mirror of
https://github.com/dart-lang/sdk
synced 2024-11-05 18:22:09 +00:00
4c05acd59b
R=vegorov@google.com BUG= Review-Url: https://codereview.chromium.org/2748023003 .
1985 lines
56 KiB
C++
1985 lines
56 KiB
C++
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
|
|
// for details. All rights reserved. Use of this source code is governed by a
|
|
// BSD-style license that can be found in the LICENSE file.
|
|
|
|
#include "vm/disassembler.h"
|
|
|
|
#include "vm/globals.h" // Needed here to get TARGET_ARCH_IA32.
|
|
#if defined(TARGET_ARCH_X64)
|
|
#include "platform/utils.h"
|
|
#include "vm/allocation.h"
|
|
#include "vm/heap.h"
|
|
#include "vm/instructions.h"
|
|
#include "vm/os.h"
|
|
#include "vm/stack_frame.h"
|
|
#include "vm/stub_code.h"
|
|
|
|
namespace dart {
|
|
|
|
#ifndef PRODUCT
|
|
|
|
enum OperandType {
|
|
UNSET_OP_ORDER = 0,
|
|
// Operand size decides between 16, 32 and 64 bit operands.
|
|
REG_OPER_OP_ORDER = 1, // Register destination, operand source.
|
|
OPER_REG_OP_ORDER = 2, // Operand destination, register source.
|
|
// Fixed 8-bit operands.
|
|
BYTE_SIZE_OPERAND_FLAG = 4,
|
|
BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
|
|
BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
|
|
};
|
|
|
|
//------------------------------------------------------------------
|
|
// Tables
|
|
//------------------------------------------------------------------
|
|
struct ByteMnemonic {
|
|
int b; // -1 terminates, otherwise must be in range (0..255)
|
|
OperandType op_order_;
|
|
const char* mnem;
|
|
};
|
|
|
|
|
|
static const ByteMnemonic two_operands_instr[] = {
|
|
{0x00, BYTE_OPER_REG_OP_ORDER, "add"},
|
|
{0x01, OPER_REG_OP_ORDER, "add"},
|
|
{0x02, BYTE_REG_OPER_OP_ORDER, "add"},
|
|
{0x03, REG_OPER_OP_ORDER, "add"},
|
|
{0x08, BYTE_OPER_REG_OP_ORDER, "or"},
|
|
{0x09, OPER_REG_OP_ORDER, "or"},
|
|
{0x0A, BYTE_REG_OPER_OP_ORDER, "or"},
|
|
{0x0B, REG_OPER_OP_ORDER, "or"},
|
|
{0x10, BYTE_OPER_REG_OP_ORDER, "adc"},
|
|
{0x11, OPER_REG_OP_ORDER, "adc"},
|
|
{0x12, BYTE_REG_OPER_OP_ORDER, "adc"},
|
|
{0x13, REG_OPER_OP_ORDER, "adc"},
|
|
{0x18, BYTE_OPER_REG_OP_ORDER, "sbb"},
|
|
{0x19, OPER_REG_OP_ORDER, "sbb"},
|
|
{0x1A, BYTE_REG_OPER_OP_ORDER, "sbb"},
|
|
{0x1B, REG_OPER_OP_ORDER, "sbb"},
|
|
{0x20, BYTE_OPER_REG_OP_ORDER, "and"},
|
|
{0x21, OPER_REG_OP_ORDER, "and"},
|
|
{0x22, BYTE_REG_OPER_OP_ORDER, "and"},
|
|
{0x23, REG_OPER_OP_ORDER, "and"},
|
|
{0x28, BYTE_OPER_REG_OP_ORDER, "sub"},
|
|
{0x29, OPER_REG_OP_ORDER, "sub"},
|
|
{0x2A, BYTE_REG_OPER_OP_ORDER, "sub"},
|
|
{0x2B, REG_OPER_OP_ORDER, "sub"},
|
|
{0x30, BYTE_OPER_REG_OP_ORDER, "xor"},
|
|
{0x31, OPER_REG_OP_ORDER, "xor"},
|
|
{0x32, BYTE_REG_OPER_OP_ORDER, "xor"},
|
|
{0x33, REG_OPER_OP_ORDER, "xor"},
|
|
{0x38, BYTE_OPER_REG_OP_ORDER, "cmp"},
|
|
{0x39, OPER_REG_OP_ORDER, "cmp"},
|
|
{0x3A, BYTE_REG_OPER_OP_ORDER, "cmp"},
|
|
{0x3B, REG_OPER_OP_ORDER, "cmp"},
|
|
{0x63, REG_OPER_OP_ORDER, "movsxd"},
|
|
{0x84, BYTE_REG_OPER_OP_ORDER, "test"},
|
|
{0x85, REG_OPER_OP_ORDER, "test"},
|
|
{0x86, BYTE_REG_OPER_OP_ORDER, "xchg"},
|
|
{0x87, REG_OPER_OP_ORDER, "xchg"},
|
|
{0x88, BYTE_OPER_REG_OP_ORDER, "mov"},
|
|
{0x89, OPER_REG_OP_ORDER, "mov"},
|
|
{0x8A, BYTE_REG_OPER_OP_ORDER, "mov"},
|
|
{0x8B, REG_OPER_OP_ORDER, "mov"},
|
|
{0x8D, REG_OPER_OP_ORDER, "lea"},
|
|
{-1, UNSET_OP_ORDER, ""}};
|
|
|
|
|
|
static const ByteMnemonic zero_operands_instr[] = {
|
|
{0xC3, UNSET_OP_ORDER, "ret"}, {0xC9, UNSET_OP_ORDER, "leave"},
|
|
{0xF4, UNSET_OP_ORDER, "hlt"}, {0xFC, UNSET_OP_ORDER, "cld"},
|
|
{0xCC, UNSET_OP_ORDER, "int3"}, {0x60, UNSET_OP_ORDER, "pushad"},
|
|
{0x61, UNSET_OP_ORDER, "popad"}, {0x9C, UNSET_OP_ORDER, "pushfd"},
|
|
{0x9D, UNSET_OP_ORDER, "popfd"}, {0x9E, UNSET_OP_ORDER, "sahf"},
|
|
{0x99, UNSET_OP_ORDER, "cdq"}, {0x9B, UNSET_OP_ORDER, "fwait"},
|
|
{0xA4, UNSET_OP_ORDER, "movs"}, {0xA5, UNSET_OP_ORDER, "movs"},
|
|
{0xA6, UNSET_OP_ORDER, "cmps"}, {0xA7, UNSET_OP_ORDER, "cmps"},
|
|
{-1, UNSET_OP_ORDER, ""}};
|
|
|
|
|
|
static const ByteMnemonic call_jump_instr[] = {{0xE8, UNSET_OP_ORDER, "call"},
|
|
{0xE9, UNSET_OP_ORDER, "jmp"},
|
|
{-1, UNSET_OP_ORDER, ""}};
|
|
|
|
|
|
static const ByteMnemonic short_immediate_instr[] = {
|
|
{0x05, UNSET_OP_ORDER, "add"}, {0x0D, UNSET_OP_ORDER, "or"},
|
|
{0x15, UNSET_OP_ORDER, "adc"}, {0x1D, UNSET_OP_ORDER, "sbb"},
|
|
{0x25, UNSET_OP_ORDER, "and"}, {0x2D, UNSET_OP_ORDER, "sub"},
|
|
{0x35, UNSET_OP_ORDER, "xor"}, {0x3D, UNSET_OP_ORDER, "cmp"},
|
|
{-1, UNSET_OP_ORDER, ""}};
|
|
|
|
|
|
static const char* const conditional_code_suffix[] = {
|
|
"o", "no", "c", "nc", "z", "nz", "na", "a",
|
|
"s", "ns", "pe", "po", "l", "ge", "le", "g"};
|
|
|
|
|
|
enum InstructionType {
|
|
NO_INSTR,
|
|
ZERO_OPERANDS_INSTR,
|
|
TWO_OPERANDS_INSTR,
|
|
JUMP_CONDITIONAL_SHORT_INSTR,
|
|
REGISTER_INSTR,
|
|
PUSHPOP_INSTR, // Has implicit 64-bit operand size.
|
|
MOVE_REG_INSTR,
|
|
CALL_JUMP_INSTR,
|
|
SHORT_IMMEDIATE_INSTR
|
|
};
|
|
|
|
|
|
enum Prefixes {
|
|
ESCAPE_PREFIX = 0x0F,
|
|
OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
|
|
ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
|
|
REPNE_PREFIX = 0xF2,
|
|
REP_PREFIX = 0xF3,
|
|
REPEQ_PREFIX = REP_PREFIX
|
|
};
|
|
|
|
|
|
struct InstructionDesc {
|
|
const char* mnem;
|
|
InstructionType type;
|
|
OperandType op_order_;
|
|
bool byte_size_operation; // Fixed 8-bit operation.
|
|
};
|
|
|
|
|
|
class InstructionTable : public ValueObject {
|
|
public:
|
|
InstructionTable();
|
|
const InstructionDesc& Get(uint8_t x) const { return instructions_[x]; }
|
|
|
|
private:
|
|
InstructionDesc instructions_[256];
|
|
void Clear();
|
|
void Init();
|
|
void CopyTable(const ByteMnemonic bm[], InstructionType type);
|
|
void SetTableRange(InstructionType type,
|
|
uint8_t start,
|
|
uint8_t end,
|
|
bool byte_size,
|
|
const char* mnem);
|
|
void AddJumpConditionalShort();
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(InstructionTable);
|
|
};
|
|
|
|
|
|
InstructionTable::InstructionTable() {
|
|
Clear();
|
|
Init();
|
|
}
|
|
|
|
|
|
void InstructionTable::Clear() {
|
|
for (int i = 0; i < 256; i++) {
|
|
instructions_[i].mnem = "(bad)";
|
|
instructions_[i].type = NO_INSTR;
|
|
instructions_[i].op_order_ = UNSET_OP_ORDER;
|
|
instructions_[i].byte_size_operation = false;
|
|
}
|
|
}
|
|
|
|
|
|
void InstructionTable::Init() {
|
|
CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
|
|
CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
|
|
CopyTable(call_jump_instr, CALL_JUMP_INSTR);
|
|
CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
|
|
AddJumpConditionalShort();
|
|
SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
|
|
SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
|
|
SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
|
|
}
|
|
|
|
|
|
void InstructionTable::CopyTable(const ByteMnemonic bm[],
|
|
InstructionType type) {
|
|
for (int i = 0; bm[i].b >= 0; i++) {
|
|
InstructionDesc* id = &instructions_[bm[i].b];
|
|
id->mnem = bm[i].mnem;
|
|
OperandType op_order = bm[i].op_order_;
|
|
id->op_order_ =
|
|
static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
|
|
ASSERT(NO_INSTR == id->type); // Information not already entered
|
|
id->type = type;
|
|
id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
|
|
}
|
|
}
|
|
|
|
|
|
void InstructionTable::SetTableRange(InstructionType type,
|
|
uint8_t start,
|
|
uint8_t end,
|
|
bool byte_size,
|
|
const char* mnem) {
|
|
for (uint8_t b = start; b <= end; b++) {
|
|
InstructionDesc* id = &instructions_[b];
|
|
ASSERT(NO_INSTR == id->type); // Information not already entered
|
|
id->mnem = mnem;
|
|
id->type = type;
|
|
id->byte_size_operation = byte_size;
|
|
}
|
|
}
|
|
|
|
|
|
void InstructionTable::AddJumpConditionalShort() {
|
|
for (uint8_t b = 0x70; b <= 0x7F; b++) {
|
|
InstructionDesc* id = &instructions_[b];
|
|
ASSERT(NO_INSTR == id->type); // Information not already entered
|
|
id->mnem = NULL; // Computed depending on condition code.
|
|
id->type = JUMP_CONDITIONAL_SHORT_INSTR;
|
|
}
|
|
}
|
|
|
|
|
|
static InstructionTable instruction_table;
|
|
|
|
|
|
static InstructionDesc cmov_instructions[16] = {
|
|
{"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
|
|
{"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}};
|
|
|
|
|
|
//-------------------------------------------------
|
|
// DisassemblerX64 implementation.
|
|
|
|
|
|
static const int kMaxXmmRegisters = 16;
|
|
static const char* xmm_regs[kMaxXmmRegisters] = {
|
|
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
|
|
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"};
|
|
|
|
class DisassemblerX64 : public ValueObject {
|
|
public:
|
|
DisassemblerX64(char* buffer, intptr_t buffer_size)
|
|
: buffer_(buffer),
|
|
buffer_size_(buffer_size),
|
|
buffer_pos_(0),
|
|
rex_(0),
|
|
operand_size_(0),
|
|
group_1_prefix_(0),
|
|
byte_size_operand_(false) {
|
|
buffer_[buffer_pos_] = '\0';
|
|
}
|
|
|
|
virtual ~DisassemblerX64() {}
|
|
|
|
int InstructionDecode(uword pc);
|
|
|
|
private:
|
|
enum OperandSize {
|
|
BYTE_SIZE = 0,
|
|
WORD_SIZE = 1,
|
|
DOUBLEWORD_SIZE = 2,
|
|
QUADWORD_SIZE = 3
|
|
};
|
|
|
|
void setRex(uint8_t rex) {
|
|
ASSERT(0x40 == (rex & 0xF0));
|
|
rex_ = rex;
|
|
}
|
|
|
|
bool rex() { return rex_ != 0; }
|
|
|
|
bool rex_b() { return (rex_ & 0x01) != 0; }
|
|
|
|
// Actual number of base register given the low bits and the rex.b state.
|
|
int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }
|
|
|
|
bool rex_x() { return (rex_ & 0x02) != 0; }
|
|
|
|
bool rex_r() { return (rex_ & 0x04) != 0; }
|
|
|
|
bool rex_w() { return (rex_ & 0x08) != 0; }
|
|
|
|
OperandSize operand_size() {
|
|
if (byte_size_operand_) return BYTE_SIZE;
|
|
if (rex_w()) return QUADWORD_SIZE;
|
|
if (operand_size_ != 0) return WORD_SIZE;
|
|
return DOUBLEWORD_SIZE;
|
|
}
|
|
|
|
char operand_size_code() { return "bwlq"[operand_size()]; }
|
|
|
|
// Disassembler helper functions.
|
|
void get_modrm(uint8_t data, int* mod, int* regop, int* rm) {
|
|
*mod = (data >> 6) & 3;
|
|
*regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
|
|
*rm = (data & 7) | (rex_b() ? 8 : 0);
|
|
}
|
|
|
|
void get_sib(uint8_t data, int* scale, int* index, int* base) {
|
|
*scale = (data >> 6) & 3;
|
|
*index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
|
|
*base = (data & 7) | (rex_b() ? 8 : 0);
|
|
}
|
|
|
|
const char* NameOfCPURegister(int reg) const {
|
|
return Assembler::RegisterName(static_cast<Register>(reg));
|
|
}
|
|
|
|
const char* NameOfByteCPURegister(int reg) const {
|
|
return NameOfCPURegister(reg);
|
|
}
|
|
|
|
const char* NameOfXMMRegister(int reg) const {
|
|
ASSERT((0 <= reg) && (reg < kMaxXmmRegisters));
|
|
return xmm_regs[reg];
|
|
}
|
|
|
|
void Print(const char* format, ...) PRINTF_ATTRIBUTE(2, 3);
|
|
void PrintAddress(uint8_t* addr);
|
|
|
|
int PrintOperands(const char* mnem, OperandType op_order, uint8_t* data);
|
|
|
|
typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;
|
|
|
|
int PrintRightOperandHelper(uint8_t* modrmp,
|
|
RegisterNameMapping register_name);
|
|
int PrintRightOperand(uint8_t* modrmp);
|
|
int PrintRightByteOperand(uint8_t* modrmp);
|
|
int PrintRightXMMOperand(uint8_t* modrmp);
|
|
void PrintDisp(int disp, const char* after);
|
|
int PrintImmediate(uint8_t* data, OperandSize size, bool sign_extend = false);
|
|
void PrintImmediateValue(int64_t value, bool signed_value = false);
|
|
int PrintImmediateOp(uint8_t* data);
|
|
const char* TwoByteMnemonic(uint8_t opcode);
|
|
int TwoByteOpcodeInstruction(uint8_t* data);
|
|
|
|
int F6F7Instruction(uint8_t* data);
|
|
int ShiftInstruction(uint8_t* data);
|
|
int JumpShort(uint8_t* data);
|
|
int JumpConditional(uint8_t* data);
|
|
int JumpConditionalShort(uint8_t* data);
|
|
int SetCC(uint8_t* data);
|
|
int FPUInstruction(uint8_t* data);
|
|
int MemoryFPUInstruction(int escape_opcode, int regop, uint8_t* modrm_start);
|
|
int RegisterFPUInstruction(int escape_opcode, uint8_t modrm_byte);
|
|
|
|
bool DecodeInstructionType(uint8_t** data);
|
|
|
|
void UnimplementedInstruction() { Print("'Unimplemented Instruction'"); }
|
|
|
|
char* buffer_; // Decode instructions into this buffer.
|
|
intptr_t buffer_size_; // The size of the buffer_.
|
|
intptr_t buffer_pos_; // Current character position in the buffer_.
|
|
|
|
// Prefixes parsed
|
|
uint8_t rex_;
|
|
uint8_t operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0.
|
|
// 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
|
|
uint8_t group_1_prefix_;
|
|
// Byte size operand override.
|
|
bool byte_size_operand_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(DisassemblerX64);
|
|
};
|
|
|
|
|
|
// Append the str to the output buffer.
|
|
void DisassemblerX64::Print(const char* format, ...) {
|
|
intptr_t available = buffer_size_ - buffer_pos_;
|
|
if (available <= 1) {
|
|
ASSERT(buffer_[buffer_pos_] == '\0');
|
|
return;
|
|
}
|
|
char* buf = buffer_ + buffer_pos_;
|
|
va_list args;
|
|
va_start(args, format);
|
|
int length = OS::VSNPrint(buf, available, format, args);
|
|
va_end(args);
|
|
buffer_pos_ =
|
|
(length >= available) ? (buffer_size_ - 1) : (buffer_pos_ + length);
|
|
ASSERT(buffer_pos_ < buffer_size_);
|
|
}
|
|
|
|
|
|
int DisassemblerX64::PrintRightOperandHelper(
|
|
uint8_t* modrmp,
|
|
RegisterNameMapping direct_register_name) {
|
|
int mod, regop, rm;
|
|
get_modrm(*modrmp, &mod, ®op, &rm);
|
|
RegisterNameMapping register_name =
|
|
(mod == 3) ? direct_register_name : &DisassemblerX64::NameOfCPURegister;
|
|
switch (mod) {
|
|
case 0:
|
|
if ((rm & 7) == 5) {
|
|
int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
|
|
Print("[rip");
|
|
PrintDisp(disp, "]");
|
|
return 5;
|
|
} else if ((rm & 7) == 4) {
|
|
// Codes for SIB byte.
|
|
uint8_t sib = *(modrmp + 1);
|
|
int scale, index, base;
|
|
get_sib(sib, &scale, &index, &base);
|
|
if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
|
|
// index == rsp means no index. Only use sib byte with no index for
|
|
// rsp and r12 base.
|
|
Print("[%s]", NameOfCPURegister(base));
|
|
return 2;
|
|
} else if (base == 5) {
|
|
// base == rbp means no base register (when mod == 0).
|
|
int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
|
|
Print("[%s*%d", NameOfCPURegister(index), 1 << scale);
|
|
PrintDisp(disp, "]");
|
|
return 6;
|
|
} else if (index != 4 && base != 5) {
|
|
// [base+index*scale]
|
|
Print("[%s+%s*%d]", NameOfCPURegister(base), NameOfCPURegister(index),
|
|
1 << scale);
|
|
return 2;
|
|
} else {
|
|
UnimplementedInstruction();
|
|
return 1;
|
|
}
|
|
} else {
|
|
Print("[%s]", NameOfCPURegister(rm));
|
|
return 1;
|
|
}
|
|
break;
|
|
case 1: // fall through
|
|
case 2:
|
|
if ((rm & 7) == 4) {
|
|
uint8_t sib = *(modrmp + 1);
|
|
int scale, index, base;
|
|
get_sib(sib, &scale, &index, &base);
|
|
int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
|
|
: *reinterpret_cast<char*>(modrmp + 2);
|
|
if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
|
|
Print("[%s", NameOfCPURegister(base));
|
|
PrintDisp(disp, "]");
|
|
} else {
|
|
Print("[%s+%s*%d", NameOfCPURegister(base), NameOfCPURegister(index),
|
|
1 << scale);
|
|
PrintDisp(disp, "]");
|
|
}
|
|
return mod == 2 ? 6 : 3;
|
|
} else {
|
|
// No sib.
|
|
int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
|
|
: *reinterpret_cast<char*>(modrmp + 1);
|
|
Print("[%s", NameOfCPURegister(rm));
|
|
PrintDisp(disp, "]");
|
|
return (mod == 2) ? 5 : 2;
|
|
}
|
|
break;
|
|
case 3:
|
|
Print("%s", (this->*register_name)(rm));
|
|
return 1;
|
|
default:
|
|
UnimplementedInstruction();
|
|
return 1;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
|
|
int DisassemblerX64::PrintImmediate(uint8_t* data,
|
|
OperandSize size,
|
|
bool sign_extend) {
|
|
int64_t value;
|
|
int count;
|
|
switch (size) {
|
|
case BYTE_SIZE:
|
|
if (sign_extend) {
|
|
value = *reinterpret_cast<int8_t*>(data);
|
|
} else {
|
|
value = *data;
|
|
}
|
|
count = 1;
|
|
break;
|
|
case WORD_SIZE:
|
|
if (sign_extend) {
|
|
value = *reinterpret_cast<int16_t*>(data);
|
|
} else {
|
|
value = *reinterpret_cast<uint16_t*>(data);
|
|
}
|
|
count = 2;
|
|
break;
|
|
case DOUBLEWORD_SIZE:
|
|
case QUADWORD_SIZE:
|
|
if (sign_extend) {
|
|
value = *reinterpret_cast<int32_t*>(data);
|
|
} else {
|
|
value = *reinterpret_cast<uint32_t*>(data);
|
|
}
|
|
count = 4;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
value = 0; // Initialize variables on all paths to satisfy the compiler.
|
|
count = 0;
|
|
}
|
|
PrintImmediateValue(value, sign_extend);
|
|
return count;
|
|
}
|
|
|
|
void DisassemblerX64::PrintImmediateValue(int64_t value, bool signed_value) {
|
|
if ((value >= 0) && (value <= 9)) {
|
|
Print("%" Pd64 "", value);
|
|
} else {
|
|
if (value < 0 && signed_value) {
|
|
Print("-%#" Px64 "", -value);
|
|
} else {
|
|
Print("%#" Px64 "", value);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DisassemblerX64::PrintDisp(int disp, const char* after) {
|
|
if (-disp > 0) {
|
|
Print("-%#x", -disp);
|
|
} else {
|
|
Print("+%#x", disp);
|
|
}
|
|
if (after != NULL) Print("%s", after);
|
|
}
|
|
|
|
|
|
// Returns number of bytes used by machine instruction, including *data byte.
|
|
// Writes immediate instructions to 'tmp_buffer_'.
|
|
int DisassemblerX64::PrintImmediateOp(uint8_t* data) {
|
|
bool byte_size_immediate = (*data & 0x02) != 0;
|
|
uint8_t modrm = *(data + 1);
|
|
int mod, regop, rm;
|
|
get_modrm(modrm, &mod, ®op, &rm);
|
|
const char* mnem = "Imm???";
|
|
switch (regop) {
|
|
case 0:
|
|
mnem = "add";
|
|
break;
|
|
case 1:
|
|
mnem = "or";
|
|
break;
|
|
case 2:
|
|
mnem = "adc";
|
|
break;
|
|
case 3:
|
|
mnem = "sbb";
|
|
break;
|
|
case 4:
|
|
mnem = "and";
|
|
break;
|
|
case 5:
|
|
mnem = "sub";
|
|
break;
|
|
case 6:
|
|
mnem = "xor";
|
|
break;
|
|
case 7:
|
|
mnem = "cmp";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
Print("%s%c ", mnem, operand_size_code());
|
|
int count = PrintRightOperand(data + 1);
|
|
Print(",");
|
|
OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size();
|
|
count +=
|
|
PrintImmediate(data + 1 + count, immediate_size, byte_size_immediate);
|
|
return 1 + count;
|
|
}
|
|
|
|
|
|
// Returns number of bytes used, including *data.
|
|
int DisassemblerX64::F6F7Instruction(uint8_t* data) {
|
|
ASSERT(*data == 0xF7 || *data == 0xF6);
|
|
uint8_t modrm = *(data + 1);
|
|
int mod, regop, rm;
|
|
get_modrm(modrm, &mod, ®op, &rm);
|
|
if (mod == 3 && regop != 0) {
|
|
const char* mnem = NULL;
|
|
switch (regop) {
|
|
case 2:
|
|
mnem = "not";
|
|
break;
|
|
case 3:
|
|
mnem = "neg";
|
|
break;
|
|
case 4:
|
|
mnem = "mul";
|
|
break;
|
|
case 6:
|
|
mnem = "div";
|
|
break;
|
|
case 7:
|
|
mnem = "idiv";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
Print("%s%c %s", mnem, operand_size_code(), NameOfCPURegister(rm));
|
|
return 2;
|
|
} else if (regop == 0) {
|
|
Print("test%c ", operand_size_code());
|
|
int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
|
|
Print(",");
|
|
count += PrintImmediate(data + 1 + count, operand_size());
|
|
return 1 + count;
|
|
} else {
|
|
UnimplementedInstruction();
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
|
|
int DisassemblerX64::ShiftInstruction(uint8_t* data) {
|
|
uint8_t op = *data & (~1);
|
|
if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
|
|
UnimplementedInstruction();
|
|
return 1;
|
|
}
|
|
uint8_t modrm = *(data + 1);
|
|
int mod, regop, rm;
|
|
get_modrm(modrm, &mod, ®op, &rm);
|
|
regop &= 0x7; // The REX.R bit does not affect the operation.
|
|
int imm8 = -1;
|
|
int num_bytes = 2;
|
|
if (mod != 3) {
|
|
UnimplementedInstruction();
|
|
return num_bytes;
|
|
}
|
|
const char* mnem = NULL;
|
|
switch (regop) {
|
|
case 0:
|
|
mnem = "rol";
|
|
break;
|
|
case 1:
|
|
mnem = "ror";
|
|
break;
|
|
case 2:
|
|
mnem = "rcl";
|
|
break;
|
|
case 3:
|
|
mnem = "rcr";
|
|
break;
|
|
case 4:
|
|
mnem = "shl";
|
|
break;
|
|
case 5:
|
|
mnem = "shr";
|
|
break;
|
|
case 7:
|
|
mnem = "sar";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
return num_bytes;
|
|
}
|
|
ASSERT(NULL != mnem);
|
|
if (op == 0xD0) {
|
|
imm8 = 1;
|
|
} else if (op == 0xC0) {
|
|
imm8 = *(data + 2);
|
|
num_bytes = 3;
|
|
}
|
|
Print("%s%c %s,", mnem, operand_size_code(),
|
|
byte_size_operand_ ? NameOfByteCPURegister(rm) : NameOfCPURegister(rm));
|
|
if (op == 0xD2) {
|
|
Print("cl");
|
|
} else {
|
|
Print("%d", imm8);
|
|
}
|
|
return num_bytes;
|
|
}
|
|
|
|
|
|
int DisassemblerX64::PrintRightOperand(uint8_t* modrmp) {
|
|
return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfCPURegister);
|
|
}
|
|
|
|
|
|
int DisassemblerX64::PrintRightByteOperand(uint8_t* modrmp) {
|
|
return PrintRightOperandHelper(modrmp,
|
|
&DisassemblerX64::NameOfByteCPURegister);
|
|
}
|
|
|
|
|
|
int DisassemblerX64::PrintRightXMMOperand(uint8_t* modrmp) {
|
|
return PrintRightOperandHelper(modrmp, &DisassemblerX64::NameOfXMMRegister);
|
|
}
|
|
|
|
|
|
// Returns number of bytes used including the current *data.
|
|
// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
|
|
int DisassemblerX64::PrintOperands(const char* mnem,
|
|
OperandType op_order,
|
|
uint8_t* data) {
|
|
uint8_t modrm = *data;
|
|
int mod, regop, rm;
|
|
get_modrm(modrm, &mod, ®op, &rm);
|
|
int advance = 0;
|
|
const char* register_name = byte_size_operand_ ? NameOfByteCPURegister(regop)
|
|
: NameOfCPURegister(regop);
|
|
switch (op_order) {
|
|
case REG_OPER_OP_ORDER: {
|
|
Print("%s%c %s,", mnem, operand_size_code(), register_name);
|
|
advance = byte_size_operand_ ? PrintRightByteOperand(data)
|
|
: PrintRightOperand(data);
|
|
break;
|
|
}
|
|
case OPER_REG_OP_ORDER: {
|
|
Print("%s%c ", mnem, operand_size_code());
|
|
advance = byte_size_operand_ ? PrintRightByteOperand(data)
|
|
: PrintRightOperand(data);
|
|
Print(",%s", register_name);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
return advance;
|
|
}
|
|
|
|
|
|
void DisassemblerX64::PrintAddress(uint8_t* addr_byte_ptr) {
|
|
uword addr = reinterpret_cast<uword>(addr_byte_ptr);
|
|
Print("%#" Px "", addr);
|
|
}
|
|
|
|
|
|
// Returns number of bytes used, including *data.
|
|
int DisassemblerX64::JumpShort(uint8_t* data) {
|
|
ASSERT(0xEB == *data);
|
|
uint8_t b = *(data + 1);
|
|
uint8_t* dest = data + static_cast<int8_t>(b) + 2;
|
|
Print("jmp ");
|
|
PrintAddress(dest);
|
|
return 2;
|
|
}
|
|
|
|
|
|
// Returns number of bytes used, including *data.
|
|
int DisassemblerX64::JumpConditional(uint8_t* data) {
|
|
ASSERT(0x0F == *data);
|
|
uint8_t cond = *(data + 1) & 0x0F;
|
|
uint8_t* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
|
|
const char* mnem = conditional_code_suffix[cond];
|
|
Print("j%s ", mnem);
|
|
PrintAddress(dest);
|
|
return 6; // includes 0x0F
|
|
}
|
|
|
|
|
|
// Returns number of bytes used, including *data.
|
|
int DisassemblerX64::JumpConditionalShort(uint8_t* data) {
|
|
uint8_t cond = *data & 0x0F;
|
|
uint8_t b = *(data + 1);
|
|
uint8_t* dest = data + static_cast<int8_t>(b) + 2;
|
|
const char* mnem = conditional_code_suffix[cond];
|
|
Print("j%s ", mnem);
|
|
PrintAddress(dest);
|
|
return 2;
|
|
}
|
|
|
|
|
|
// Returns number of bytes used, including *data.
|
|
int DisassemblerX64::SetCC(uint8_t* data) {
|
|
ASSERT(0x0F == *data);
|
|
uint8_t cond = *(data + 1) & 0x0F;
|
|
const char* mnem = conditional_code_suffix[cond];
|
|
Print("set%s%c ", mnem, operand_size_code());
|
|
PrintRightByteOperand(data + 2);
|
|
return 3; // includes 0x0F
|
|
}
|
|
|
|
|
|
// Returns number of bytes used, including *data.
|
|
int DisassemblerX64::FPUInstruction(uint8_t* data) {
|
|
uint8_t escape_opcode = *data;
|
|
ASSERT(0xD8 == (escape_opcode & 0xF8));
|
|
uint8_t modrm_byte = *(data + 1);
|
|
|
|
if (modrm_byte >= 0xC0) {
|
|
return RegisterFPUInstruction(escape_opcode, modrm_byte);
|
|
} else {
|
|
return MemoryFPUInstruction(escape_opcode, modrm_byte, data + 1);
|
|
}
|
|
}
|
|
|
|
|
|
int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
|
|
int modrm_byte,
|
|
uint8_t* modrm_start) {
|
|
const char* mnem = "?";
|
|
int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
|
|
switch (escape_opcode) {
|
|
case 0xD9:
|
|
switch (regop) {
|
|
case 0:
|
|
mnem = "fld_s";
|
|
break;
|
|
case 3:
|
|
mnem = "fstp_s";
|
|
break;
|
|
case 7:
|
|
mnem = "fstcw";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDB:
|
|
switch (regop) {
|
|
case 0:
|
|
mnem = "fild_s";
|
|
break;
|
|
case 1:
|
|
mnem = "fisttp_s";
|
|
break;
|
|
case 2:
|
|
mnem = "fist_s";
|
|
break;
|
|
case 3:
|
|
mnem = "fistp_s";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDD:
|
|
switch (regop) {
|
|
case 0:
|
|
mnem = "fld_d";
|
|
break;
|
|
case 3:
|
|
mnem = "fstp_d";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDF:
|
|
switch (regop) {
|
|
case 5:
|
|
mnem = "fild_d";
|
|
break;
|
|
case 7:
|
|
mnem = "fistp_d";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
Print("%s ", mnem);
|
|
int count = PrintRightOperand(modrm_start);
|
|
return count + 1;
|
|
}
|
|
|
|
int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
|
|
uint8_t modrm_byte) {
|
|
bool has_register = false; // Is the FPU register encoded in modrm_byte?
|
|
const char* mnem = "?";
|
|
|
|
switch (escape_opcode) {
|
|
case 0xD8:
|
|
UnimplementedInstruction();
|
|
break;
|
|
|
|
case 0xD9:
|
|
switch (modrm_byte & 0xF8) {
|
|
case 0xC0:
|
|
mnem = "fld";
|
|
has_register = true;
|
|
break;
|
|
case 0xC8:
|
|
mnem = "fxch";
|
|
has_register = true;
|
|
break;
|
|
default:
|
|
switch (modrm_byte) {
|
|
case 0xE0:
|
|
mnem = "fchs";
|
|
break;
|
|
case 0xE1:
|
|
mnem = "fabs";
|
|
break;
|
|
case 0xE3:
|
|
mnem = "fninit";
|
|
break;
|
|
case 0xE4:
|
|
mnem = "ftst";
|
|
break;
|
|
case 0xE8:
|
|
mnem = "fld1";
|
|
break;
|
|
case 0xEB:
|
|
mnem = "fldpi";
|
|
break;
|
|
case 0xED:
|
|
mnem = "fldln2";
|
|
break;
|
|
case 0xEE:
|
|
mnem = "fldz";
|
|
break;
|
|
case 0xF0:
|
|
mnem = "f2xm1";
|
|
break;
|
|
case 0xF1:
|
|
mnem = "fyl2x";
|
|
break;
|
|
case 0xF2:
|
|
mnem = "fptan";
|
|
break;
|
|
case 0xF5:
|
|
mnem = "fprem1";
|
|
break;
|
|
case 0xF7:
|
|
mnem = "fincstp";
|
|
break;
|
|
case 0xF8:
|
|
mnem = "fprem";
|
|
break;
|
|
case 0xFD:
|
|
mnem = "fscale";
|
|
break;
|
|
case 0xFE:
|
|
mnem = "fsin";
|
|
break;
|
|
case 0xFF:
|
|
mnem = "fcos";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0xDA:
|
|
if (modrm_byte == 0xE9) {
|
|
mnem = "fucompp";
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDB:
|
|
if ((modrm_byte & 0xF8) == 0xE8) {
|
|
mnem = "fucomi";
|
|
has_register = true;
|
|
} else if (modrm_byte == 0xE2) {
|
|
mnem = "fclex";
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDC:
|
|
has_register = true;
|
|
switch (modrm_byte & 0xF8) {
|
|
case 0xC0:
|
|
mnem = "fadd";
|
|
break;
|
|
case 0xE8:
|
|
mnem = "fsub";
|
|
break;
|
|
case 0xC8:
|
|
mnem = "fmul";
|
|
break;
|
|
case 0xF8:
|
|
mnem = "fdiv";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDD:
|
|
has_register = true;
|
|
switch (modrm_byte & 0xF8) {
|
|
case 0xC0:
|
|
mnem = "ffree";
|
|
break;
|
|
case 0xD8:
|
|
mnem = "fstp";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
|
|
case 0xDE:
|
|
if (modrm_byte == 0xD9) {
|
|
mnem = "fcompp";
|
|
} else {
|
|
has_register = true;
|
|
switch (modrm_byte & 0xF8) {
|
|
case 0xC0:
|
|
mnem = "faddp";
|
|
break;
|
|
case 0xE8:
|
|
mnem = "fsubp";
|
|
break;
|
|
case 0xC8:
|
|
mnem = "fmulp";
|
|
break;
|
|
case 0xF8:
|
|
mnem = "fdivp";
|
|
break;
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 0xDF:
|
|
if (modrm_byte == 0xE0) {
|
|
mnem = "fnstsw_ax";
|
|
} else if ((modrm_byte & 0xF8) == 0xE8) {
|
|
mnem = "fucomip";
|
|
has_register = true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
UnimplementedInstruction();
|
|
}
|
|
|
|
if (has_register) {
|
|
Print("%s st%d", mnem, modrm_byte & 0x7);
|
|
} else {
|
|
Print("%s", mnem);
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
|
|
// TODO(srdjan): Should we add a branch hint argument?
|
|
bool DisassemblerX64::DecodeInstructionType(uint8_t** data) {
|
|
uint8_t current;
|
|
|
|
// Scan for prefixes.
|
|
while (true) {
|
|
current = **data;
|
|
if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix.
|
|
operand_size_ = current;
|
|
} else if ((current & 0xF0) == 0x40) { // REX prefix.
|
|
setRex(current);
|
|
// TODO(srdjan): Should we enable printing of REX.W?
|
|
// if (rex_w()) Print("REX.W ");
|
|
} else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3).
|
|
group_1_prefix_ = current;
|
|
} else if (current == 0xF0) {
|
|
Print("lock ");
|
|
} else { // Not a prefix - an opcode.
|
|
break;
|
|
}
|
|
(*data)++;
|
|
}
|
|
|
|
const InstructionDesc& idesc = instruction_table.Get(current);
|
|
byte_size_operand_ = idesc.byte_size_operation;
|
|
|
|
switch (idesc.type) {
|
|
case ZERO_OPERANDS_INSTR:
|
|
if (current >= 0xA4 && current <= 0xA7) {
|
|
// String move or compare operations.
|
|
if (group_1_prefix_ == REP_PREFIX) {
|
|
// REP.
|
|
Print("rep ");
|
|
}
|
|
// TODO(srdjan): Should we enable printing of REX.W?
|
|
// if (rex_w()) Print("REX.W ");
|
|
Print("%s%c", idesc.mnem, operand_size_code());
|
|
} else {
|
|
Print("%s%c", idesc.mnem, operand_size_code());
|
|
}
|
|
(*data)++;
|
|
break;
|
|
|
|
case TWO_OPERANDS_INSTR:
|
|
(*data)++;
|
|
(*data) += PrintOperands(idesc.mnem, idesc.op_order_, *data);
|
|
break;
|
|
|
|
case JUMP_CONDITIONAL_SHORT_INSTR:
|
|
(*data) += JumpConditionalShort(*data);
|
|
break;
|
|
|
|
case REGISTER_INSTR:
|
|
Print("%s%c %s", idesc.mnem, operand_size_code(),
|
|
NameOfCPURegister(base_reg(current & 0x07)));
|
|
(*data)++;
|
|
break;
|
|
case PUSHPOP_INSTR:
|
|
Print("%s %s", idesc.mnem, NameOfCPURegister(base_reg(current & 0x07)));
|
|
(*data)++;
|
|
break;
|
|
case MOVE_REG_INSTR: {
|
|
uint8_t* addr = NULL;
|
|
switch (operand_size()) {
|
|
case WORD_SIZE:
|
|
addr = reinterpret_cast<uint8_t*>(
|
|
*reinterpret_cast<int16_t*>(*data + 1));
|
|
(*data) += 3;
|
|
break;
|
|
case DOUBLEWORD_SIZE:
|
|
addr = reinterpret_cast<uint8_t*>(
|
|
*reinterpret_cast<int32_t*>(*data + 1));
|
|
(*data) += 5;
|
|
break;
|
|
case QUADWORD_SIZE:
|
|
addr = reinterpret_cast<uint8_t*>(
|
|
*reinterpret_cast<int64_t*>(*data + 1));
|
|
(*data) += 9;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
Print("mov%c %s,", operand_size_code(),
|
|
NameOfCPURegister(base_reg(current & 0x07)));
|
|
PrintAddress(addr);
|
|
break;
|
|
}
|
|
|
|
case CALL_JUMP_INSTR: {
|
|
uint8_t* addr = *data + *reinterpret_cast<int32_t*>(*data + 1) + 5;
|
|
Print("%s ", idesc.mnem);
|
|
PrintAddress(addr);
|
|
(*data) += 5;
|
|
break;
|
|
}
|
|
|
|
case SHORT_IMMEDIATE_INSTR: {
|
|
uint8_t* addr =
|
|
reinterpret_cast<uint8_t*>(*reinterpret_cast<int32_t*>(*data + 1));
|
|
Print("%s rax, ", idesc.mnem);
|
|
PrintAddress(addr);
|
|
(*data) += 5;
|
|
break;
|
|
}
|
|
|
|
case NO_INSTR:
|
|
return false;
|
|
|
|
default:
|
|
UNIMPLEMENTED(); // This type is not implemented.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Handle all two-byte opcodes, which start with 0x0F.
|
|
// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
|
|
// We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
|
|
int DisassemblerX64::TwoByteOpcodeInstruction(uint8_t* data) {
|
|
uint8_t opcode = *(data + 1);
|
|
uint8_t* current = data + 2;
|
|
// At return, "current" points to the start of the next instruction.
|
|
const char* mnemonic = TwoByteMnemonic(opcode);
|
|
if (operand_size_ == 0x66) {
|
|
// 0x66 0x0F prefix.
|
|
int mod, regop, rm;
|
|
if (opcode == 0xC6) {
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("shufpd %s, ", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
Print(" [%x]", *current);
|
|
current++;
|
|
} else if (opcode == 0x3A) {
|
|
uint8_t third_byte = *current;
|
|
current = data + 3;
|
|
if (third_byte == 0x17) {
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("extractps "); // reg/m32, xmm, imm8
|
|
current += PrintRightOperand(current);
|
|
Print(", %s, %d", NameOfCPURegister(regop), (*current) & 3);
|
|
current += 1;
|
|
} else if (third_byte == 0x0b) {
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
// roundsd xmm, xmm/m64, imm8
|
|
Print("roundsd %s, ", NameOfCPURegister(regop));
|
|
current += PrintRightOperand(current);
|
|
Print(", %d", (*current) & 3);
|
|
current += 1;
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
} else {
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
if (opcode == 0x1f) {
|
|
current++;
|
|
if (rm == 4) { // SIB byte present.
|
|
current++;
|
|
}
|
|
if (mod == 1) { // Byte displacement.
|
|
current += 1;
|
|
} else if (mod == 2) { // 32-bit displacement.
|
|
current += 4;
|
|
} // else no immediate displacement.
|
|
Print("nop");
|
|
} else if (opcode == 0x28) {
|
|
Print("movapd %s, ", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x29) {
|
|
Print("movapd ");
|
|
current += PrintRightXMMOperand(current);
|
|
Print(", %s", NameOfXMMRegister(regop));
|
|
} else if (opcode == 0x6E) {
|
|
Print("mov%c %s,", rex_w() ? 'q' : 'd', NameOfXMMRegister(regop));
|
|
current += PrintRightOperand(current);
|
|
} else if (opcode == 0x6F) {
|
|
Print("movdqa %s,", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x7E) {
|
|
Print("mov%c ", rex_w() ? 'q' : 'd');
|
|
current += PrintRightOperand(current);
|
|
Print(", %s", NameOfXMMRegister(regop));
|
|
} else if (opcode == 0x7F) {
|
|
Print("movdqa ");
|
|
current += PrintRightXMMOperand(current);
|
|
Print(", %s", NameOfXMMRegister(regop));
|
|
} else if (opcode == 0xD6) {
|
|
Print("movq ");
|
|
current += PrintRightXMMOperand(current);
|
|
Print(", %s", NameOfXMMRegister(regop));
|
|
} else if (opcode == 0x50) {
|
|
Print("movmskpd %s,", NameOfCPURegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else {
|
|
const char* mnemonic = "?";
|
|
if (opcode == 0x14) {
|
|
mnemonic = "unpcklpd";
|
|
} else if (opcode == 0x15) {
|
|
mnemonic = "unpckhpd";
|
|
} else if (opcode == 0x54) {
|
|
mnemonic = "andpd";
|
|
} else if (opcode == 0x56) {
|
|
mnemonic = "orpd";
|
|
} else if (opcode == 0x57) {
|
|
mnemonic = "xorpd";
|
|
} else if (opcode == 0x2E) {
|
|
mnemonic = "ucomisd";
|
|
} else if (opcode == 0x2F) {
|
|
mnemonic = "comisd";
|
|
} else if (opcode == 0xFE) {
|
|
mnemonic = "paddd";
|
|
} else if (opcode == 0xFA) {
|
|
mnemonic = "psubd";
|
|
} else if (opcode == 0x58) {
|
|
mnemonic = "addpd";
|
|
} else if (opcode == 0x5C) {
|
|
mnemonic = "subpd";
|
|
} else if (opcode == 0x59) {
|
|
mnemonic = "mulpd";
|
|
} else if (opcode == 0x5E) {
|
|
mnemonic = "divpd";
|
|
} else if (opcode == 0x5D) {
|
|
mnemonic = "minpd";
|
|
} else if (opcode == 0x5F) {
|
|
mnemonic = "maxpd";
|
|
} else if (opcode == 0x51) {
|
|
mnemonic = "sqrtpd";
|
|
} else if (opcode == 0x5A) {
|
|
mnemonic = "cvtpd2ps";
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
Print("%s %s,", mnemonic, NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
}
|
|
}
|
|
} else if (group_1_prefix_ == 0xF2) {
|
|
// Beginning of instructions with prefix 0xF2.
|
|
|
|
if (opcode == 0x11 || opcode == 0x10) {
|
|
// MOVSD: Move scalar double-precision fp to/from/between XMM registers.
|
|
Print("movsd ");
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
if (opcode == 0x11) {
|
|
current += PrintRightXMMOperand(current);
|
|
Print(",%s", NameOfXMMRegister(regop));
|
|
} else {
|
|
Print("%s,", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
}
|
|
} else if (opcode == 0x2A) {
|
|
// CVTSI2SD: integer to XMM double conversion.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("%sd %s,", mnemonic, NameOfXMMRegister(regop));
|
|
current += PrintRightOperand(current);
|
|
} else if (opcode == 0x2C) {
|
|
// CVTTSD2SI:
|
|
// Convert with truncation scalar double-precision FP to integer.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("cvttsd2si%c %s,", operand_size_code(), NameOfCPURegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x2D) {
|
|
// CVTSD2SI: Convert scalar double-precision FP to integer.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("cvtsd2si%c %s,", operand_size_code(), NameOfCPURegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
|
|
// XMM arithmetic. Mnemonic was retrieved at the start of this function.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("%s %s,", mnemonic, NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
} else if (group_1_prefix_ == 0xF3) {
|
|
// Instructions with prefix 0xF3.
|
|
if (opcode == 0x11 || opcode == 0x10) {
|
|
// MOVSS: Move scalar double-precision fp to/from/between XMM registers.
|
|
Print("movss ");
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
if (opcode == 0x11) {
|
|
current += PrintRightOperand(current);
|
|
Print(",%s", NameOfXMMRegister(regop));
|
|
} else {
|
|
Print("%s,", NameOfXMMRegister(regop));
|
|
current += PrintRightOperand(current);
|
|
}
|
|
} else if (opcode == 0x2A) {
|
|
// CVTSI2SS: integer to XMM single conversion.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("%ss %s,", mnemonic, NameOfXMMRegister(regop));
|
|
current += PrintRightOperand(current);
|
|
} else if (opcode == 0x2C) {
|
|
// CVTTSS2SI:
|
|
// Convert with truncation scalar single-precision FP to dword integer.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("cvttss2si%c %s,", operand_size_code(), NameOfCPURegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x5A) {
|
|
// CVTSS2SD:
|
|
// Convert scalar single-precision FP to scalar double-precision FP.
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("cvtss2sd %s,", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x7E) {
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("movq %s, ", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x58) {
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("addss %s,", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
} else if (opcode == 0x1F) {
|
|
// NOP
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
current++;
|
|
if (rm == 4) { // SIB byte present.
|
|
current++;
|
|
}
|
|
if (mod == 1) { // Byte displacement.
|
|
current += 1;
|
|
} else if (mod == 2) { // 32-bit displacement.
|
|
current += 4;
|
|
} // else no immediate displacement.
|
|
Print("nop");
|
|
|
|
} else if (opcode == 0x28) {
|
|
// movaps xmm, xmm/m128
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("movaps %s, ", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x29) {
|
|
// movaps xmm/m128, xmm
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("movaps ");
|
|
current += PrintRightXMMOperand(current);
|
|
Print(", %s", NameOfXMMRegister(regop));
|
|
} else if (opcode == 0x11) {
|
|
// movups xmm/m128, xmm
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("movups ");
|
|
current += PrintRightXMMOperand(current);
|
|
Print(", %s", NameOfXMMRegister(regop));
|
|
} else if (opcode == 0x10) {
|
|
// movups xmm, xmm/m128
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("movups %s, ", NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0x50) {
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("movmskps %s,", NameOfCPURegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0xA2 || opcode == 0x31) {
|
|
// RDTSC or CPUID
|
|
Print("%s", mnemonic);
|
|
|
|
} else if ((opcode & 0xF0) == 0x40) {
|
|
// CMOVcc: conditional move.
|
|
int condition = opcode & 0x0F;
|
|
const InstructionDesc& idesc = cmov_instructions[condition];
|
|
byte_size_operand_ = idesc.byte_size_operation;
|
|
current += PrintOperands(idesc.mnem, idesc.op_order_, current);
|
|
|
|
} else if (opcode == 0x12 || opcode == 0x14 || opcode == 0x15 ||
|
|
opcode == 0x16 || opcode == 0x51 || opcode == 0x52 ||
|
|
opcode == 0x53 || opcode == 0x54 || opcode == 0x56 ||
|
|
opcode == 0x57 || opcode == 0x58 || opcode == 0x59 ||
|
|
opcode == 0x5A || opcode == 0x5C || opcode == 0x5D ||
|
|
opcode == 0x5E || opcode == 0x5F) {
|
|
const char* mnemonic = NULL;
|
|
switch (opcode) {
|
|
case 0x12:
|
|
mnemonic = "movhlps";
|
|
break;
|
|
case 0x14:
|
|
mnemonic = "unpcklps";
|
|
break;
|
|
case 0x15:
|
|
mnemonic = "unpckhps";
|
|
break;
|
|
case 0x16:
|
|
mnemonic = "movlhps";
|
|
break;
|
|
case 0x51:
|
|
mnemonic = "sqrtps";
|
|
break;
|
|
case 0x52:
|
|
mnemonic = "rsqrtps";
|
|
break;
|
|
case 0x53:
|
|
mnemonic = "rcpps";
|
|
break;
|
|
case 0x54:
|
|
mnemonic = "andps";
|
|
break;
|
|
case 0x56:
|
|
mnemonic = "orps";
|
|
break;
|
|
case 0x57:
|
|
mnemonic = "xorps";
|
|
break;
|
|
case 0x58:
|
|
mnemonic = "addps";
|
|
break;
|
|
case 0x59:
|
|
mnemonic = "mulps";
|
|
break;
|
|
case 0x5A:
|
|
mnemonic = "cvtsd2ss";
|
|
break;
|
|
case 0x5C:
|
|
mnemonic = "subps";
|
|
break;
|
|
case 0x5D:
|
|
mnemonic = "minps";
|
|
break;
|
|
case 0x5E:
|
|
mnemonic = "divps";
|
|
break;
|
|
case 0x5F:
|
|
mnemonic = "maxps";
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
Print("%s %s, ", mnemonic, NameOfXMMRegister(regop));
|
|
current += PrintRightXMMOperand(current);
|
|
} else if (opcode == 0xC2 || opcode == 0xC6) {
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
if (opcode == 0xC2) {
|
|
Print("cmpps %s, ", NameOfXMMRegister(regop));
|
|
} else {
|
|
ASSERT(opcode == 0xC6);
|
|
Print("shufps %s, ", NameOfXMMRegister(regop));
|
|
}
|
|
current += PrintRightXMMOperand(current);
|
|
Print(" [%x]", *current);
|
|
current++;
|
|
} else if ((opcode & 0xF0) == 0x80) {
|
|
// Jcc: Conditional jump (branch).
|
|
current = data + JumpConditional(data);
|
|
|
|
} else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
|
|
opcode == 0xB7 || opcode == 0xAF || opcode == 0xB0 ||
|
|
opcode == 0xB1) {
|
|
// Size-extending moves, IMUL, cmpxchg.
|
|
current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);
|
|
|
|
} else if ((opcode & 0xF0) == 0x90) {
|
|
// SETcc: Set byte on condition. Needs pointer to beginning of instruction.
|
|
current = data + SetCC(data);
|
|
|
|
} else if (((opcode & 0xFE) == 0xA4) || ((opcode & 0xFE) == 0xAC) ||
|
|
(opcode == 0xAB) || (opcode == 0xA3) || (opcode == 0xBD)) {
|
|
// SHLD, SHRD (double-prec. shift), BTS (bit test and set), BT (bit test).
|
|
Print("%s%c ", mnemonic, operand_size_code());
|
|
int mod, regop, rm;
|
|
get_modrm(*current, &mod, ®op, &rm);
|
|
current += PrintRightOperand(current);
|
|
Print(",%s", NameOfCPURegister(regop));
|
|
if ((opcode == 0xAB) || (opcode == 0xA3) || (opcode == 0xBD)) {
|
|
// Done.
|
|
} else if ((opcode == 0xA5) || (opcode == 0xAD)) {
|
|
Print(",cl");
|
|
} else {
|
|
Print(",");
|
|
current += PrintImmediate(current, BYTE_SIZE);
|
|
}
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
return static_cast<int>(current - data);
|
|
}
|
|
|
|
|
|
// Mnemonics for two-byte opcode instructions starting with 0x0F.
|
|
// The argument is the second byte of the two-byte opcode.
|
|
// Returns NULL if the instruction is not handled here.
|
|
const char* DisassemblerX64::TwoByteMnemonic(uint8_t opcode) {
|
|
switch (opcode) {
|
|
case 0x1F:
|
|
return "nop";
|
|
case 0x2A: // F2/F3 prefix.
|
|
return "cvtsi2s";
|
|
case 0x31:
|
|
return "rdtsc";
|
|
case 0x51: // F2 prefix.
|
|
return "sqrtsd";
|
|
case 0x58: // F2 prefix.
|
|
return "addsd";
|
|
case 0x59: // F2 prefix.
|
|
return "mulsd";
|
|
case 0x5C: // F2 prefix.
|
|
return "subsd";
|
|
case 0x5E: // F2 prefix.
|
|
return "divsd";
|
|
case 0xA2:
|
|
return "cpuid";
|
|
case 0xA3:
|
|
return "bt";
|
|
case 0xA4:
|
|
case 0xA5:
|
|
return "shld";
|
|
case 0xAB:
|
|
return "bts";
|
|
case 0xAC:
|
|
case 0xAD:
|
|
return "shrd";
|
|
case 0xAF:
|
|
return "imul";
|
|
case 0xB0:
|
|
case 0xB1:
|
|
return "cmpxchg";
|
|
case 0xB6:
|
|
return "movzxb";
|
|
case 0xB7:
|
|
return "movzxw";
|
|
case 0xBE:
|
|
return "movsxb";
|
|
case 0xBD:
|
|
return "bsr";
|
|
case 0xBF:
|
|
return "movsxw";
|
|
case 0x12:
|
|
return "movhlps";
|
|
case 0x16:
|
|
return "movlhps";
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
int DisassemblerX64::InstructionDecode(uword pc) {
|
|
uint8_t* data = reinterpret_cast<uint8_t*>(pc);
|
|
|
|
const bool processed = DecodeInstructionType(&data);
|
|
|
|
if (!processed) {
|
|
switch (*data) {
|
|
case 0xC2:
|
|
Print("ret ");
|
|
PrintImmediateValue(*reinterpret_cast<uint16_t*>(data + 1));
|
|
data += 3;
|
|
break;
|
|
|
|
case 0xC8:
|
|
Print("enter %d, %d", *reinterpret_cast<uint16_t*>(data + 1), data[3]);
|
|
data += 4;
|
|
break;
|
|
|
|
case 0x69: // fall through
|
|
case 0x6B: {
|
|
int mod, regop, rm;
|
|
get_modrm(*(data + 1), &mod, ®op, &rm);
|
|
int32_t imm =
|
|
*data == 0x6B ? *(data + 2) : *reinterpret_cast<int32_t*>(data + 2);
|
|
Print("imul%c %s,%s,", operand_size_code(), NameOfCPURegister(regop),
|
|
NameOfCPURegister(rm));
|
|
PrintImmediateValue(imm);
|
|
data += 2 + (*data == 0x6B ? 1 : 4);
|
|
break;
|
|
}
|
|
|
|
case 0x81: // fall through
|
|
case 0x83: // 0x81 with sign extension bit set
|
|
data += PrintImmediateOp(data);
|
|
break;
|
|
|
|
case 0x0F:
|
|
data += TwoByteOpcodeInstruction(data);
|
|
break;
|
|
|
|
case 0x8F: {
|
|
data++;
|
|
int mod, regop, rm;
|
|
get_modrm(*data, &mod, ®op, &rm);
|
|
if (regop == 0) {
|
|
Print("pop ");
|
|
data += PrintRightOperand(data);
|
|
}
|
|
} break;
|
|
|
|
case 0xFF: {
|
|
data++;
|
|
int mod, regop, rm;
|
|
get_modrm(*data, &mod, ®op, &rm);
|
|
const char* mnem = NULL;
|
|
switch (regop) {
|
|
case 0:
|
|
mnem = "inc";
|
|
break;
|
|
case 1:
|
|
mnem = "dec";
|
|
break;
|
|
case 2:
|
|
mnem = "call";
|
|
break;
|
|
case 4:
|
|
mnem = "jmp";
|
|
break;
|
|
case 6:
|
|
mnem = "push";
|
|
break;
|
|
default:
|
|
mnem = "???";
|
|
}
|
|
if (regop <= 1) {
|
|
Print("%s%c ", mnem, operand_size_code());
|
|
} else {
|
|
Print("%s ", mnem);
|
|
}
|
|
data += PrintRightOperand(data);
|
|
} break;
|
|
|
|
case 0xC7: // imm32, fall through
|
|
case 0xC6: // imm8
|
|
{
|
|
bool is_byte = *data == 0xC6;
|
|
data++;
|
|
if (is_byte) {
|
|
Print("movb ");
|
|
data += PrintRightByteOperand(data);
|
|
int32_t imm = *data;
|
|
Print(",");
|
|
PrintImmediateValue(imm);
|
|
data++;
|
|
} else {
|
|
Print("mov%c ", operand_size_code());
|
|
data += PrintRightOperand(data);
|
|
int32_t imm = *reinterpret_cast<int32_t*>(data);
|
|
Print(",");
|
|
PrintImmediateValue(imm);
|
|
data += 4;
|
|
}
|
|
} break;
|
|
|
|
case 0x80: {
|
|
data++;
|
|
Print("cmpb ");
|
|
data += PrintRightByteOperand(data);
|
|
int32_t imm = *data;
|
|
Print(",");
|
|
PrintImmediateValue(imm);
|
|
data++;
|
|
} break;
|
|
|
|
case 0x88: // 8bit, fall through
|
|
case 0x89: // 32bit
|
|
{
|
|
bool is_byte = *data == 0x88;
|
|
int mod, regop, rm;
|
|
data++;
|
|
get_modrm(*data, &mod, ®op, &rm);
|
|
if (is_byte) {
|
|
Print("movb ");
|
|
data += PrintRightByteOperand(data);
|
|
Print(",%s", NameOfByteCPURegister(regop));
|
|
} else {
|
|
Print("mov%c ", operand_size_code());
|
|
data += PrintRightOperand(data);
|
|
Print(",%s", NameOfCPURegister(regop));
|
|
}
|
|
} break;
|
|
|
|
case 0x90:
|
|
case 0x91:
|
|
case 0x92:
|
|
case 0x93:
|
|
case 0x94:
|
|
case 0x95:
|
|
case 0x96:
|
|
case 0x97: {
|
|
int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
|
|
if (reg == 0) {
|
|
Print("nop"); // Common name for xchg rax,rax.
|
|
} else {
|
|
Print("xchg%c rax, %s", operand_size_code(), NameOfCPURegister(reg));
|
|
}
|
|
data++;
|
|
} break;
|
|
case 0xB0:
|
|
case 0xB1:
|
|
case 0xB2:
|
|
case 0xB3:
|
|
case 0xB4:
|
|
case 0xB5:
|
|
case 0xB6:
|
|
case 0xB7:
|
|
case 0xB8:
|
|
case 0xB9:
|
|
case 0xBA:
|
|
case 0xBB:
|
|
case 0xBC:
|
|
case 0xBD:
|
|
case 0xBE:
|
|
case 0xBF: {
|
|
// mov reg8,imm8 or mov reg32,imm32
|
|
uint8_t opcode = *data;
|
|
data++;
|
|
uint8_t is_32bit = (opcode >= 0xB8);
|
|
int reg = (opcode & 0x7) | (rex_b() ? 8 : 0);
|
|
if (is_32bit) {
|
|
Print("mov%c %s,", operand_size_code(), NameOfCPURegister(reg));
|
|
data += PrintImmediate(data, DOUBLEWORD_SIZE);
|
|
} else {
|
|
Print("movb %s,", NameOfByteCPURegister(reg));
|
|
data += PrintImmediate(data, BYTE_SIZE);
|
|
}
|
|
break;
|
|
}
|
|
case 0xFE: {
|
|
data++;
|
|
int mod, regop, rm;
|
|
get_modrm(*data, &mod, ®op, &rm);
|
|
if (regop == 1) {
|
|
Print("decb ");
|
|
data += PrintRightByteOperand(data);
|
|
} else {
|
|
UnimplementedInstruction();
|
|
}
|
|
break;
|
|
}
|
|
case 0x68:
|
|
Print("push ");
|
|
PrintImmediateValue(*reinterpret_cast<int32_t*>(data + 1));
|
|
data += 5;
|
|
break;
|
|
|
|
case 0x6A:
|
|
Print("push ");
|
|
PrintImmediateValue(*reinterpret_cast<int8_t*>(data + 1));
|
|
data += 2;
|
|
break;
|
|
|
|
case 0xA1: // Fall through.
|
|
case 0xA3:
|
|
switch (operand_size()) {
|
|
case DOUBLEWORD_SIZE: {
|
|
PrintAddress(reinterpret_cast<uint8_t*>(
|
|
*reinterpret_cast<int32_t*>(data + 1)));
|
|
if (*data == 0xA1) { // Opcode 0xA1
|
|
Print("movzxlq rax,(");
|
|
PrintAddress(reinterpret_cast<uint8_t*>(
|
|
*reinterpret_cast<int32_t*>(data + 1)));
|
|
Print(")");
|
|
} else { // Opcode 0xA3
|
|
Print("movzxlq (");
|
|
PrintAddress(reinterpret_cast<uint8_t*>(
|
|
*reinterpret_cast<int32_t*>(data + 1)));
|
|
Print("),rax");
|
|
}
|
|
data += 5;
|
|
break;
|
|
}
|
|
case QUADWORD_SIZE: {
|
|
// New x64 instruction mov rax,(imm_64).
|
|
if (*data == 0xA1) { // Opcode 0xA1
|
|
Print("movq rax,(");
|
|
PrintAddress(*reinterpret_cast<uint8_t**>(data + 1));
|
|
Print(")");
|
|
} else { // Opcode 0xA3
|
|
Print("movq (");
|
|
PrintAddress(*reinterpret_cast<uint8_t**>(data + 1));
|
|
Print("),rax");
|
|
}
|
|
data += 9;
|
|
break;
|
|
}
|
|
default:
|
|
UnimplementedInstruction();
|
|
data += 2;
|
|
}
|
|
break;
|
|
|
|
case 0xA8:
|
|
Print("test al,");
|
|
PrintImmediateValue(*reinterpret_cast<uint8_t*>(data + 1));
|
|
data += 2;
|
|
break;
|
|
|
|
case 0xA9: {
|
|
int64_t value = 0;
|
|
switch (operand_size()) {
|
|
case WORD_SIZE:
|
|
value = *reinterpret_cast<uint16_t*>(data + 1);
|
|
data += 3;
|
|
break;
|
|
case DOUBLEWORD_SIZE:
|
|
value = *reinterpret_cast<uint32_t*>(data + 1);
|
|
data += 5;
|
|
break;
|
|
case QUADWORD_SIZE:
|
|
value = *reinterpret_cast<int32_t*>(data + 1);
|
|
data += 5;
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
Print("test%c rax,", operand_size_code());
|
|
PrintImmediateValue(value);
|
|
break;
|
|
}
|
|
case 0xD1: // fall through
|
|
case 0xD3: // fall through
|
|
case 0xC1:
|
|
data += ShiftInstruction(data);
|
|
break;
|
|
case 0xD0: // fall through
|
|
case 0xD2: // fall through
|
|
case 0xC0:
|
|
byte_size_operand_ = true;
|
|
data += ShiftInstruction(data);
|
|
break;
|
|
|
|
case 0xD9: // fall through
|
|
case 0xDA: // fall through
|
|
case 0xDB: // fall through
|
|
case 0xDC: // fall through
|
|
case 0xDD: // fall through
|
|
case 0xDE: // fall through
|
|
case 0xDF:
|
|
data += FPUInstruction(data);
|
|
break;
|
|
|
|
case 0xEB:
|
|
data += JumpShort(data);
|
|
break;
|
|
|
|
case 0xF6:
|
|
byte_size_operand_ = true; // fall through
|
|
case 0xF7:
|
|
data += F6F7Instruction(data);
|
|
break;
|
|
|
|
default:
|
|
UnimplementedInstruction();
|
|
data += 1;
|
|
}
|
|
} // !processed
|
|
|
|
ASSERT(buffer_[buffer_pos_] == '\0');
|
|
|
|
int instr_len = data - reinterpret_cast<uint8_t*>(pc);
|
|
ASSERT(instr_len > 0); // Ensure progress.
|
|
|
|
return instr_len;
|
|
}
|
|
|
|
|
|
void Disassembler::DecodeInstruction(char* hex_buffer,
|
|
intptr_t hex_size,
|
|
char* human_buffer,
|
|
intptr_t human_size,
|
|
int* out_instr_len,
|
|
const Code& code,
|
|
Object** object,
|
|
uword pc) {
|
|
ASSERT(hex_size > 0);
|
|
ASSERT(human_size > 0);
|
|
DisassemblerX64 decoder(human_buffer, human_size);
|
|
int instruction_length = decoder.InstructionDecode(pc);
|
|
uint8_t* pc_ptr = reinterpret_cast<uint8_t*>(pc);
|
|
int hex_index = 0;
|
|
int remaining_size = hex_size - hex_index;
|
|
for (int i = 0; (i < instruction_length) && (remaining_size > 2); ++i) {
|
|
OS::SNPrint(&hex_buffer[hex_index], remaining_size, "%02x", pc_ptr[i]);
|
|
hex_index += 2;
|
|
remaining_size -= 2;
|
|
}
|
|
hex_buffer[hex_index] = '\0';
|
|
if (out_instr_len) {
|
|
*out_instr_len = instruction_length;
|
|
}
|
|
|
|
*object = NULL;
|
|
if (!code.IsNull()) {
|
|
*object = &Object::Handle();
|
|
if (!DecodeLoadObjectFromPoolOrThread(pc, code, *object)) {
|
|
*object = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // !PRODUCT
|
|
|
|
} // namespace dart
|
|
|
|
#endif // defined TARGET_ARCH_X64
|