dart-sdk/runtime/vm/constants_arm.h
zra@google.com 2348d3ebd1 Teaches the register allocator about a second assembler temporary.
ARM64 explicitly has two assembler temporaries that fall in the
middle of the range of registers that Dart may otherwise use. To
comply with this convention, the register allocator must
recognize two TMP registers. I've called the added one TMP2,
but I'm open to suggestions for other names.

R=regis@google.com

Review URL: https://codereview.chromium.org//239283003

git-svn-id: https://dart.googlecode.com/svn/branches/bleeding_edge/dart@35070 260f80e4-7a28-3924-810f-c04153c831b5
2014-04-15 18:01:51 +00:00

669 lines
19 KiB
C++

// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef VM_CONSTANTS_ARM_H_
#define VM_CONSTANTS_ARM_H_
#include "platform/assert.h"
namespace dart {
// We support both VFPv3-D16 and VFPv3-D32 profiles, but currently only one at
// a time.
// TODO(zra): Detect number of registers at runtime by querying /proc/cpuinfo.
#define VFPv3_D32
#if defined(VFPv3_D16) == defined(VFPv3_D32)
#error "Exactly one of VFPv3_D16 or VFPv3_D32 can be defined at a time."
#endif
enum Register {
kFirstFreeCpuRegister = 0,
R0 = 0,
R1 = 1,
R2 = 2,
R3 = 3,
R4 = 4,
R5 = 5,
R6 = 6,
R7 = 7,
R8 = 8,
kLastFreeCpuRegister = 8,
R9 = 9,
R10 = 10,
R11 = 11,
R12 = 12,
R13 = 13,
R14 = 14,
R15 = 15,
FP = 11,
IP = 12,
SP = 13,
LR = 14,
PC = 15,
kNumberOfCpuRegisters = 16,
kNoRegister = -1,
};
// Values for single-precision floating point registers.
enum SRegister {
S0 = 0,
S1 = 1,
S2 = 2,
S3 = 3,
S4 = 4,
S5 = 5,
S6 = 6,
S7 = 7,
S8 = 8,
S9 = 9,
S10 = 10,
S11 = 11,
S12 = 12,
S13 = 13,
S14 = 14,
S15 = 15,
S16 = 16,
S17 = 17,
S18 = 18,
S19 = 19,
S20 = 20,
S21 = 21,
S22 = 22,
S23 = 23,
S24 = 24,
S25 = 25,
S26 = 26,
S27 = 27,
S28 = 28,
S29 = 29,
S30 = 30,
S31 = 31,
kNumberOfSRegisters = 32,
kNoSRegister = -1,
};
// Values for double-precision floating point registers.
enum DRegister {
D0 = 0,
D1 = 1,
D2 = 2,
D3 = 3,
D4 = 4,
D5 = 5,
D6 = 6,
D7 = 7,
D8 = 8,
D9 = 9,
D10 = 10,
D11 = 11,
D12 = 12,
D13 = 13,
D14 = 14,
D15 = 15,
#ifdef VFPv3_D16
kNumberOfDRegisters = 16,
#else
D16 = 16,
D17 = 17,
D18 = 18,
D19 = 19,
D20 = 20,
D21 = 21,
D22 = 22,
D23 = 23,
D24 = 24,
D25 = 25,
D26 = 26,
D27 = 27,
D28 = 28,
D29 = 29,
D30 = 30,
D31 = 31,
kNumberOfDRegisters = 32,
#endif
kNumberOfOverlappingDRegisters = 16,
kNoDRegister = -1,
};
enum QRegister {
Q0 = 0,
Q1 = 1,
Q2 = 2,
Q3 = 3,
Q4 = 4,
Q5 = 5,
Q6 = 6,
Q7 = 7,
#ifdef VFPv3_D16
kNumberOfQRegisters = 8,
#else
Q8 = 8,
Q9 = 9,
Q10 = 10,
Q11 = 11,
Q12 = 12,
Q13 = 13,
Q14 = 14,
Q15 = 15,
kNumberOfQRegisters = 16,
#endif
kNoQRegister = -1,
};
static inline DRegister EvenDRegisterOf(QRegister q) {
return static_cast<DRegister>(q * 2);
}
static inline DRegister OddDRegisterOf(QRegister q) {
return static_cast<DRegister>((q * 2) + 1);
}
static inline SRegister EvenSRegisterOf(DRegister d) {
#ifdef VFPv3_D32
ASSERT(d < D16);
#endif
return static_cast<SRegister>(d * 2);
}
static inline SRegister OddSRegisterOf(DRegister d) {
#ifdef VFPv3_D32
ASSERT(d < D16);
#endif
return static_cast<SRegister>((d * 2) + 1);
}
// Register aliases for floating point scratch registers.
const QRegister QTMP = Q7; // Overlaps with DTMP, STMP.
const DRegister DTMP = EvenDRegisterOf(QTMP); // Overlaps with STMP.
const SRegister STMP = EvenSRegisterOf(DTMP);
// Architecture independent aliases.
typedef QRegister FpuRegister;
const FpuRegister FpuTMP = QTMP;
const int kNumberOfFpuRegisters = kNumberOfQRegisters;
const FpuRegister kNoFpuRegister = kNoQRegister;
// Register aliases.
const Register TMP = IP; // Used as scratch register by assembler.
const Register TMP2 = kNoRegister; // There is no second assembler temporary.
const Register CTX = R9; // Caches current context in generated code.
const Register PP = R10; // Caches object pool pointer in generated code.
const Register SPREG = SP; // Stack pointer register.
const Register FPREG = FP; // Frame pointer register.
const Register ICREG = R5; // IC data register.
// Exception object is passed in this register to the catch handlers when an
// exception is thrown.
const Register kExceptionObjectReg = R0;
// Stack trace object is passed in this register to the catch handlers when
// an exception is thrown.
const Register kStackTraceObjectReg = R1;
// List of registers used in load/store multiple.
typedef uint16_t RegList;
const RegList kAllCpuRegistersList = 0xFFFF;
// C++ ABI call registers.
const RegList kAbiArgumentCpuRegs =
(1 << R0) | (1 << R1) | (1 << R2) | (1 << R3);
const RegList kAbiPreservedCpuRegs =
(1 << R4) | (1 << R5) | (1 << R6) | (1 << R7) |
(1 << R8) | (1 << R9) | (1 << R10);
const int kAbiPreservedCpuRegCount = 7;
const QRegister kAbiFirstPreservedFpuReg = Q4;
const QRegister kAbiLastPreservedFpuReg = Q7;
const int kAbiPreservedFpuRegCount = 4;
// CPU registers available to Dart allocator.
const RegList kDartAvailableCpuRegs =
(1 << R0) | (1 << R1) | (1 << R2) | (1 << R3) |
(1 << R4) | (1 << R5) | (1 << R6) | (1 << R7) | (1 << R8);
// Registers available to Dart that are not preserved by runtime calls.
const RegList kDartVolatileCpuRegs =
kDartAvailableCpuRegs & ~kAbiPreservedCpuRegs;
const int kDartVolatileCpuRegCount = 4;
const QRegister kDartFirstVolatileFpuReg = Q0;
const QRegister kDartLastVolatileFpuReg = Q3;
const int kDartVolatileFpuRegCount = 4;
// Values for the condition field as defined in section A3.2.
enum Condition {
kNoCondition = -1,
EQ = 0, // equal
NE = 1, // not equal
CS = 2, // carry set/unsigned higher or same
CC = 3, // carry clear/unsigned lower
MI = 4, // minus/negative
PL = 5, // plus/positive or zero
VS = 6, // overflow
VC = 7, // no overflow
HI = 8, // unsigned higher
LS = 9, // unsigned lower or same
GE = 10, // signed greater than or equal
LT = 11, // signed less than
GT = 12, // signed greater than
LE = 13, // signed less than or equal
AL = 14, // always (unconditional)
kSpecialCondition = 15, // special condition (refer to section A3.2.1)
kMaxCondition = 16,
};
// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
// as defined in section A3.4
enum Opcode {
kNoOperand = -1,
AND = 0, // Logical AND
EOR = 1, // Logical Exclusive OR
SUB = 2, // Subtract
RSB = 3, // Reverse Subtract
ADD = 4, // Add
ADC = 5, // Add with Carry
SBC = 6, // Subtract with Carry
RSC = 7, // Reverse Subtract with Carry
TST = 8, // Test
TEQ = 9, // Test Equivalence
CMP = 10, // Compare
CMN = 11, // Compare Negated
ORR = 12, // Logical (inclusive) OR
MOV = 13, // Move
BIC = 14, // Bit Clear
MVN = 15, // Move Not
kMaxOperand = 16
};
// Shifter types for Data-processing operands as defined in section A5.1.2.
enum Shift {
kNoShift = -1,
LSL = 0, // Logical shift left
LSR = 1, // Logical shift right
ASR = 2, // Arithmetic shift right
ROR = 3, // Rotate right
kMaxShift = 4
};
// Special Supervisor Call 24-bit codes used in the presence of the ARM
// simulator for redirection, breakpoints, stop messages, and spill markers.
// See /usr/include/asm/unistd.h
const uint32_t kRedirectionSvcCode = 0x90001f; // unused syscall, was sys_stty
const uint32_t kBreakpointSvcCode = 0x900020; // unused syscall, was sys_gtty
const uint32_t kStopMessageSvcCode = 0x9f0001; // __ARM_NR_breakpoint
const uint32_t kSpillMarkerSvcBase = 0x9f0100; // unused ARM private syscall
const uint32_t kWordSpillMarkerSvcCode = kSpillMarkerSvcBase + 1;
const uint32_t kDWordSpillMarkerSvcCode = kSpillMarkerSvcBase + 2;
// Constants used for the decoding or encoding of the individual fields of
// instructions. Based on the "Figure 3-1 ARM instruction set summary".
enum InstructionFields {
kConditionShift = 28,
kConditionBits = 4,
kTypeShift = 25,
kTypeBits = 3,
kLinkShift = 24,
kLinkBits = 1,
kUShift = 23,
kUBits = 1,
kOpcodeShift = 21,
kOpcodeBits = 4,
kSShift = 20,
kSBits = 1,
kRnShift = 16,
kRnBits = 4,
kRdShift = 12,
kRdBits = 4,
kRsShift = 8,
kRsBits = 4,
kRmShift = 0,
kRmBits = 4,
// Immediate instruction fields encoding.
kRotateShift = 8,
kRotateBits = 4,
kImmed8Shift = 0,
kImmed8Bits = 8,
// Shift instruction register fields encodings.
kShiftImmShift = 7,
kShiftRegisterShift = 8,
kShiftImmBits = 5,
kShiftShift = 5,
kShiftBits = 2,
// Load/store instruction offset field encoding.
kOffset12Shift = 0,
kOffset12Bits = 12,
kOffset12Mask = 0x00000fff,
// Mul instruction register field encodings.
kMulRdShift = 16,
kMulRdBits = 4,
kMulRnShift = 12,
kMulRnBits = 4,
// Div instruction register field encodings.
kDivRdShift = 16,
kDivRdBits = 4,
kDivRmShift = 8,
kDivRmBits = 4,
kDivRnShift = 0,
kDivRnBits = 4,
// ldrex/strex register field encodings.
kLdExRnShift = 16,
kLdExRtShift = 12,
kStrExRnShift = 16,
kStrExRdShift = 12,
kStrExRtShift = 0,
// MRC instruction offset field encoding.
kCRmShift = 0,
kCRmBits = 4,
kOpc2Shift = 5,
kOpc2Bits = 3,
kCoprocShift = 8,
kCoprocBits = 4,
kCRnShift = 16,
kCRnBits = 4,
kOpc1Shift = 21,
kOpc1Bits = 3,
kBranchOffsetMask = 0x00ffffff
};
// The class Instr enables access to individual fields defined in the ARM
// architecture instruction set encoding as described in figure A3-1.
//
// Example: Test whether the instruction at ptr sets the condition code bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
// Instr* instr = Instr::At(ptr);
// int type = instr->TypeField();
// return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
class Instr {
public:
enum {
kInstrSize = 4,
kInstrSizeLog2 = 2,
kPCReadOffset = 8
};
static const int32_t kNopInstruction = // nop
((AL << kConditionShift) | (0x32 << 20) | (0xf << 12));
static const int32_t kBreakPointInstruction = // svc #kBreakpointSvcCode
((AL << kConditionShift) | (0xf << 24) | kBreakpointSvcCode);
static const int kBreakPointInstructionSize = kInstrSize;
bool IsBreakPoint() {
return IsBkpt();
}
// Get the raw instruction bits.
inline int32_t InstructionBits() const {
return *reinterpret_cast<const int32_t*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(int32_t value) {
*reinterpret_cast<int32_t*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const {
return (InstructionBits() >> nr) & 1;
}
// Read a bit field out of the instruction bits.
inline int Bits(int shift, int count) const {
return (InstructionBits() >> shift) & ((1 << count) - 1);
}
// Accessors for the different named fields used in the ARM encoding.
// The naming of these accessor corresponds to figure A3-1.
// Generally applicable fields
inline Condition ConditionField() const {
return static_cast<Condition>(Bits(kConditionShift, kConditionBits));
}
inline int TypeField() const { return Bits(kTypeShift, kTypeBits); }
inline Register RnField() const { return static_cast<Register>(
Bits(kRnShift, kRnBits)); }
inline Register RdField() const { return static_cast<Register>(
Bits(kRdShift, kRdBits)); }
// Fields used in Data processing instructions
inline Opcode OpcodeField() const {
return static_cast<Opcode>(Bits(kOpcodeShift, kOpcodeBits));
}
inline int SField() const { return Bits(kSShift, kSBits); }
// with register
inline Register RmField() const {
return static_cast<Register>(Bits(kRmShift, kRmBits));
}
inline Shift ShiftField() const { return static_cast<Shift>(
Bits(kShiftShift, kShiftBits)); }
inline int RegShiftField() const { return Bit(4); }
inline Register RsField() const {
return static_cast<Register>(Bits(kRsShift, kRsBits));
}
inline int ShiftAmountField() const { return Bits(kShiftImmShift,
kShiftImmBits); }
// with immediate
inline int RotateField() const { return Bits(kRotateShift, kRotateBits); }
inline int Immed8Field() const { return Bits(kImmed8Shift, kImmed8Bits); }
// Fields used in Load/Store instructions
inline int PUField() const { return Bits(23, 2); }
inline int BField() const { return Bit(22); }
inline int WField() const { return Bit(21); }
inline int LField() const { return Bit(20); }
// with register uses same fields as Data processing instructions above
// with immediate
inline int Offset12Field() const { return Bits(kOffset12Shift,
kOffset12Bits); }
// multiple
inline int RlistField() const { return Bits(0, 16); }
// extra loads and stores
inline int SignField() const { return Bit(6); }
inline int HField() const { return Bit(5); }
inline int ImmedHField() const { return Bits(8, 4); }
inline int ImmedLField() const { return Bits(0, 4); }
// Fields used in Branch instructions
inline int LinkField() const { return Bits(kLinkShift, kLinkBits); }
inline int SImmed24Field() const { return ((InstructionBits() << 8) >> 8); }
// Fields used in Supervisor Call instructions
inline uint32_t SvcField() const { return Bits(0, 24); }
// Field used in Breakpoint instruction
inline uint16_t BkptField() const {
return ((Bits(8, 12) << 4) | Bits(0, 4));
}
// Field used in 16-bit immediate move instructions
inline uint16_t MovwField() const {
return ((Bits(16, 4) << 12) | Bits(0, 12));
}
// Field used in VFP float immediate move instruction
inline float ImmFloatField() const {
uint32_t imm32 = (Bit(19) << 31) | (((1 << 5) - Bit(18)) << 25) |
(Bits(16, 2) << 23) | (Bits(0, 4) << 19);
return bit_cast<float, uint32_t>(imm32);
}
// Field used in VFP double immediate move instruction
inline double ImmDoubleField() const {
uint64_t imm64 = (Bit(19)*(1LL << 63)) | (((1LL << 8) - Bit(18)) << 54) |
(Bits(16, 2)*(1LL << 52)) | (Bits(0, 4)*(1LL << 48));
return bit_cast<double, uint64_t>(imm64);
}
inline Register DivRdField() const {
return static_cast<Register>(Bits(kDivRdShift, kDivRdBits));
}
inline Register DivRmField() const {
return static_cast<Register>(Bits(kDivRmShift, kDivRmBits));
}
inline Register DivRnField() const {
return static_cast<Register>(Bits(kDivRnShift, kDivRnBits));
}
// Test for data processing instructions of type 0 or 1.
// See "ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition",
// section A5.1 "ARM instruction set encoding".
inline bool IsDataProcessing() const {
ASSERT(ConditionField() != kSpecialCondition);
ASSERT(Bits(26, 2) == 0); // Type 0 or 1.
return ((Bits(20, 5) & 0x19) != 0x10) &&
((Bit(25) == 1) || // Data processing immediate.
(Bit(4) == 0) || // Data processing register.
(Bit(7) == 0)); // Data processing register-shifted register.
}
// Tests for special encodings of type 0 instructions (extra loads and stores,
// as well as multiplications, synchronization primitives, and miscellaneous).
// Can only be called for a type 0 or 1 instruction.
inline bool IsMiscellaneous() const {
ASSERT(Bits(26, 2) == 0); // Type 0 or 1.
return ((Bit(25) == 0) && ((Bits(20, 5) & 0x19) == 0x10) && (Bit(7) == 0));
}
inline bool IsMultiplyOrSyncPrimitive() const {
ASSERT(Bits(26, 2) == 0); // Type 0 or 1.
return ((Bit(25) == 0) && (Bits(4, 4) == 9));
}
// Test for Supervisor Call instruction.
inline bool IsSvc() const {
return ((InstructionBits() & 0x0f000000) == 0x0f000000);
}
// Test for Breakpoint instruction.
inline bool IsBkpt() const {
return ((InstructionBits() & 0x0ff000f0) == 0x01200070);
}
// VFP register fields.
inline SRegister SnField() const {
return static_cast<SRegister>((Bits(kRnShift, kRnBits) << 1) + Bit(7));
}
inline SRegister SdField() const {
return static_cast<SRegister>((Bits(kRdShift, kRdBits) << 1) + Bit(22));
}
inline SRegister SmField() const {
return static_cast<SRegister>((Bits(kRmShift, kRmBits) << 1) + Bit(5));
}
inline DRegister DnField() const {
return static_cast<DRegister>(Bits(kRnShift, kRnBits) + (Bit(7) << 4));
}
inline DRegister DdField() const {
return static_cast<DRegister>(Bits(kRdShift, kRdBits) + (Bit(22) << 4));
}
inline DRegister DmField() const {
return static_cast<DRegister>(Bits(kRmShift, kRmBits) + (Bit(5) << 4));
}
inline QRegister QnField() const {
const intptr_t bits = Bits(kRnShift, kRnBits) + (Bit(7) << 4);
return static_cast<QRegister>(bits >> 1);
}
inline QRegister QdField() const {
const intptr_t bits = Bits(kRdShift, kRdBits) + (Bit(22) << 4);
return static_cast<QRegister>(bits >> 1);
}
inline QRegister QmField() const {
const intptr_t bits = Bits(kRmShift, kRmBits) + (Bit(5) << 4);
return static_cast<QRegister>(bits >> 1);
}
inline bool IsDivision() const {
ASSERT(ConditionField() != kSpecialCondition);
ASSERT(TypeField() == 3);
return ((Bit(4) == 1) && (Bits(5, 3) == 0) &&
(Bit(20) == 1) && (Bits(22, 3) == 4));
}
// Test for VFP data processing or single transfer instructions of type 7.
inline bool IsVFPDataProcessingOrSingleTransfer() const {
ASSERT(ConditionField() != kSpecialCondition);
ASSERT(TypeField() == 7);
return ((Bit(24) == 0) && (Bits(9, 3) == 5));
// Bit(4) == 0: Data Processing
// Bit(4) == 1: 8, 16, or 32-bit Transfer between ARM Core and VFP
}
// Test for VFP 64-bit transfer instructions of type 6.
inline bool IsVFPDoubleTransfer() const {
ASSERT(ConditionField() != kSpecialCondition);
ASSERT(TypeField() == 6);
return ((Bits(21, 4) == 2) && (Bits(9, 3) == 5) &&
((Bits(4, 4) & 0xd) == 1));
}
// Test for VFP load and store instructions of type 6.
inline bool IsVFPLoadStore() const {
ASSERT(ConditionField() != kSpecialCondition);
ASSERT(TypeField() == 6);
return ((Bits(20, 5) & 0x12) == 0x10) && (Bits(9, 3) == 5);
}
// Test for VFP multiple load and store instructions of type 6.
inline bool IsVFPMultipleLoadStore() const {
ASSERT(ConditionField() != kSpecialCondition);
ASSERT(TypeField() == 6);
int32_t puw = (PUField() << 1) | Bit(21); // don't care about D bit
return (Bits(9, 3) == 5) && ((puw == 2) || (puw == 3) || (puw == 5));
}
inline bool IsSIMDDataProcessing() const {
ASSERT(ConditionField() == kSpecialCondition);
return (Bits(25, 3) == 1);
}
inline bool IsSIMDLoadStore() const {
ASSERT(ConditionField() == kSpecialCondition);
return (Bits(24, 4) == 4) && (Bit(20) == 0);
}
// Special accessors that test for existence of a value.
inline bool HasS() const { return SField() == 1; }
inline bool HasB() const { return BField() == 1; }
inline bool HasW() const { return WField() == 1; }
inline bool HasL() const { return LField() == 1; }
inline bool HasSign() const { return SignField() == 1; }
inline bool HasH() const { return HField() == 1; }
inline bool HasLink() const { return LinkField() == 1; }
// Instructions are read out of a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instr.
// Use the At(pc) function to create references to Instr.
static Instr* At(uword pc) { return reinterpret_cast<Instr*>(pc); }
private:
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(Instr);
};
} // namespace dart
#endif // VM_CONSTANTS_ARM_H_