dart-sdk/runtime/vm/disassembler_x64.cc

1985 lines
56 KiB
C++

// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/disassembler.h"
#include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32.
#if defined(TARGET_ARCH_X64)
#include "platform/utils.h"
#include "vm/allocation.h"
#include "vm/heap.h"
#include "vm/instructions.h"
#include "vm/os.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
namespace dart {
#ifndef PRODUCT
enum OperandType {
UNSET_OP_ORDER = 0,
// Operand size decides between 16, 32 and 64 bit operands.
REG_OPER_OP_ORDER = 1, // Register destination, operand source.
OPER_REG_OP_ORDER = 2, // Operand destination, register source.
// Fixed 8-bit operands.
BYTE_SIZE_OPERAND_FLAG = 4,
BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
};
//------------------------------------------------------------------
// Tables
//------------------------------------------------------------------
struct ByteMnemonic {
int b; // -1 terminates, otherwise must be in range (0..255)
OperandType op_order_;
const char* mnem;
};
static const ByteMnemonic two_operands_instr[] = {
{0x00, BYTE_OPER_REG_OP_ORDER, "add"},
{0x01, OPER_REG_OP_ORDER, "add"},
{0x02, BYTE_REG_OPER_OP_ORDER, "add"},
{0x03, REG_OPER_OP_ORDER, "add"},
{0x08, BYTE_OPER_REG_OP_ORDER, "or"},
{0x09, OPER_REG_OP_ORDER, "or"},
{0x0A, BYTE_REG_OPER_OP_ORDER, "or"},
{0x0B, REG_OPER_OP_ORDER, "or"},
{0x10, BYTE_OPER_REG_OP_ORDER, "adc"},
{0x11, OPER_REG_OP_ORDER, "adc"},
{0x12, BYTE_REG_OPER_OP_ORDER, "adc"},
{0x13, REG_OPER_OP_ORDER, "adc"},
{0x18, BYTE_OPER_REG_OP_ORDER, "sbb"},
{0x19, OPER_REG_OP_ORDER, "sbb"},
{0x1A, BYTE_REG_OPER_OP_ORDER, "sbb"},
{0x1B, REG_OPER_OP_ORDER, "sbb"},
{0x20, BYTE_OPER_REG_OP_ORDER, "and"},
{0x21, OPER_REG_OP_ORDER, "and"},
{0x22, BYTE_REG_OPER_OP_ORDER, "and"},
{0x23, REG_OPER_OP_ORDER, "and"},
{0x28, BYTE_OPER_REG_OP_ORDER, "sub"},
{0x29, OPER_REG_OP_ORDER, "sub"},
{0x2A, BYTE_REG_OPER_OP_ORDER, "sub"},
{0x2B, REG_OPER_OP_ORDER, "sub"},
{0x30, BYTE_OPER_REG_OP_ORDER, "xor"},
{0x31, OPER_REG_OP_ORDER, "xor"},
{0x32, BYTE_REG_OPER_OP_ORDER, "xor"},
{0x33, REG_OPER_OP_ORDER, "xor"},
{0x38, BYTE_OPER_REG_OP_ORDER, "cmp"},
{0x39, OPER_REG_OP_ORDER, "cmp"},
{0x3A, BYTE_REG_OPER_OP_ORDER, "cmp"},
{0x3B, REG_OPER_OP_ORDER, "cmp"},
{0x63, REG_OPER_OP_ORDER, "movsxd"},
{0x84, BYTE_REG_OPER_OP_ORDER, "test"},
{0x85, REG_OPER_OP_ORDER, "test"},
{0x86, BYTE_REG_OPER_OP_ORDER, "xchg"},
{0x87, REG_OPER_OP_ORDER, "xchg"},
{0x88, BYTE_OPER_REG_OP_ORDER, "mov"},
{0x89, OPER_REG_OP_ORDER, "mov"},
{0x8A, BYTE_REG_OPER_OP_ORDER, "mov"},
{0x8B, REG_OPER_OP_ORDER, "mov"},
{0x8D, REG_OPER_OP_ORDER, "lea"},
{-1, UNSET_OP_ORDER, ""}};
static const ByteMnemonic zero_operands_instr[] = {
{0xC3, UNSET_OP_ORDER, "ret"}, {0xC9, UNSET_OP_ORDER, "leave"},
{0xF4, UNSET_OP_ORDER, "hlt"}, {0xFC, UNSET_OP_ORDER, "cld"},
{0xCC, UNSET_OP_ORDER, "int3"}, {0x60, UNSET_OP_ORDER, "pushad"},
{0x61, UNSET_OP_ORDER, "popad"}, {0x9C, UNSET_OP_ORDER, "pushfd"},
{0x9D, UNSET_OP_ORDER, "popfd"}, {0x9E, UNSET_OP_ORDER, "sahf"},
{0x99, UNSET_OP_ORDER, "cdq"}, {0x9B, UNSET_OP_ORDER, "fwait"},
{0xA4, UNSET_OP_ORDER, "movs"}, {0xA5, UNSET_OP_ORDER, "movs"},
{0xA6, UNSET_OP_ORDER, "cmps"}, {0xA7, UNSET_OP_ORDER, "cmps"},
{-1, UNSET_OP_ORDER, ""}};
static const ByteMnemonic call_jump_instr[] = {{0xE8, UNSET_OP_ORDER, "call"},
{0xE9, UNSET_OP_ORDER, "jmp"},
{-1, UNSET_OP_ORDER, ""}};
static const ByteMnemonic short_immediate_instr[] = {
{0x05, UNSET_OP_ORDER, "add"}, {0x0D, UNSET_OP_ORDER, "or"},
{0x15, UNSET_OP_ORDER, "adc"}, {0x1D, UNSET_OP_ORDER, "sbb"},
{0x25, UNSET_OP_ORDER, "and"}, {0x2D, UNSET_OP_ORDER, "sub"},
{0x35, UNSET_OP_ORDER, "xor"}, {0x3D, UNSET_OP_ORDER, "cmp"},
{-1, UNSET_OP_ORDER, ""}};
static const char* const conditional_code_suffix[] = {
"o", "no", "c", "nc", "z", "nz", "na", "a",
"s", "ns", "pe", "po", "l", "ge", "le", "g"};
enum InstructionType {
NO_INSTR,
ZERO_OPERANDS_INSTR,
TWO_OPERANDS_INSTR,
JUMP_CONDITIONAL_SHORT_INSTR,
REGISTER_INSTR,
PUSHPOP_INSTR, // Has implicit 64-bit operand size.
MOVE_REG_INSTR,
CALL_JUMP_INSTR,
SHORT_IMMEDIATE_INSTR
};
enum Prefixes {
ESCAPE_PREFIX = 0x0F,
OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
REPNE_PREFIX = 0xF2,
REP_PREFIX = 0xF3,
REPEQ_PREFIX = REP_PREFIX
};
struct InstructionDesc {
const char* mnem;
InstructionType type;
OperandType op_order_;
bool byte_size_operation; // Fixed 8-bit operation.
};
class InstructionTable : public ValueObject {
public:
InstructionTable();
const InstructionDesc& Get(uint8_t x) const { return instructions_[x]; }
private:
InstructionDesc instructions_[256];
void Clear();
void Init();
void CopyTable(const ByteMnemonic bm[], InstructionType type);
void SetTableRange(InstructionType type,
uint8_t start,
uint8_t end,
bool byte_size,
const char* mnem);
void AddJumpConditionalShort();
DISALLOW_COPY_AND_ASSIGN(InstructionTable);
};
InstructionTable::InstructionTable() {
Clear();
Init();
}
void InstructionTable::Clear() {
for (int i = 0; i < 256; i++) {
instructions_[i].mnem = "(bad)";
instructions_[i].type = NO_INSTR;
instructions_[i].op_order_ = UNSET_OP_ORDER;
instructions_[i].byte_size_operation = false;
}
}
void InstructionTable::Init() {
CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
CopyTable(call_jump_instr, CALL_JUMP_INSTR);
CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
AddJumpConditionalShort();
SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
}
void InstructionTable::CopyTable(const ByteMnemonic bm[],
InstructionType type) {
for (int i = 0; bm[i].b >= 0; i++) {
InstructionDesc* id = &instructions_[bm[i].b];
id->mnem = bm[i].mnem;
OperandType op_order = bm[i].op_order_;
id->op_order_ =
static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
ASSERT(NO_INSTR == id->type); // Information not already entered
id->type = type;
id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
}
}
void InstructionTable::SetTableRange(InstructionType type,
uint8_t start,
uint8_t end,
bool byte_size,
const char* mnem) {
for (uint8_t b = start; b <= end; b++) {
InstructionDesc* id = &instructions_[b];
ASSERT(NO_INSTR == id->type); // Information not already entered
id->mnem = mnem;
id->type = type;
id->byte_size_operation = byte_size;
}
}
void InstructionTable::AddJumpConditionalShort() {
for (uint8_t b = 0x70; b <= 0x7F; b++) {
InstructionDesc* id = &instructions_[b];
ASSERT(NO_INSTR == id->type); // Information not already entered
id->mnem = NULL; // Computed depending on condition code.
id->type = JUMP_CONDITIONAL_SHORT_INSTR;
}
}
static InstructionTable instruction_table;
static InstructionDesc cmov_instructions[16] = {
{"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
{"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}};
//-------------------------------------------------
// DisassemblerX64 implementation.
static const int kMaxXmmRegisters = 16;
static const char* xmm_regs[kMaxXmmRegisters] = {
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"};
class DisassemblerX64 : public ValueObject {
public:
DisassemblerX64(char* buffer, intptr_t buffer_size)
: buffer_(buffer),
buffer_size_(buffer_size),
buffer_pos_(0),
rex_(0),
operand_size_(0),
group_1_prefix_(0),
byte_size_operand_(false) {
buffer_[buffer_pos_] = '\0';
}
virtual ~DisassemblerX64() {}
int InstructionDecode(uword pc);
private:
enum OperandSize {
BYTE_SIZE = 0,
WORD_SIZE = 1,
DOUBLEWORD_SIZE = 2,
QUADWORD_SIZE = 3
};
void setRex(uint8_t rex) {
ASSERT(0x40 == (rex & 0xF0));
rex_ = rex;
}
bool rex() { return rex_ != 0; }
bool rex_b() { return (rex_ & 0x01) != 0; }
// Actual number of base register given the low bits and the rex.b state.
int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }
bool rex_x() { return (rex_ & 0x02) != 0; }
bool rex_r() { return (rex_ & 0x04) != 0; }
bool rex_w() { return (rex_ & 0x08) != 0; }
OperandSize operand_size() {
if (byte_size_operand_) return BYTE_SIZE;
if (rex_w()) return QUADWORD_SIZE;
if (operand_size_ != 0) return WORD_SIZE;
return DOUBLEWORD_SIZE;
}
char operand_size_code() { return "bwlq"[operand_size()]; }
// Disassembler helper functions.
void get_modrm(uint8_t data, int* mod, int* regop, int* rm) {
*mod = (data >> 6) & 3;
*regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
*rm = (data & 7) | (rex_b() ? 8 : 0);
}
void get_sib(uint8_t data, int* scale, int* index, int* base) {
*scale = (data >> 6) & 3;
*index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
*base = (data & 7) | (rex_b() ? 8 : 0);
}
const char* NameOfCPURegister(int reg) const {
return Assembler::RegisterName(static_cast<Register>(reg));
}
const char* NameOfByteCPURegister(int reg) const {
return NameOfCPURegister(reg);
}
const char* NameOfXMMRegister(int reg) const {
ASSERT((0 <= reg) && (reg < kMaxXmmRegisters));
return xmm_regs[reg];
}
void Print(const char* format, ...) PRINTF_ATTRIBUTE(2, 3);
void PrintAddress(uint8_t* addr);
int PrintOperands(const char* mnem, OperandType op_order, uint8_t* data);
typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;
int PrintRightOperandHelper(uint8_t* modrmp,
RegisterNameMapping register_name);
int PrintRightOperand(uint8_t* modrmp);
int PrintRightByteOperand(uint8_t* modrmp);
int PrintRightXMMOperand(uint8_t* modrmp);
void PrintDisp(int disp, const char* after);
int PrintImmediate(uint8_t* data, OperandSize size, bool sign_extend = false);
void PrintImmediateValue(int64_t value, bool signed_value = false);
int PrintImmediateOp(uint8_t* data);
const char* TwoByteMnemonic(uint8_t opcode);
int TwoByteOpcodeInstruction(uint8_t* data);
int F6F7Instruction(uint8_t* data);
int ShiftInstruction(uint8_t* data);
int JumpShort(uint8_t* data);
int JumpConditional(uint8_t* data);
int JumpConditionalShort(uint8_t* data);
int SetCC(uint8_t* data);
int FPUInstruction(uint8_t* data);
int MemoryFPUInstruction(int escape_opcode, int regop, uint8_t* modrm_start);
int RegisterFPUInstruction(int escape_opcode, uint8_t modrm_byte);
bool DecodeInstructionType(uint8_t** data);
void UnimplementedInstruction() { Print("'Unimplemented Instruction'"); }
char* buffer_; // Decode instructions into this buffer.
intptr_t buffer_size_; // The size of the buffer_.
intptr_t buffer_pos_; // Current character position in the buffer_.
// Prefixes parsed
uint8_t rex_;
uint8_t operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0.
// 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
uint8_t group_1_prefix_;
// Byte size operand override.
bool byte_size_operand_;
DISALLOW_COPY_AND_ASSIGN(DisassemblerX64);
};
// Append the str to the output buffer.
void DisassemblerX64::Print(const char* format, ...) {
intptr_t available = buffer_size_ - buffer_pos_;
if (available <= 1) {
ASSERT(buffer_[buffer_pos_] == '\0');
return;
}
char* buf = buffer_ + buffer_pos_;
va_list args;
va_start(args, format);
int length = OS::VSNPrint(buf, available, format, args);
va_end(args);
buffer_pos_ =
(length >= available) ? (buffer_size_ - 1) : (buffer_pos_ + length);
ASSERT(buffer_pos_ < buffer_size_);
}
int DisassemblerX64::PrintRightOperandHelper(
uint8_t* modrmp,
RegisterNameMapping direct_register_name) {
int mod, regop, rm;
get_modrm(*modrmp, &mod, &regop, &rm);
RegisterNameMapping register_name =
(mod == 3) ? direct_register_name : &DisassemblerX64::NameOfCPURegister;
switch (mod) {
case 0:
if ((rm & 7) == 5) {
int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
Print("[rip");
PrintDisp(disp, "]");
return 5;
} else if ((rm & 7) == 4) {
// Codes for SIB byte.
uint8_t sib = *(modrmp + 1);
int scale, index, base;
get_sib(sib, &scale, &index, &base);
if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
// index == rsp means no index. Only use sib byte with no index for
// rsp and r12 base.
Print("[%s]", NameOfCPURegister(base));
return 2;
} else if (base == 5) {
// base == rbp means no base register (when mod == 0).
int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
Print("[%s*%d", NameOfCPURegister(index), 1 << scale);
PrintDisp(disp, "]");
return 6;
} else if (index != 4 && base != 5) {
// [base+index*scale]
Print("[%s+%s*%d]", NameOfCPURegister(base), NameOfCPURegister(index),
1 << scale);
return 2;
} else {
UnimplementedInstruction();
return 1;
}
} else {
Print("[%s]", NameOfCPURegister(rm));
return 1;
}
break;
case 1: // fall through
case 2:
if ((rm & 7) == 4) {
uint8_t sib = *(modrmp + 1);
int scale, index, base;
get_sib(sib, &scale, &index, &base);
int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
: *reinterpret_cast<char*>(modrmp + 2);
if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
Print("[%s", NameOfCPURegister(base));
PrintDisp(disp, "]");
} else {
Print("[%s+%s*%d", NameOfCPURegister(base), NameOfCPURegister(index),
1 << scale);
PrintDisp(disp, "]");
}
return mod == 2 ? 6 : 3;
} else {
// No sib.
int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
: *reinterpret_cast<char*>(modrmp + 1);
Print("[%s", NameOfCPURegister(rm));
PrintDisp(disp, "]");
return (mod == 2) ? 5 : 2;
}
break;
case 3:
Print("%s", (this->*register_name)(rm));
return 1;
default:
UnimplementedInstruction();
return 1;
}
UNREACHABLE();
}
int DisassemblerX64::PrintImmediate(uint8_t* data,
OperandSize size,
bool sign_extend) {
int64_t value;
int count;
switch (size) {
case BYTE_SIZE:
if (sign_extend) {
value = *reinterpret_cast<int8_t*>(data);
} else {
value = *data;
}
count = 1;
break;
case WORD_SIZE:
if (sign_extend) {
value = *reinterpret_cast<int16_t*>(data);
} else {
value = *reinterpret_cast<uint16_t*>(data);
}
count = 2;
break;
case DOUBLEWORD_SIZE:
case QUADWORD_SIZE:
if (sign_extend) {
value = *reinterpret_cast<int32_t*>(data);
} else {
value = *reinterpret_cast<uint32_t*>(data);
}
count = 4;
break;
default:
UNREACHABLE();
value = 0; // Initialize variables on all paths to satisfy the compiler.
count = 0;
}
PrintImmediateValue(value, sign_extend);
return count;
}
void DisassemblerX64::PrintImmediateValue(int64_t value, bool signed_value) {
if ((value >= 0) && (value <= 9)) {
Print("%" Pd64 "", value);
} else {
if (value < 0 && signed_value) {
Print("-%#" Px64 "", -value);
} else {
Print("%#" Px64 "", value);
}
}
}
void DisassemblerX64::PrintDisp(int disp, const char* after) {
if (-disp > 0) {
Print("-%#x", -disp);
} else {
Print("+%#x", disp);
}
if (after != NULL) Print("%s", after);
}
// Returns number of bytes used by machine instruction, including *data byte.
// Writes immediate instructions to 'tmp_buffer_'.
int DisassemblerX64::PrintImmediateOp(uint8_t* data) {
bool byte_size_immediate = (*data & 0x02) != 0;
uint8_t modrm = *(data + 1);
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
const char* mnem = "Imm???";
switch (regop) {
case 0:
mnem = "add";
break;
case 1:
mnem = "or";
break;
case 2:
mnem = "adc";
break;
case 3:
mnem = "sbb";
break;
case 4:
mnem = "and";
break;
case 5:
mnem = "sub";
break;
case 6:
mnem = "xor";
break;
case 7:
mnem = "cmp";
break;
default:
UnimplementedInstruction();
}
Print("%s%c ", mnem, operand_size_code());
int count = PrintRightOperand(data + 1);
Print(",");
OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size();
count +=
PrintImmediate(data + 1 + count, immediate_size, byte_size_immediate);
return 1 + count;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::F6F7Instruction(uint8_t* data) {
ASSERT(*data == 0xF7 || *data == 0xF6);
uint8_t modrm = *(data + 1);
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
if (mod == 3 && regop != 0) {
const char* mnem = NULL;
switch (regop) {
case 2:
mnem = "not";
break;
case 3:
mnem = "neg";
break;
case 4:
mnem = "mul";
break;
case 6:
mnem = "div";
break;
case 7:
mnem = "idiv";
break;
default:
UnimplementedInstruction();
}
Print("%s%c %s", mnem, operand_size_code(), NameOfCPURegister(rm));
return 2;
} else if (regop == 0) {
Print("test%c ", operand_size_code());
int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
Print(",");
count += PrintImmediate(data + 1 + count, operand_size());
return 1 + count;
} else {
UnimplementedInstruction();
return 2;
}
}
int DisassemblerX64::ShiftInstruction(uint8_t* data) {
uint8_t op = *data & (~1);
if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
UnimplementedInstruction();
return 1;
}
uint8_t modrm = *(data + 1);
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
regop &= 0x7; // The REX.R bit does not affect the operation.
int imm8 = -1;
int num_bytes = 2;
if (mod != 3) {
UnimplementedInstruction();
return num_bytes;
}
const char* mnem = NULL;
switch (regop) {
case 0:
mnem = "rol";
break;
case 1:
mnem = "ror";
break;
case 2:
mnem = "rcl";
break;
case 3:
mnem = "rcr";
break;
case 4:
mnem = "shl";
break;
case 5:
mnem = "shr";
break;
case 7:
mnem = "sar";
break;
default:
UnimplementedInstruction();
return num_bytes;
}
ASSERT(NULL != mnem);
if (op == 0xD0) {
imm8 = 1;
} else if (op == 0xC0) {
imm8 = *(data + 2);
num_bytes = 3;
}
Print("%s%c %s,", mnem, operand_size_code(),
byte_size_operand_ ? NameOfByteCPURegister(rm) : NameOfCPURegister(rm));
if (op == 0xD2) {
Print("cl");
} else {
Print("%d", imm8);
}
return num_bytes;
}
int DisassemblerX64::PrintRightOperand(uint8_t* modrmp) {
return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfCPURegister);
}
int DisassemblerX64::PrintRightByteOperand(uint8_t* modrmp) {
return PrintRightOperandHelper(modrmp,
&DisassemblerX64::NameOfByteCPURegister);
}
int DisassemblerX64::PrintRightXMMOperand(uint8_t* modrmp) {
return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfXMMRegister);
}
// Returns number of bytes used including the current *data.
// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
int DisassemblerX64::PrintOperands(const char* mnem,
OperandType op_order,
uint8_t* data) {
uint8_t modrm = *data;
int mod, regop, rm;
get_modrm(modrm, &mod, &regop, &rm);
int advance = 0;
const char* register_name = byte_size_operand_ ? NameOfByteCPURegister(regop)
: NameOfCPURegister(regop);
switch (op_order) {
case REG_OPER_OP_ORDER: {
Print("%s%c %s,", mnem, operand_size_code(), register_name);
advance = byte_size_operand_ ? PrintRightByteOperand(data)
: PrintRightOperand(data);
break;
}
case OPER_REG_OP_ORDER: {
Print("%s%c ", mnem, operand_size_code());
advance = byte_size_operand_ ? PrintRightByteOperand(data)
: PrintRightOperand(data);
Print(",%s", register_name);
break;
}
default:
UNREACHABLE();
break;
}
return advance;
}
void DisassemblerX64::PrintAddress(uint8_t* addr_byte_ptr) {
uword addr = reinterpret_cast<uword>(addr_byte_ptr);
Print("%#" Px "", addr);
}
// Returns number of bytes used, including *data.
int DisassemblerX64::JumpShort(uint8_t* data) {
ASSERT(0xEB == *data);
uint8_t b = *(data + 1);
uint8_t* dest = data + static_cast<int8_t>(b) + 2;
Print("jmp ");
PrintAddress(dest);
return 2;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditional(uint8_t* data) {
ASSERT(0x0F == *data);
uint8_t cond = *(data + 1) & 0x0F;
uint8_t* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
const char* mnem = conditional_code_suffix[cond];
Print("j%s ", mnem);
PrintAddress(dest);
return 6; // includes 0x0F
}
// Returns number of bytes used, including *data.
int DisassemblerX64::JumpConditionalShort(uint8_t* data) {
uint8_t cond = *data & 0x0F;
uint8_t b = *(data + 1);
uint8_t* dest = data + static_cast<int8_t>(b) + 2;
const char* mnem = conditional_code_suffix[cond];
Print("j%s ", mnem);
PrintAddress(dest);
return 2;
}
// Returns number of bytes used, including *data.
int DisassemblerX64::SetCC(uint8_t* data) {
ASSERT(0x0F == *data);
uint8_t cond = *(data + 1) & 0x0F;
const char* mnem = conditional_code_suffix[cond];
Print("set%s%c ", mnem, operand_size_code());
PrintRightByteOperand(data + 2);
return 3; // includes 0x0F
}
// Returns number of bytes used, including *data.
int DisassemblerX64::FPUInstruction(uint8_t* data) {
uint8_t escape_opcode = *data;
ASSERT(0xD8 == (escape_opcode & 0xF8));
uint8_t modrm_byte = *(data + 1);
if (modrm_byte >= 0xC0) {
return RegisterFPUInstruction(escape_opcode, modrm_byte);
} else {
return MemoryFPUInstruction(escape_opcode, modrm_byte, data + 1);
}
}
int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
int modrm_byte,
uint8_t* modrm_start) {
const char* mnem = "?";
int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
switch (escape_opcode) {
case 0xD9:
switch (regop) {
case 0:
mnem = "fld_s";
break;
case 3:
mnem = "fstp_s";
break;
case 7:
mnem = "fstcw";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDB:
switch (regop) {
case 0:
mnem = "fild_s";
break;
case 1:
mnem = "fisttp_s";
break;
case 2:
mnem = "fist_s";
break;
case 3:
mnem = "fistp_s";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDD:
switch (regop) {
case 0:
mnem = "fld_d";
break;
case 3:
mnem = "fstp_d";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDF:
switch (regop) {
case 5:
mnem = "fild_d";
break;
case 7:
mnem = "fistp_d";
break;
default:
UnimplementedInstruction();
}
break;
default:
UnimplementedInstruction();
}
Print("%s ", mnem);
int count = PrintRightOperand(modrm_start);
return count + 1;
}
int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
uint8_t modrm_byte) {
bool has_register = false; // Is the FPU register encoded in modrm_byte?
const char* mnem = "?";
switch (escape_opcode) {
case 0xD8:
UnimplementedInstruction();
break;
case 0xD9:
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "fld";
has_register = true;
break;
case 0xC8:
mnem = "fxch";
has_register = true;
break;
default:
switch (modrm_byte) {
case 0xE0:
mnem = "fchs";
break;
case 0xE1:
mnem = "fabs";
break;
case 0xE3:
mnem = "fninit";
break;
case 0xE4:
mnem = "ftst";
break;
case 0xE8:
mnem = "fld1";
break;
case 0xEB:
mnem = "fldpi";
break;
case 0xED:
mnem = "fldln2";
break;
case 0xEE:
mnem = "fldz";
break;
case 0xF0:
mnem = "f2xm1";
break;
case 0xF1:
mnem = "fyl2x";
break;
case 0xF2:
mnem = "fptan";
break;
case 0xF5:
mnem = "fprem1";
break;
case 0xF7:
mnem = "fincstp";
break;
case 0xF8:
mnem = "fprem";
break;
case 0xFD:
mnem = "fscale";
break;
case 0xFE:
mnem = "fsin";
break;
case 0xFF:
mnem = "fcos";
break;
default:
UnimplementedInstruction();
}
}
break;
case 0xDA:
if (modrm_byte == 0xE9) {
mnem = "fucompp";
} else {
UnimplementedInstruction();
}
break;
case 0xDB:
if ((modrm_byte & 0xF8) == 0xE8) {
mnem = "fucomi";
has_register = true;
} else if (modrm_byte == 0xE2) {
mnem = "fclex";
} else {
UnimplementedInstruction();
}
break;
case 0xDC:
has_register = true;
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "fadd";
break;
case 0xE8:
mnem = "fsub";
break;
case 0xC8:
mnem = "fmul";
break;
case 0xF8:
mnem = "fdiv";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDD:
has_register = true;
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "ffree";
break;
case 0xD8:
mnem = "fstp";
break;
default:
UnimplementedInstruction();
}
break;
case 0xDE:
if (modrm_byte == 0xD9) {
mnem = "fcompp";
} else {
has_register = true;
switch (modrm_byte & 0xF8) {
case 0xC0:
mnem = "faddp";
break;
case 0xE8:
mnem = "fsubp";
break;
case 0xC8:
mnem = "fmulp";
break;
case 0xF8:
mnem = "fdivp";
break;
default:
UnimplementedInstruction();
}
}
break;
case 0xDF:
if (modrm_byte == 0xE0) {
mnem = "fnstsw_ax";
} else if ((modrm_byte & 0xF8) == 0xE8) {
mnem = "fucomip";
has_register = true;
}
break;
default:
UnimplementedInstruction();
}
if (has_register) {
Print("%s st%d", mnem, modrm_byte & 0x7);
} else {
Print("%s", mnem);
}
return 2;
}
// TODO(srdjan): Should we add a branch hint argument?
bool DisassemblerX64::DecodeInstructionType(uint8_t** data) {
uint8_t current;
// Scan for prefixes.
while (true) {
current = **data;
if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix.
operand_size_ = current;
} else if ((current & 0xF0) == 0x40) { // REX prefix.
setRex(current);
// TODO(srdjan): Should we enable printing of REX.W?
// if (rex_w()) Print("REX.W ");
} else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3).
group_1_prefix_ = current;
} else if (current == 0xF0) {
Print("lock ");
} else { // Not a prefix - an opcode.
break;
}
(*data)++;
}
const InstructionDesc& idesc = instruction_table.Get(current);
byte_size_operand_ = idesc.byte_size_operation;
switch (idesc.type) {
case ZERO_OPERANDS_INSTR:
if (current >= 0xA4 && current <= 0xA7) {
// String move or compare operations.
if (group_1_prefix_ == REP_PREFIX) {
// REP.
Print("rep ");
}
// TODO(srdjan): Should we enable printing of REX.W?
// if (rex_w()) Print("REX.W ");
Print("%s%c", idesc.mnem, operand_size_code());
} else {
Print("%s%c", idesc.mnem, operand_size_code());
}
(*data)++;
break;
case TWO_OPERANDS_INSTR:
(*data)++;
(*data) += PrintOperands(idesc.mnem, idesc.op_order_, *data);
break;
case JUMP_CONDITIONAL_SHORT_INSTR:
(*data) += JumpConditionalShort(*data);
break;
case REGISTER_INSTR:
Print("%s%c %s", idesc.mnem, operand_size_code(),
NameOfCPURegister(base_reg(current & 0x07)));
(*data)++;
break;
case PUSHPOP_INSTR:
Print("%s %s", idesc.mnem, NameOfCPURegister(base_reg(current & 0x07)));
(*data)++;
break;
case MOVE_REG_INSTR: {
uint8_t* addr = NULL;
switch (operand_size()) {
case WORD_SIZE:
addr = reinterpret_cast<uint8_t*>(
*reinterpret_cast<int16_t*>(*data + 1));
(*data) += 3;
break;
case DOUBLEWORD_SIZE:
addr = reinterpret_cast<uint8_t*>(
*reinterpret_cast<int32_t*>(*data + 1));
(*data) += 5;
break;
case QUADWORD_SIZE:
addr = reinterpret_cast<uint8_t*>(
*reinterpret_cast<int64_t*>(*data + 1));
(*data) += 9;
break;
default:
UNREACHABLE();
}
Print("mov%c %s,", operand_size_code(),
NameOfCPURegister(base_reg(current & 0x07)));
PrintAddress(addr);
break;
}
case CALL_JUMP_INSTR: {
uint8_t* addr = *data + *reinterpret_cast<int32_t*>(*data + 1) + 5;
Print("%s ", idesc.mnem);
PrintAddress(addr);
(*data) += 5;
break;
}
case SHORT_IMMEDIATE_INSTR: {
uint8_t* addr =
reinterpret_cast<uint8_t*>(*reinterpret_cast<int32_t*>(*data + 1));
Print("%s rax, ", idesc.mnem);
PrintAddress(addr);
(*data) += 5;
break;
}
case NO_INSTR:
return false;
default:
UNIMPLEMENTED(); // This type is not implemented.
}
return true;
}
// Handle all two-byte opcodes, which start with 0x0F.
// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
// We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
int DisassemblerX64::TwoByteOpcodeInstruction(uint8_t* data) {
uint8_t opcode = *(data + 1);
uint8_t* current = data + 2;
// At return, "current" points to the start of the next instruction.
const char* mnemonic = TwoByteMnemonic(opcode);
if (operand_size_ == 0x66) {
// 0x66 0x0F prefix.
int mod, regop, rm;
if (opcode == 0xC6) {
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("shufpd %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
Print(" [%x]", *current);
current++;
} else if (opcode == 0x3A) {
uint8_t third_byte = *current;
current = data + 3;
if (third_byte == 0x17) {
get_modrm(*current, &mod, &regop, &rm);
Print("extractps "); // reg/m32, xmm, imm8
current += PrintRightOperand(current);
Print(", %s, %d", NameOfCPURegister(regop), (*current) & 3);
current += 1;
} else if (third_byte == 0x0b) {
get_modrm(*current, &mod, &regop, &rm);
// roundsd xmm, xmm/m64, imm8
Print("roundsd %s, ", NameOfCPURegister(regop));
current += PrintRightOperand(current);
Print(", %d", (*current) & 3);
current += 1;
} else {
UnimplementedInstruction();
}
} else {
get_modrm(*current, &mod, &regop, &rm);
if (opcode == 0x1f) {
current++;
if (rm == 4) { // SIB byte present.
current++;
}
if (mod == 1) { // Byte displacement.
current += 1;
} else if (mod == 2) { // 32-bit displacement.
current += 4;
} // else no immediate displacement.
Print("nop");
} else if (opcode == 0x28) {
Print("movapd %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x29) {
Print("movapd ");
current += PrintRightXMMOperand(current);
Print(", %s", NameOfXMMRegister(regop));
} else if (opcode == 0x6E) {
Print("mov%c %s,", rex_w() ? 'q' : 'd', NameOfXMMRegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0x6F) {
Print("movdqa %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x7E) {
Print("mov%c ", rex_w() ? 'q' : 'd');
current += PrintRightOperand(current);
Print(", %s", NameOfXMMRegister(regop));
} else if (opcode == 0x7F) {
Print("movdqa ");
current += PrintRightXMMOperand(current);
Print(", %s", NameOfXMMRegister(regop));
} else if (opcode == 0xD6) {
Print("movq ");
current += PrintRightXMMOperand(current);
Print(", %s", NameOfXMMRegister(regop));
} else if (opcode == 0x50) {
Print("movmskpd %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else {
const char* mnemonic = "?";
if (opcode == 0x14) {
mnemonic = "unpcklpd";
} else if (opcode == 0x15) {
mnemonic = "unpckhpd";
} else if (opcode == 0x54) {
mnemonic = "andpd";
} else if (opcode == 0x56) {
mnemonic = "orpd";
} else if (opcode == 0x57) {
mnemonic = "xorpd";
} else if (opcode == 0x2E) {
mnemonic = "ucomisd";
} else if (opcode == 0x2F) {
mnemonic = "comisd";
} else if (opcode == 0xFE) {
mnemonic = "paddd";
} else if (opcode == 0xFA) {
mnemonic = "psubd";
} else if (opcode == 0x58) {
mnemonic = "addpd";
} else if (opcode == 0x5C) {
mnemonic = "subpd";
} else if (opcode == 0x59) {
mnemonic = "mulpd";
} else if (opcode == 0x5E) {
mnemonic = "divpd";
} else if (opcode == 0x5D) {
mnemonic = "minpd";
} else if (opcode == 0x5F) {
mnemonic = "maxpd";
} else if (opcode == 0x51) {
mnemonic = "sqrtpd";
} else if (opcode == 0x5A) {
mnemonic = "cvtpd2ps";
} else {
UnimplementedInstruction();
}
Print("%s %s,", mnemonic, NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
}
}
} else if (group_1_prefix_ == 0xF2) {
// Beginning of instructions with prefix 0xF2.
if (opcode == 0x11 || opcode == 0x10) {
// MOVSD: Move scalar double-precision fp to/from/between XMM registers.
Print("movsd ");
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
if (opcode == 0x11) {
current += PrintRightXMMOperand(current);
Print(",%s", NameOfXMMRegister(regop));
} else {
Print("%s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
}
} else if (opcode == 0x2A) {
// CVTSI2SD: integer to XMM double conversion.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("%sd %s,", mnemonic, NameOfXMMRegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0x2C) {
// CVTTSD2SI:
// Convert with truncation scalar double-precision FP to integer.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("cvttsd2si%c %s,", operand_size_code(), NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x2D) {
// CVTSD2SI: Convert scalar double-precision FP to integer.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("cvtsd2si%c %s,", operand_size_code(), NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
// XMM arithmetic. Mnemonic was retrieved at the start of this function.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("%s %s,", mnemonic, NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else {
UnimplementedInstruction();
}
} else if (group_1_prefix_ == 0xF3) {
// Instructions with prefix 0xF3.
if (opcode == 0x11 || opcode == 0x10) {
// MOVSS: Move scalar double-precision fp to/from/between XMM registers.
Print("movss ");
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
if (opcode == 0x11) {
current += PrintRightOperand(current);
Print(",%s", NameOfXMMRegister(regop));
} else {
Print("%s,", NameOfXMMRegister(regop));
current += PrintRightOperand(current);
}
} else if (opcode == 0x2A) {
// CVTSI2SS: integer to XMM single conversion.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("%ss %s,", mnemonic, NameOfXMMRegister(regop));
current += PrintRightOperand(current);
} else if (opcode == 0x2C) {
// CVTTSS2SI:
// Convert with truncation scalar single-precision FP to dword integer.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("cvttss2si%c %s,", operand_size_code(), NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x5A) {
// CVTSS2SD:
// Convert scalar single-precision FP to scalar double-precision FP.
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("cvtss2sd %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x7E) {
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("movq %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x58) {
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("addss %s,", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else {
UnimplementedInstruction();
}
} else if (opcode == 0x1F) {
// NOP
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
current++;
if (rm == 4) { // SIB byte present.
current++;
}
if (mod == 1) { // Byte displacement.
current += 1;
} else if (mod == 2) { // 32-bit displacement.
current += 4;
} // else no immediate displacement.
Print("nop");
} else if (opcode == 0x28) {
// movaps xmm, xmm/m128
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("movaps %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x29) {
// movaps xmm/m128, xmm
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("movaps ");
current += PrintRightXMMOperand(current);
Print(", %s", NameOfXMMRegister(regop));
} else if (opcode == 0x11) {
// movups xmm/m128, xmm
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("movups ");
current += PrintRightXMMOperand(current);
Print(", %s", NameOfXMMRegister(regop));
} else if (opcode == 0x10) {
// movups xmm, xmm/m128
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("movups %s, ", NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0x50) {
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("movmskps %s,", NameOfCPURegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0xA2 || opcode == 0x31) {
// RDTSC or CPUID
Print("%s", mnemonic);
} else if ((opcode & 0xF0) == 0x40) {
// CMOVcc: conditional move.
int condition = opcode & 0x0F;
const InstructionDesc& idesc = cmov_instructions[condition];
byte_size_operand_ = idesc.byte_size_operation;
current += PrintOperands(idesc.mnem, idesc.op_order_, current);
} else if (opcode == 0x12 || opcode == 0x14 || opcode == 0x15 ||
opcode == 0x16 || opcode == 0x51 || opcode == 0x52 ||
opcode == 0x53 || opcode == 0x54 || opcode == 0x56 ||
opcode == 0x57 || opcode == 0x58 || opcode == 0x59 ||
opcode == 0x5A || opcode == 0x5C || opcode == 0x5D ||
opcode == 0x5E || opcode == 0x5F) {
const char* mnemonic = NULL;
switch (opcode) {
case 0x12:
mnemonic = "movhlps";
break;
case 0x14:
mnemonic = "unpcklps";
break;
case 0x15:
mnemonic = "unpckhps";
break;
case 0x16:
mnemonic = "movlhps";
break;
case 0x51:
mnemonic = "sqrtps";
break;
case 0x52:
mnemonic = "rsqrtps";
break;
case 0x53:
mnemonic = "rcpps";
break;
case 0x54:
mnemonic = "andps";
break;
case 0x56:
mnemonic = "orps";
break;
case 0x57:
mnemonic = "xorps";
break;
case 0x58:
mnemonic = "addps";
break;
case 0x59:
mnemonic = "mulps";
break;
case 0x5A:
mnemonic = "cvtsd2ss";
break;
case 0x5C:
mnemonic = "subps";
break;
case 0x5D:
mnemonic = "minps";
break;
case 0x5E:
mnemonic = "divps";
break;
case 0x5F:
mnemonic = "maxps";
break;
default:
UNREACHABLE();
}
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
Print("%s %s, ", mnemonic, NameOfXMMRegister(regop));
current += PrintRightXMMOperand(current);
} else if (opcode == 0xC2 || opcode == 0xC6) {
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
if (opcode == 0xC2) {
Print("cmpps %s, ", NameOfXMMRegister(regop));
} else {
ASSERT(opcode == 0xC6);
Print("shufps %s, ", NameOfXMMRegister(regop));
}
current += PrintRightXMMOperand(current);
Print(" [%x]", *current);
current++;
} else if ((opcode & 0xF0) == 0x80) {
// Jcc: Conditional jump (branch).
current = data + JumpConditional(data);
} else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
opcode == 0xB7 || opcode == 0xAF || opcode == 0xB0 ||
opcode == 0xB1) {
// Size-extending moves, IMUL, cmpxchg.
current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);
} else if ((opcode & 0xF0) == 0x90) {
// SETcc: Set byte on condition. Needs pointer to beginning of instruction.
current = data + SetCC(data);
} else if (((opcode & 0xFE) == 0xA4) || ((opcode & 0xFE) == 0xAC) ||
(opcode == 0xAB) || (opcode == 0xA3) || (opcode == 0xBD)) {
// SHLD, SHRD (double-prec. shift), BTS (bit test and set), BT (bit test).
Print("%s%c ", mnemonic, operand_size_code());
int mod, regop, rm;
get_modrm(*current, &mod, &regop, &rm);
current += PrintRightOperand(current);
Print(",%s", NameOfCPURegister(regop));
if ((opcode == 0xAB) || (opcode == 0xA3) || (opcode == 0xBD)) {
// Done.
} else if ((opcode == 0xA5) || (opcode == 0xAD)) {
Print(",cl");
} else {
Print(",");
current += PrintImmediate(current, BYTE_SIZE);
}
} else {
UnimplementedInstruction();
}
return static_cast<int>(current - data);
}
// Mnemonics for two-byte opcode instructions starting with 0x0F.
// The argument is the second byte of the two-byte opcode.
// Returns NULL if the instruction is not handled here.
const char* DisassemblerX64::TwoByteMnemonic(uint8_t opcode) {
switch (opcode) {
case 0x1F:
return "nop";
case 0x2A: // F2/F3 prefix.
return "cvtsi2s";
case 0x31:
return "rdtsc";
case 0x51: // F2 prefix.
return "sqrtsd";
case 0x58: // F2 prefix.
return "addsd";
case 0x59: // F2 prefix.
return "mulsd";
case 0x5C: // F2 prefix.
return "subsd";
case 0x5E: // F2 prefix.
return "divsd";
case 0xA2:
return "cpuid";
case 0xA3:
return "bt";
case 0xA4:
case 0xA5:
return "shld";
case 0xAB:
return "bts";
case 0xAC:
case 0xAD:
return "shrd";
case 0xAF:
return "imul";
case 0xB0:
case 0xB1:
return "cmpxchg";
case 0xB6:
return "movzxb";
case 0xB7:
return "movzxw";
case 0xBE:
return "movsxb";
case 0xBD:
return "bsr";
case 0xBF:
return "movsxw";
case 0x12:
return "movhlps";
case 0x16:
return "movlhps";
default:
return NULL;
}
}
int DisassemblerX64::InstructionDecode(uword pc) {
uint8_t* data = reinterpret_cast<uint8_t*>(pc);
const bool processed = DecodeInstructionType(&data);
if (!processed) {
switch (*data) {
case 0xC2:
Print("ret ");
PrintImmediateValue(*reinterpret_cast<uint16_t*>(data + 1));
data += 3;
break;
case 0xC8:
Print("enter %d, %d", *reinterpret_cast<uint16_t*>(data + 1), data[3]);
data += 4;
break;
case 0x69: // fall through
case 0x6B: {
int mod, regop, rm;
get_modrm(*(data + 1), &mod, &regop, &rm);
int32_t imm =
*data == 0x6B ? *(data + 2) : *reinterpret_cast<int32_t*>(data + 2);
Print("imul%c %s,%s,", operand_size_code(), NameOfCPURegister(regop),
NameOfCPURegister(rm));
PrintImmediateValue(imm);
data += 2 + (*data == 0x6B ? 1 : 4);
break;
}
case 0x81: // fall through
case 0x83: // 0x81 with sign extension bit set
data += PrintImmediateOp(data);
break;
case 0x0F:
data += TwoByteOpcodeInstruction(data);
break;
case 0x8F: {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
if (regop == 0) {
Print("pop ");
data += PrintRightOperand(data);
}
} break;
case 0xFF: {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
const char* mnem = NULL;
switch (regop) {
case 0:
mnem = "inc";
break;
case 1:
mnem = "dec";
break;
case 2:
mnem = "call";
break;
case 4:
mnem = "jmp";
break;
case 6:
mnem = "push";
break;
default:
mnem = "???";
}
if (regop <= 1) {
Print("%s%c ", mnem, operand_size_code());
} else {
Print("%s ", mnem);
}
data += PrintRightOperand(data);
} break;
case 0xC7: // imm32, fall through
case 0xC6: // imm8
{
bool is_byte = *data == 0xC6;
data++;
if (is_byte) {
Print("movb ");
data += PrintRightByteOperand(data);
int32_t imm = *data;
Print(",");
PrintImmediateValue(imm);
data++;
} else {
Print("mov%c ", operand_size_code());
data += PrintRightOperand(data);
int32_t imm = *reinterpret_cast<int32_t*>(data);
Print(",");
PrintImmediateValue(imm);
data += 4;
}
} break;
case 0x80: {
data++;
Print("cmpb ");
data += PrintRightByteOperand(data);
int32_t imm = *data;
Print(",");
PrintImmediateValue(imm);
data++;
} break;
case 0x88: // 8bit, fall through
case 0x89: // 32bit
{
bool is_byte = *data == 0x88;
int mod, regop, rm;
data++;
get_modrm(*data, &mod, &regop, &rm);
if (is_byte) {
Print("movb ");
data += PrintRightByteOperand(data);
Print(",%s", NameOfByteCPURegister(regop));
} else {
Print("mov%c ", operand_size_code());
data += PrintRightOperand(data);
Print(",%s", NameOfCPURegister(regop));
}
} break;
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97: {
int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
if (reg == 0) {
Print("nop"); // Common name for xchg rax,rax.
} else {
Print("xchg%c rax, %s", operand_size_code(), NameOfCPURegister(reg));
}
data++;
} break;
case 0xB0:
case 0xB1:
case 0xB2:
case 0xB3:
case 0xB4:
case 0xB5:
case 0xB6:
case 0xB7:
case 0xB8:
case 0xB9:
case 0xBA:
case 0xBB:
case 0xBC:
case 0xBD:
case 0xBE:
case 0xBF: {
// mov reg8,imm8 or mov reg32,imm32
uint8_t opcode = *data;
data++;
uint8_t is_32bit = (opcode >= 0xB8);
int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
if (is_32bit) {
Print("mov%c %s,", operand_size_code(), NameOfCPURegister(reg));
data += PrintImmediate(data, DOUBLEWORD_SIZE);
} else {
Print("movb %s,", NameOfByteCPURegister(reg));
data += PrintImmediate(data, BYTE_SIZE);
}
break;
}
case 0xFE: {
data++;
int mod, regop, rm;
get_modrm(*data, &mod, &regop, &rm);
if (regop == 1) {
Print("decb ");
data += PrintRightByteOperand(data);
} else {
UnimplementedInstruction();
}
break;
}
case 0x68:
Print("push ");
PrintImmediateValue(*reinterpret_cast<int32_t*>(data + 1));
data += 5;
break;
case 0x6A:
Print("push ");
PrintImmediateValue(*reinterpret_cast<int8_t*>(data + 1));
data += 2;
break;
case 0xA1: // Fall through.
case 0xA3:
switch (operand_size()) {
case DOUBLEWORD_SIZE: {
PrintAddress(reinterpret_cast<uint8_t*>(
*reinterpret_cast<int32_t*>(data + 1)));
if (*data == 0xA1) { // Opcode 0xA1
Print("movzxlq rax,(");
PrintAddress(reinterpret_cast<uint8_t*>(
*reinterpret_cast<int32_t*>(data + 1)));
Print(")");
} else { // Opcode 0xA3
Print("movzxlq (");
PrintAddress(reinterpret_cast<uint8_t*>(
*reinterpret_cast<int32_t*>(data + 1)));
Print("),rax");
}
data += 5;
break;
}
case QUADWORD_SIZE: {
// New x64 instruction mov rax,(imm_64).
if (*data == 0xA1) { // Opcode 0xA1
Print("movq rax,(");
PrintAddress(*reinterpret_cast<uint8_t**>(data + 1));
Print(")");
} else { // Opcode 0xA3
Print("movq (");
PrintAddress(*reinterpret_cast<uint8_t**>(data + 1));
Print("),rax");
}
data += 9;
break;
}
default:
UnimplementedInstruction();
data += 2;
}
break;
case 0xA8:
Print("test al,");
PrintImmediateValue(*reinterpret_cast<uint8_t*>(data + 1));
data += 2;
break;
case 0xA9: {
int64_t value = 0;
switch (operand_size()) {
case WORD_SIZE:
value = *reinterpret_cast<uint16_t*>(data + 1);
data += 3;
break;
case DOUBLEWORD_SIZE:
value = *reinterpret_cast<uint32_t*>(data + 1);
data += 5;
break;
case QUADWORD_SIZE:
value = *reinterpret_cast<int32_t*>(data + 1);
data += 5;
break;
default:
UNREACHABLE();
}
Print("test%c rax,", operand_size_code());
PrintImmediateValue(value);
break;
}
case 0xD1: // fall through
case 0xD3: // fall through
case 0xC1:
data += ShiftInstruction(data);
break;
case 0xD0: // fall through
case 0xD2: // fall through
case 0xC0:
byte_size_operand_ = true;
data += ShiftInstruction(data);
break;
case 0xD9: // fall through
case 0xDA: // fall through
case 0xDB: // fall through
case 0xDC: // fall through
case 0xDD: // fall through
case 0xDE: // fall through
case 0xDF:
data += FPUInstruction(data);
break;
case 0xEB:
data += JumpShort(data);
break;
case 0xF6:
byte_size_operand_ = true; // fall through
case 0xF7:
data += F6F7Instruction(data);
break;
default:
UnimplementedInstruction();
data += 1;
}
} // !processed
ASSERT(buffer_[buffer_pos_] == '\0');
int instr_len = data - reinterpret_cast<uint8_t*>(pc);
ASSERT(instr_len > 0); // Ensure progress.
return instr_len;
}
void Disassembler::DecodeInstruction(char* hex_buffer,
intptr_t hex_size,
char* human_buffer,
intptr_t human_size,
int* out_instr_len,
const Code& code,
Object** object,
uword pc) {
ASSERT(hex_size > 0);
ASSERT(human_size > 0);
DisassemblerX64 decoder(human_buffer, human_size);
int instruction_length = decoder.InstructionDecode(pc);
uint8_t* pc_ptr = reinterpret_cast<uint8_t*>(pc);
int hex_index = 0;
int remaining_size = hex_size - hex_index;
for (int i = 0; (i < instruction_length) && (remaining_size > 2); ++i) {
OS::SNPrint(&hex_buffer[hex_index], remaining_size, "%02x", pc_ptr[i]);
hex_index += 2;
remaining_size -= 2;
}
hex_buffer[hex_index] = '\0';
if (out_instr_len) {
*out_instr_len = instruction_length;
}
*object = NULL;
if (!code.IsNull()) {
*object = &Object::Handle();
if (!DecodeLoadObjectFromPoolOrThread(pc, code, *object)) {
*object = NULL;
}
}
}
#endif // !PRODUCT
} // namespace dart
#endif // defined TARGET_ARCH_X64