dart-sdk/runtime/vm/regexp_parser.cc

1104 lines
30 KiB
C++

// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/longjump.h"
#include "vm/object_store.h"
#include "vm/regexp_parser.h"
namespace dart {
#define Z zone()
// Enables possessive quantifier syntax for testing.
static const bool FLAG_regexp_possessive_quantifier = false;
RegExpBuilder::RegExpBuilder()
: zone_(Thread::Current()->zone()),
pending_empty_(false),
characters_(NULL),
terms_(),
text_(),
alternatives_()
#ifdef DEBUG
,
last_added_(ADD_NONE)
#endif
{
}
void RegExpBuilder::FlushCharacters() {
pending_empty_ = false;
if (characters_ != NULL) {
RegExpTree* atom = new (Z) RegExpAtom(characters_);
characters_ = NULL;
text_.Add(atom);
LAST(ADD_ATOM);
}
}
void RegExpBuilder::FlushText() {
FlushCharacters();
intptr_t num_text = text_.length();
if (num_text == 0) {
return;
} else if (num_text == 1) {
terms_.Add(text_.Last());
} else {
RegExpText* text = new (Z) RegExpText();
for (intptr_t i = 0; i < num_text; i++)
text_[i]->AppendToText(text);
terms_.Add(text);
}
text_.Clear();
}
void RegExpBuilder::AddCharacter(uint16_t c) {
pending_empty_ = false;
if (characters_ == NULL) {
characters_ = new (Z) ZoneGrowableArray<uint16_t>(4);
}
characters_->Add(c);
LAST(ADD_CHAR);
}
void RegExpBuilder::AddEmpty() {
pending_empty_ = true;
}
void RegExpBuilder::AddAtom(RegExpTree* term) {
if (term->IsEmpty()) {
AddEmpty();
return;
}
if (term->IsTextElement()) {
FlushCharacters();
text_.Add(term);
} else {
FlushText();
terms_.Add(term);
}
LAST(ADD_ATOM);
}
void RegExpBuilder::AddAssertion(RegExpTree* assert) {
FlushText();
terms_.Add(assert);
LAST(ADD_ASSERT);
}
void RegExpBuilder::NewAlternative() {
FlushTerms();
}
void RegExpBuilder::FlushTerms() {
FlushText();
intptr_t num_terms = terms_.length();
RegExpTree* alternative;
if (num_terms == 0) {
alternative = RegExpEmpty::GetInstance();
} else if (num_terms == 1) {
alternative = terms_.Last();
} else {
ZoneGrowableArray<RegExpTree*>* terms =
new (Z) ZoneGrowableArray<RegExpTree*>();
for (intptr_t i = 0; i < terms_.length(); i++) {
terms->Add(terms_[i]);
}
alternative = new (Z) RegExpAlternative(terms);
}
alternatives_.Add(alternative);
terms_.Clear();
LAST(ADD_NONE);
}
RegExpTree* RegExpBuilder::ToRegExp() {
FlushTerms();
intptr_t num_alternatives = alternatives_.length();
if (num_alternatives == 0) {
return RegExpEmpty::GetInstance();
}
if (num_alternatives == 1) {
return alternatives_.Last();
}
ZoneGrowableArray<RegExpTree*>* alternatives =
new (Z) ZoneGrowableArray<RegExpTree*>();
for (intptr_t i = 0; i < alternatives_.length(); i++) {
alternatives->Add(alternatives_[i]);
}
return new (Z) RegExpDisjunction(alternatives);
}
void RegExpBuilder::AddQuantifierToAtom(
intptr_t min,
intptr_t max,
RegExpQuantifier::QuantifierType quantifier_type) {
if (pending_empty_) {
pending_empty_ = false;
return;
}
RegExpTree* atom;
if (characters_ != NULL) {
DEBUG_ASSERT(last_added_ == ADD_CHAR);
// Last atom was character.
ZoneGrowableArray<uint16_t>* char_vector =
new (Z) ZoneGrowableArray<uint16_t>();
char_vector->AddArray(*characters_);
intptr_t num_chars = char_vector->length();
if (num_chars > 1) {
ZoneGrowableArray<uint16_t>* prefix =
new (Z) ZoneGrowableArray<uint16_t>();
for (intptr_t i = 0; i < num_chars - 1; i++) {
prefix->Add(char_vector->At(i));
}
text_.Add(new (Z) RegExpAtom(prefix));
ZoneGrowableArray<uint16_t>* tail = new (Z) ZoneGrowableArray<uint16_t>();
tail->Add(char_vector->At(num_chars - 1));
char_vector = tail;
}
characters_ = NULL;
atom = new (Z) RegExpAtom(char_vector);
FlushText();
} else if (text_.length() > 0) {
DEBUG_ASSERT(last_added_ == ADD_ATOM);
atom = text_.RemoveLast();
FlushText();
} else if (terms_.length() > 0) {
DEBUG_ASSERT(last_added_ == ADD_ATOM);
atom = terms_.RemoveLast();
if (atom->max_match() == 0) {
// Guaranteed to only match an empty string.
LAST(ADD_TERM);
if (min == 0) {
return;
}
terms_.Add(atom);
return;
}
} else {
// Only call immediately after adding an atom or character!
UNREACHABLE();
return;
}
terms_.Add(new (Z) RegExpQuantifier(min, max, quantifier_type, atom));
LAST(ADD_TERM);
}
// ----------------------------------------------------------------------------
// Implementation of Parser
RegExpParser::RegExpParser(const String& in, String* error, bool multiline)
: zone_(Thread::Current()->zone()),
error_(error),
captures_(NULL),
in_(in),
current_(kEndMarker),
next_pos_(0),
capture_count_(0),
has_more_(true),
multiline_(multiline),
simple_(false),
contains_anchor_(false),
is_scanned_for_captures_(false),
failed_(false) {
Advance();
}
bool RegExpParser::ParseFunction(ParsedFunction* parsed_function) {
VMTagScope tagScope(parsed_function->thread(),
VMTag::kCompileParseRegExpTagId);
Zone* zone = parsed_function->zone();
RegExp& regexp = RegExp::Handle(parsed_function->function().regexp());
const String& pattern = String::Handle(regexp.pattern());
const bool multiline = regexp.is_multi_line();
RegExpCompileData* compile_data = new (zone) RegExpCompileData();
if (!RegExpParser::ParseRegExp(pattern, multiline, compile_data)) {
// Parsing failures are handled in the RegExp factory constructor.
UNREACHABLE();
}
regexp.set_num_bracket_expressions(compile_data->capture_count);
if (compile_data->simple) {
regexp.set_is_simple();
} else {
regexp.set_is_complex();
}
parsed_function->SetRegExpCompileData(compile_data);
return true;
}
uint32_t RegExpParser::Next() {
if (has_next()) {
return in().CharAt(next_pos_);
} else {
return kEndMarker;
}
}
void RegExpParser::Advance() {
if (next_pos_ < in().Length()) {
current_ = in().CharAt(next_pos_);
next_pos_++;
} else {
current_ = kEndMarker;
has_more_ = false;
}
}
void RegExpParser::Reset(intptr_t pos) {
next_pos_ = pos;
has_more_ = (pos < in().Length());
Advance();
}
void RegExpParser::Advance(intptr_t dist) {
next_pos_ += dist - 1;
Advance();
}
bool RegExpParser::simple() {
return simple_;
}
void RegExpParser::ReportError(const char* message) {
failed_ = true;
*error_ = String::New(message);
// Zip to the end to make sure the no more input is read.
current_ = kEndMarker;
next_pos_ = in().Length();
const Error& error = Error::Handle(LanguageError::New(*error_));
Report::LongJump(error);
UNREACHABLE();
}
// Pattern ::
// Disjunction
RegExpTree* RegExpParser::ParsePattern() {
RegExpTree* result = ParseDisjunction();
ASSERT(!has_more());
// If the result of parsing is a literal string atom, and it has the
// same length as the input, then the atom is identical to the input.
if (result->IsAtom() && result->AsAtom()->length() == in().Length()) {
simple_ = true;
}
return result;
}
// Disjunction ::
// Alternative
// Alternative | Disjunction
// Alternative ::
// [empty]
// Term Alternative
// Term ::
// Assertion
// Atom
// Atom Quantifier
RegExpTree* RegExpParser::ParseDisjunction() {
// Used to store current state while parsing subexpressions.
RegExpParserState initial_state(NULL, INITIAL, 0, Z);
RegExpParserState* stored_state = &initial_state;
// Cache the builder in a local variable for quick access.
RegExpBuilder* builder = initial_state.builder();
while (true) {
switch (current()) {
case kEndMarker:
if (stored_state->IsSubexpression()) {
// Inside a parenthesized group when hitting end of input.
ReportError("Unterminated group");
UNREACHABLE();
}
ASSERT(INITIAL == stored_state->group_type());
// Parsing completed successfully.
return builder->ToRegExp();
case ')': {
if (!stored_state->IsSubexpression()) {
ReportError("Unmatched ')'");
UNREACHABLE();
}
ASSERT(INITIAL != stored_state->group_type());
Advance();
// End disjunction parsing and convert builder content to new single
// regexp atom.
RegExpTree* body = builder->ToRegExp();
intptr_t end_capture_index = captures_started();
intptr_t capture_index = stored_state->capture_index();
SubexpressionType group_type = stored_state->group_type();
// Restore previous state.
stored_state = stored_state->previous_state();
builder = stored_state->builder();
// Build result of subexpression.
if (group_type == CAPTURE) {
RegExpCapture* capture = new (Z) RegExpCapture(body, capture_index);
(*captures_)[capture_index - 1] = capture;
body = capture;
} else if (group_type != GROUPING) {
ASSERT(group_type == POSITIVE_LOOKAHEAD ||
group_type == NEGATIVE_LOOKAHEAD);
bool is_positive = (group_type == POSITIVE_LOOKAHEAD);
body = new (Z)
RegExpLookahead(body, is_positive,
end_capture_index - capture_index, capture_index);
}
builder->AddAtom(body);
// For compatibility with JSC and ES3, we allow quantifiers after
// lookaheads, and break in all cases.
break;
}
case '|': {
Advance();
builder->NewAlternative();
continue;
}
case '*':
case '+':
case '?':
ReportError("Nothing to repeat");
UNREACHABLE();
case '^': {
Advance();
if (multiline_) {
builder->AddAssertion(
new (Z) RegExpAssertion(RegExpAssertion::START_OF_LINE));
} else {
builder->AddAssertion(
new (Z) RegExpAssertion(RegExpAssertion::START_OF_INPUT));
set_contains_anchor();
}
continue;
}
case '$': {
Advance();
RegExpAssertion::AssertionType assertion_type =
multiline_ ? RegExpAssertion::END_OF_LINE
: RegExpAssertion::END_OF_INPUT;
builder->AddAssertion(new RegExpAssertion(assertion_type));
continue;
}
case '.': {
Advance();
// everything except \x0a, \x0d, \u2028 and \u2029
ZoneGrowableArray<CharacterRange>* ranges =
new ZoneGrowableArray<CharacterRange>(2);
CharacterRange::AddClassEscape('.', ranges);
RegExpTree* atom = new RegExpCharacterClass(ranges, false);
builder->AddAtom(atom);
break;
}
case '(': {
SubexpressionType subexpr_type = CAPTURE;
Advance();
if (current() == '?') {
switch (Next()) {
case ':':
subexpr_type = GROUPING;
break;
case '=':
subexpr_type = POSITIVE_LOOKAHEAD;
break;
case '!':
subexpr_type = NEGATIVE_LOOKAHEAD;
break;
default:
ReportError("Invalid group");
UNREACHABLE();
}
Advance(2);
} else {
if (captures_ == NULL) {
captures_ = new ZoneGrowableArray<RegExpCapture*>(2);
}
if (captures_started() >= kMaxCaptures) {
ReportError("Too many captures");
UNREACHABLE();
}
captures_->Add(NULL);
}
// Store current state and begin new disjunction parsing.
stored_state = new RegExpParserState(stored_state, subexpr_type,
captures_started(), Z);
builder = stored_state->builder();
continue;
}
case '[': {
RegExpTree* atom = ParseCharacterClass();
builder->AddAtom(atom);
break;
}
// Atom ::
// \ AtomEscape
case '\\':
switch (Next()) {
case kEndMarker:
ReportError("\\ at end of pattern");
UNREACHABLE();
case 'b':
Advance(2);
builder->AddAssertion(
new RegExpAssertion(RegExpAssertion::BOUNDARY));
continue;
case 'B':
Advance(2);
builder->AddAssertion(
new RegExpAssertion(RegExpAssertion::NON_BOUNDARY));
continue;
// AtomEscape ::
// CharacterClassEscape
//
// CharacterClassEscape :: one of
// d D s S w W
case 'd':
case 'D':
case 's':
case 'S':
case 'w':
case 'W': {
uint32_t c = Next();
Advance(2);
ZoneGrowableArray<CharacterRange>* ranges =
new ZoneGrowableArray<CharacterRange>(2);
CharacterRange::AddClassEscape(c, ranges);
RegExpTree* atom = new RegExpCharacterClass(ranges, false);
builder->AddAtom(atom);
break;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
intptr_t index = 0;
if (ParseBackReferenceIndex(&index)) {
RegExpCapture* capture = NULL;
if (captures_ != NULL && index <= captures_->length()) {
capture = captures_->At(index - 1);
}
if (capture == NULL) {
builder->AddEmpty();
break;
}
RegExpTree* atom = new RegExpBackReference(capture);
builder->AddAtom(atom);
break;
}
uint32_t first_digit = Next();
if (first_digit == '8' || first_digit == '9') {
// Treat as identity escape
builder->AddCharacter(first_digit);
Advance(2);
break;
}
}
// FALLTHROUGH
case '0': {
Advance();
uint32_t octal = ParseOctalLiteral();
builder->AddCharacter(octal);
break;
}
// ControlEscape :: one of
// f n r t v
case 'f':
Advance(2);
builder->AddCharacter('\f');
break;
case 'n':
Advance(2);
builder->AddCharacter('\n');
break;
case 'r':
Advance(2);
builder->AddCharacter('\r');
break;
case 't':
Advance(2);
builder->AddCharacter('\t');
break;
case 'v':
Advance(2);
builder->AddCharacter('\v');
break;
case 'c': {
Advance();
uint32_t controlLetter = Next();
// Special case if it is an ASCII letter.
// Convert lower case letters to uppercase.
uint32_t letter = controlLetter & ~('a' ^ 'A');
if (letter < 'A' || 'Z' < letter) {
// controlLetter is not in range 'A'-'Z' or 'a'-'z'.
// This is outside the specification. We match JSC in
// reading the backslash as a literal character instead
// of as starting an escape.
builder->AddCharacter('\\');
} else {
Advance(2);
builder->AddCharacter(controlLetter & 0x1f);
}
break;
}
case 'x': {
Advance(2);
uint32_t value;
if (ParseHexEscape(2, &value)) {
builder->AddCharacter(value);
} else {
builder->AddCharacter('x');
}
break;
}
case 'u': {
Advance(2);
uint32_t value;
if (ParseHexEscape(4, &value)) {
builder->AddCharacter(value);
} else {
builder->AddCharacter('u');
}
break;
}
default:
// Identity escape.
builder->AddCharacter(Next());
Advance(2);
break;
}
break;
case '{': {
intptr_t dummy;
if (ParseIntervalQuantifier(&dummy, &dummy)) {
ReportError("Nothing to repeat");
UNREACHABLE();
}
// fallthrough
}
default:
builder->AddCharacter(current());
Advance();
break;
} // end switch(current())
intptr_t min;
intptr_t max;
switch (current()) {
// QuantifierPrefix ::
// *
// +
// ?
// {
case '*':
min = 0;
max = RegExpTree::kInfinity;
Advance();
break;
case '+':
min = 1;
max = RegExpTree::kInfinity;
Advance();
break;
case '?':
min = 0;
max = 1;
Advance();
break;
case '{':
if (ParseIntervalQuantifier(&min, &max)) {
if (max < min) {
ReportError("numbers out of order in {} quantifier.");
UNREACHABLE();
}
break;
} else {
continue;
}
default:
continue;
}
RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY;
if (current() == '?') {
quantifier_type = RegExpQuantifier::NON_GREEDY;
Advance();
} else if (FLAG_regexp_possessive_quantifier && current() == '+') {
// FLAG_regexp_possessive_quantifier is a debug-only flag.
quantifier_type = RegExpQuantifier::POSSESSIVE;
Advance();
}
builder->AddQuantifierToAtom(min, max, quantifier_type);
}
}
#ifdef DEBUG
// Currently only used in an ASSERT.
static bool IsSpecialClassEscape(uint32_t c) {
switch (c) {
case 'd':
case 'D':
case 's':
case 'S':
case 'w':
case 'W':
return true;
default:
return false;
}
}
#endif
// In order to know whether an escape is a backreference or not we have to scan
// the entire regexp and find the number of capturing parentheses. However we
// don't want to scan the regexp twice unless it is necessary. This mini-parser
// is called when needed. It can see the difference between capturing and
// noncapturing parentheses and can skip character classes and backslash-escaped
// characters.
void RegExpParser::ScanForCaptures() {
// Start with captures started previous to current position
intptr_t capture_count = captures_started();
// Add count of captures after this position.
uintptr_t n;
while ((n = current()) != kEndMarker) {
Advance();
switch (n) {
case '\\':
Advance();
break;
case '[': {
uintptr_t c;
while ((c = current()) != kEndMarker) {
Advance();
if (c == '\\') {
Advance();
} else {
if (c == ']') break;
}
}
break;
}
case '(':
if (current() != '?') capture_count++;
break;
}
}
capture_count_ = capture_count;
is_scanned_for_captures_ = true;
}
static inline bool IsDecimalDigit(int32_t c) {
return '0' <= c && c <= '9';
}
bool RegExpParser::ParseBackReferenceIndex(intptr_t* index_out) {
ASSERT('\\' == current());
ASSERT('1' <= Next() && Next() <= '9');
// Try to parse a decimal literal that is no greater than the total number
// of left capturing parentheses in the input.
intptr_t start = position();
intptr_t value = Next() - '0';
Advance(2);
while (true) {
uint32_t c = current();
if (IsDecimalDigit(c)) {
value = 10 * value + (c - '0');
if (value > kMaxCaptures) {
Reset(start);
return false;
}
Advance();
} else {
break;
}
}
if (value > captures_started()) {
if (!is_scanned_for_captures_) {
intptr_t saved_position = position();
ScanForCaptures();
Reset(saved_position);
}
if (value > capture_count_) {
Reset(start);
return false;
}
}
*index_out = value;
return true;
}
// QuantifierPrefix ::
// { DecimalDigits }
// { DecimalDigits , }
// { DecimalDigits , DecimalDigits }
//
// Returns true if parsing succeeds, and set the min_out and max_out
// values. Values are truncated to RegExpTree::kInfinity if they overflow.
bool RegExpParser::ParseIntervalQuantifier(intptr_t* min_out,
intptr_t* max_out) {
ASSERT(current() == '{');
intptr_t start = position();
Advance();
intptr_t min = 0;
if (!IsDecimalDigit(current())) {
Reset(start);
return false;
}
while (IsDecimalDigit(current())) {
intptr_t next = current() - '0';
if (min > (RegExpTree::kInfinity - next) / 10) {
// Overflow. Skip past remaining decimal digits and return -1.
do {
Advance();
} while (IsDecimalDigit(current()));
min = RegExpTree::kInfinity;
break;
}
min = 10 * min + next;
Advance();
}
intptr_t max = 0;
if (current() == '}') {
max = min;
Advance();
} else if (current() == ',') {
Advance();
if (current() == '}') {
max = RegExpTree::kInfinity;
Advance();
} else {
while (IsDecimalDigit(current())) {
intptr_t next = current() - '0';
if (max > (RegExpTree::kInfinity - next) / 10) {
do {
Advance();
} while (IsDecimalDigit(current()));
max = RegExpTree::kInfinity;
break;
}
max = 10 * max + next;
Advance();
}
if (current() != '}') {
Reset(start);
return false;
}
Advance();
}
} else {
Reset(start);
return false;
}
*min_out = min;
*max_out = max;
return true;
}
uint32_t RegExpParser::ParseOctalLiteral() {
ASSERT(('0' <= current() && current() <= '7') || current() == kEndMarker);
// For compatibility with some other browsers (not all), we parse
// up to three octal digits with a value below 256.
uint32_t value = current() - '0';
Advance();
if ('0' <= current() && current() <= '7') {
value = value * 8 + current() - '0';
Advance();
if (value < 32 && '0' <= current() && current() <= '7') {
value = value * 8 + current() - '0';
Advance();
}
}
return value;
}
// Returns the value (0 .. 15) of a hexadecimal character c.
// If c is not a legal hexadecimal character, returns a value < 0.
static inline intptr_t HexValue(uint32_t c) {
c -= '0';
if (static_cast<unsigned>(c) <= 9) return c;
c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
if (static_cast<unsigned>(c) <= 5) return c + 10;
return -1;
}
bool RegExpParser::ParseHexEscape(intptr_t length, uint32_t* value) {
intptr_t start = position();
uint32_t val = 0;
bool done = false;
for (intptr_t i = 0; !done; i++) {
uint32_t c = current();
intptr_t d = HexValue(c);
if (d < 0) {
Reset(start);
return false;
}
val = val * 16 + d;
Advance();
if (i == length - 1) {
done = true;
}
}
*value = val;
return true;
}
uint32_t RegExpParser::ParseClassCharacterEscape() {
ASSERT(current() == '\\');
DEBUG_ASSERT(has_next() && !IsSpecialClassEscape(Next()));
Advance();
switch (current()) {
case 'b':
Advance();
return '\b';
// ControlEscape :: one of
// f n r t v
case 'f':
Advance();
return '\f';
case 'n':
Advance();
return '\n';
case 'r':
Advance();
return '\r';
case 't':
Advance();
return '\t';
case 'v':
Advance();
return '\v';
case 'c': {
uint32_t controlLetter = Next();
uint32_t letter = controlLetter & ~('A' ^ 'a');
// For compatibility with JSC, inside a character class
// we also accept digits and underscore as control characters.
if ((controlLetter >= '0' && controlLetter <= '9') ||
controlLetter == '_' || (letter >= 'A' && letter <= 'Z')) {
Advance(2);
// Control letters mapped to ASCII control characters in the range
// 0x00-0x1f.
return controlLetter & 0x1f;
}
// We match JSC in reading the backslash as a literal
// character instead of as starting an escape.
return '\\';
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
// For compatibility, we interpret a decimal escape that isn't
// a back reference (and therefore either \0 or not valid according
// to the specification) as a 1..3 digit octal character code.
return ParseOctalLiteral();
case 'x': {
Advance();
uint32_t value;
if (ParseHexEscape(2, &value)) {
return value;
}
// If \x is not followed by a two-digit hexadecimal, treat it
// as an identity escape.
return 'x';
}
case 'u': {
Advance();
uint32_t value;
if (ParseHexEscape(4, &value)) {
return value;
}
// If \u is not followed by a four-digit hexadecimal, treat it
// as an identity escape.
return 'u';
}
default: {
// Extended identity escape. We accept any character that hasn't
// been matched by a more specific case, not just the subset required
// by the ECMAScript specification.
uint32_t result = current();
Advance();
return result;
}
}
return 0;
}
CharacterRange RegExpParser::ParseClassAtom(uint16_t* char_class) {
ASSERT(0 == *char_class);
uint32_t first = current();
if (first == '\\') {
switch (Next()) {
case 'w':
case 'W':
case 'd':
case 'D':
case 's':
case 'S': {
*char_class = Next();
Advance(2);
return CharacterRange::Singleton(0); // Return dummy value.
}
case kEndMarker:
ReportError("\\ at end of pattern");
UNREACHABLE();
default:
uint32_t c = ParseClassCharacterEscape();
return CharacterRange::Singleton(c);
}
} else {
Advance();
return CharacterRange::Singleton(first);
}
}
static const uint16_t kNoCharClass = 0;
// Adds range or pre-defined character class to character ranges.
// If char_class is not kInvalidClass, it's interpreted as a class
// escape (i.e., 's' means whitespace, from '\s').
static inline void AddRangeOrEscape(ZoneGrowableArray<CharacterRange>* ranges,
uint16_t char_class,
CharacterRange range) {
if (char_class != kNoCharClass) {
CharacterRange::AddClassEscape(char_class, ranges);
} else {
ranges->Add(range);
}
}
RegExpTree* RegExpParser::ParseCharacterClass() {
static const char* kUnterminated = "Unterminated character class";
static const char* kRangeOutOfOrder = "Range out of order in character class";
ASSERT(current() == '[');
Advance();
bool is_negated = false;
if (current() == '^') {
is_negated = true;
Advance();
}
ZoneGrowableArray<CharacterRange>* ranges =
new (Z) ZoneGrowableArray<CharacterRange>(2);
while (has_more() && current() != ']') {
uint16_t char_class = kNoCharClass;
CharacterRange first = ParseClassAtom(&char_class);
if (current() == '-') {
Advance();
if (current() == kEndMarker) {
// If we reach the end we break out of the loop and let the
// following code report an error.
break;
} else if (current() == ']') {
AddRangeOrEscape(ranges, char_class, first);
ranges->Add(CharacterRange::Singleton('-'));
break;
}
uint16_t char_class_2 = kNoCharClass;
CharacterRange next = ParseClassAtom(&char_class_2);
if (char_class != kNoCharClass || char_class_2 != kNoCharClass) {
// Either end is an escaped character class. Treat the '-' verbatim.
AddRangeOrEscape(ranges, char_class, first);
ranges->Add(CharacterRange::Singleton('-'));
AddRangeOrEscape(ranges, char_class_2, next);
continue;
}
if (first.from() > next.to()) {
ReportError(kRangeOutOfOrder);
UNREACHABLE();
}
ranges->Add(CharacterRange::Range(first.from(), next.to()));
} else {
AddRangeOrEscape(ranges, char_class, first);
}
}
if (!has_more()) {
ReportError(kUnterminated);
UNREACHABLE();
}
Advance();
if (ranges->length() == 0) {
ranges->Add(CharacterRange::Everything());
is_negated = !is_negated;
}
return new (Z) RegExpCharacterClass(ranges, is_negated);
}
// ----------------------------------------------------------------------------
// The Parser interface.
bool RegExpParser::ParseRegExp(const String& input,
bool multiline,
RegExpCompileData* result) {
ASSERT(result != NULL);
LongJumpScope jump;
RegExpParser parser(input, &result->error, multiline);
if (setjmp(*jump.Set()) == 0) {
RegExpTree* tree = parser.ParsePattern();
ASSERT(tree != NULL);
ASSERT(result->error.IsNull());
result->tree = tree;
intptr_t capture_count = parser.captures_started();
result->simple = tree->IsAtom() && parser.simple() && capture_count == 0;
result->contains_anchor = parser.contains_anchor();
result->capture_count = capture_count;
} else {
ASSERT(!result->error.IsNull());
Thread::Current()->clear_sticky_error();
// Throw a FormatException on parsing failures.
const String& message =
String::Handle(String::Concat(result->error, input));
const Array& args = Array::Handle(Array::New(1));
args.SetAt(0, message);
Exceptions::ThrowByType(Exceptions::kFormat, args);
}
return !parser.failed();
}
} // namespace dart