dominator graph. In the
// example, x.Block dominates y.Block, y.Block dominates
// z.Block, and z.Block dominates x.Block (treating
// "dominates" as reflexive). Cycles in the dominator
// graph can only happen in an unreachable cycle.
}
}
}

View file

@ -174,8 +174,8 @@
// big-object moves (TODO: remove?)
(Store [size] dst (Load src mem) mem) && size > config.IntSize -> (Move [size] dst src mem)
(If (IsNonNil (GetG)) yes no) -> (Plain nil yes)
(If (IsNonNil (GetG)) yes no) -> (First nil yes no)
(If (Not cond) yes no) -> (If cond no yes)
(If (ConstBool {c}) yes no) && c.(bool) -> (Plain nil yes)
(If (ConstBool {c}) yes no) && !c.(bool) -> (Plain nil no)
(If (ConstBool {c}) yes no) && c.(bool) -> (First nil yes no)
(If (ConstBool {c}) yes no) && !c.(bool) -> (First nil no yes)

View file

@ -373,7 +373,7 @@ var genericBlocks = []blockData{
{name: "Plain"}, // a single successor
{name: "If"}, // 2 successors, if control goto Succs[0] else goto Succs[1]
{name: "Call"}, // 2 successors, normal return and panic
// TODO(khr): BlockPanic for the built-in panic call, has 1 edge to the exit block
{name: "First"}, // 2 successors, always takes the first one (second is dead)
}
func init() {

View file

@ -236,7 +236,7 @@ func genRules(arch arch) {
t := split(result[1 : len(result)-1]) // remove parens, then split
newsuccs := t[2:]
// Check if newsuccs is a subset of succs.
// Check if newsuccs is the same set as succs.
m := map[string]bool{}
for _, succ := range succs {
if m[succ] {
@ -250,6 +250,9 @@ func genRules(arch arch) {
}
delete(m, succ)
}
if len(m) != 0 {
log.Fatalf("unmatched successors %v in %s", m, rule)
}
// Modify predecessor lists for no-longer-reachable blocks
for succ := range m {

View file

@ -83,10 +83,8 @@ func nilcheckelim(f *Func) {
// Eliminate the nil check.
// The deadcode pass will remove vestigial values,
// and the fuse pass will join this block with its successor.
node.block.Kind = BlockPlain
node.block.Kind = BlockFirst
node.block.Control = nil
f.removePredecessor(node.block, node.block.Succs[1])
node.block.Succs = node.block.Succs[:1]
} else {
// new nilcheck so add a ClearPtr node to clear the
// ptr from the map of nil checks once we traverse
@ -173,10 +171,8 @@ func nilcheckelim0(f *Func) {
// Eliminate the nil check.
// The deadcode pass will remove vestigial values,
// and the fuse pass will join this block with its successor.
b.Kind = BlockPlain
b.Kind = BlockFirst
b.Control = nil
f.removePredecessor(b, b.Succs[1])
b.Succs = b.Succs[:1]
}
}
}

View file

@ -27,6 +27,7 @@ const (
BlockPlain
BlockIf
BlockCall
BlockFirst
)
var blockString = [...]string{
@ -52,6 +53,7 @@ var blockString = [...]string{
BlockPlain: "Plain",
BlockIf: "If",
BlockCall: "Call",
BlockFirst: "First",
}
func (k BlockKind) String() string { return blockString[k] }

View file

@ -1574,27 +1574,25 @@ func rewriteBlockgeneric(b *Block) bool {
case BlockIf:
// match: (If (IsNonNil (GetG)) yes no)
// cond:
// result: (Plain nil yes)
// result: (First nil yes no)
{
v := b.Control
if v.Op != OpIsNonNil {
goto end0f2bb0111a86be0436b44210dbd83a90
goto endafdc4e2525f9933ab0ae7effc3559597
}
if v.Args[0].Op != OpGetG {
goto end0f2bb0111a86be0436b44210dbd83a90
goto endafdc4e2525f9933ab0ae7effc3559597
}
yes := b.Succs[0]
no := b.Succs[1]
b.Func.removePredecessor(b, no)
b.Kind = BlockPlain
b.Kind = BlockFirst
b.Control = nil
b.Succs = b.Succs[:1]
b.Succs[0] = yes
b.Likely = BranchUnknown
b.Succs[1] = no
return true
}
goto end0f2bb0111a86be0436b44210dbd83a90
end0f2bb0111a86be0436b44210dbd83a90:
goto endafdc4e2525f9933ab0ae7effc3559597
endafdc4e2525f9933ab0ae7effc3559597:
;
// match: (If (Not cond) yes no)
// cond:
@ -1619,53 +1617,50 @@ func rewriteBlockgeneric(b *Block) bool {
;
// match: (If (ConstBool {c}) yes no)
// cond: c.(bool)
// result: (Plain nil yes)
// result: (First nil yes no)
{
v := b.Control
if v.Op != OpConstBool {
goto end9ff0273f9b1657f4afc287562ca889f0
goto end7a20763049489cdb40bb1eaa57d113d8
}
c := v.Aux
yes := b.Succs[0]
no := b.Succs[1]
if !(c.(bool)) {
goto end9ff0273f9b1657f4afc287562ca889f0
goto end7a20763049489cdb40bb1eaa57d113d8
}
b.Func.removePredecessor(b, no)
b.Kind = BlockPlain
b.Kind = BlockFirst
b.Control = nil
b.Succs = b.Succs[:1]
b.Succs[0] = yes
b.Likely = BranchUnknown
b.Succs[1] = no
return true
}
goto end9ff0273f9b1657f4afc287562ca889f0
end9ff0273f9b1657f4afc287562ca889f0:
goto end7a20763049489cdb40bb1eaa57d113d8
end7a20763049489cdb40bb1eaa57d113d8:
;
// match: (If (ConstBool {c}) yes no)
// cond: !c.(bool)
// result: (Plain nil no)
// result: (First nil no yes)
{
v := b.Control
if v.Op != OpConstBool {
goto endf401a4553c3c7c6bed64801da7bba076
goto end3ecbf5b2cc1f0a08444d8ab1871a829c
}
c := v.Aux
yes := b.Succs[0]
no := b.Succs[1]
if !(!c.(bool)) {
goto endf401a4553c3c7c6bed64801da7bba076
goto end3ecbf5b2cc1f0a08444d8ab1871a829c
}
b.Func.removePredecessor(b, yes)
b.Kind = BlockPlain
b.Kind = BlockFirst
b.Control = nil
b.Succs = b.Succs[:1]
b.Succs[0] = no
b.Likely = BranchUnknown
b.Succs[1] = yes
b.Likely *= -1
return true
}
goto endf401a4553c3c7c6bed64801da7bba076
endf401a4553c3c7c6bed64801da7bba076:
goto end3ecbf5b2cc1f0a08444d8ab1871a829c
end3ecbf5b2cc1f0a08444d8ab1871a829c:
}
return false
}

View file

@ -0,0 +1,16 @@
// compile
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
func f_ssa(x int, p *int) {
if false {
y := x + 5
for {
*p = y
}
}
}