dart-sdk/runtime/lib/object.cc
Régis Crelier 3598d4340d [VM/nnbd] Consider nullability of type parameters in function type tests.
This also fixes issue #40259.

Change-Id: I2e603e927e98270bb24b726444490993e6360f97
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/134572
Commit-Queue: Régis Crelier <regis@google.com>
Reviewed-by: Liam Appelbe <liama@google.com>
Reviewed-by: Alexander Markov <alexmarkov@google.com>
2020-02-06 01:45:29 +00:00

489 lines
18 KiB
C++

// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/bootstrap_natives.h"
#include "lib/invocation_mirror.h"
#include "vm/code_patcher.h"
#include "vm/exceptions.h"
#include "vm/heap/heap.h"
#include "vm/native_entry.h"
#include "vm/object.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_NATIVE_ENTRY(DartAsync_fatal, 0, 1) {
// The dart:async library code entered an unrecoverable state.
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const char* msg = instance.ToCString();
OS::PrintErr("Fatal error in dart:async: %s\n", msg);
FATAL(msg);
return Object::null();
}
DEFINE_NATIVE_ENTRY(Object_equals, 0, 1) {
// Implemented in the flow graph builder.
UNREACHABLE();
return Object::null();
}
DEFINE_NATIVE_ENTRY(Object_getHash, 0, 1) {
// Please note that no handle is created for the argument.
// This is safe since the argument is only used in a tail call.
// The performance benefit is more than 5% when using hashCode.
#if defined(HASH_IN_OBJECT_HEADER)
return Smi::New(Object::GetCachedHash(arguments->NativeArgAt(0)));
#else
Heap* heap = isolate->heap();
ASSERT(arguments->NativeArgAt(0)->IsDartInstance());
return Smi::New(heap->GetHash(arguments->NativeArgAt(0)));
#endif
}
DEFINE_NATIVE_ENTRY(Object_setHash, 0, 2) {
GET_NON_NULL_NATIVE_ARGUMENT(Smi, hash, arguments->NativeArgAt(1));
#if defined(HASH_IN_OBJECT_HEADER)
Object::SetCachedHash(arguments->NativeArgAt(0), hash.Value());
#else
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
Heap* heap = isolate->heap();
heap->SetHash(instance.raw(), hash.Value());
#endif
return Object::null();
}
DEFINE_NATIVE_ENTRY(Object_toString, 0, 1) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
if (instance.IsString()) {
return instance.raw();
}
if (instance.IsAbstractType()) {
return AbstractType::Cast(instance).UserVisibleName();
}
const char* c_str = instance.ToCString();
return String::New(c_str);
}
DEFINE_NATIVE_ENTRY(Object_runtimeType, 0, 1) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
if (instance.IsString()) {
return Type::StringType();
} else if (instance.IsInteger()) {
return Type::IntType();
} else if (instance.IsDouble()) {
return Type::Double();
}
return instance.GetType(Heap::kNew);
}
DEFINE_NATIVE_ENTRY(Object_haveSameRuntimeType, 0, 2) {
const Instance& left =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& right =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
const intptr_t left_cid = left.GetClassId();
const intptr_t right_cid = right.GetClassId();
if (left_cid != right_cid) {
if (RawObject::IsIntegerClassId(left_cid)) {
return Bool::Get(RawObject::IsIntegerClassId(right_cid)).raw();
} else if (RawObject::IsStringClassId(right_cid)) {
return Bool::Get(RawObject::IsStringClassId(right_cid)).raw();
} else {
return Bool::False().raw();
}
}
const Class& cls = Class::Handle(left.clazz());
if (cls.IsClosureClass()) {
// TODO(vegorov): provide faster implementation for closure classes.
const AbstractType& left_type =
AbstractType::Handle(left.GetType(Heap::kNew));
const AbstractType& right_type =
AbstractType::Handle(right.GetType(Heap::kNew));
return Bool::Get(
left_type.IsEquivalent(right_type, TypeEquality::kSyntactical))
.raw();
}
if (!cls.IsGeneric()) {
return Bool::True().raw();
}
if (left.GetTypeArguments() == right.GetTypeArguments()) {
return Bool::True().raw();
}
const TypeArguments& left_type_arguments =
TypeArguments::Handle(left.GetTypeArguments());
const TypeArguments& right_type_arguments =
TypeArguments::Handle(right.GetTypeArguments());
const intptr_t num_type_args = cls.NumTypeArguments();
const intptr_t num_type_params = cls.NumTypeParameters();
return Bool::Get(left_type_arguments.IsSubvectorEquivalent(
right_type_arguments, num_type_args - num_type_params,
num_type_params, TypeEquality::kSyntactical))
.raw();
}
DEFINE_NATIVE_ENTRY(Object_instanceOf, 0, 5) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const TypeArguments& instantiator_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(1));
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(2));
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments->NativeArgAt(3));
const NNBDMode nnbd_mode = static_cast<NNBDMode>(
Smi::CheckedHandle(zone, arguments->NativeArgAt(4)).Value());
ASSERT(type.IsFinalized());
const bool is_instance_of = instance.IsInstanceOf(
nnbd_mode, type, instantiator_type_arguments, function_type_arguments);
if (FLAG_trace_type_checks) {
const char* result_str = is_instance_of ? "true" : "false";
OS::PrintErr("Native Object.instanceOf: result %s\n", result_str);
const AbstractType& instance_type =
AbstractType::Handle(zone, instance.GetType(Heap::kNew));
OS::PrintErr(" instance type: %s\n",
String::Handle(zone, instance_type.Name()).ToCString());
OS::PrintErr(" test type: %s\n",
String::Handle(zone, type.Name()).ToCString());
}
return Bool::Get(is_instance_of).raw();
}
DEFINE_NATIVE_ENTRY(Object_simpleInstanceOf, 0, 2) {
// This native is only called when the right hand side passes
// SimpleInstanceOfType and it is a non-negative test.
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments->NativeArgAt(1));
ASSERT(type.IsFinalized());
ASSERT(type.IsInstantiated());
// If the instance is not null, the result of _simpleInstanceOf does not
// depend on the nnbd mode, because we only check against a rare type,
// i.e. a class. However, we need to determine the correct nnbd mode when
// the instance is null.
// Since type literals are not imported, a legacy type indicates that the
// call originated in a legacy library. Note that the type test against a
// non-legacy type (even in a legacy library) such as dynamic, void, or Null
// yield the same result independently of the mode used.
NNBDMode mode =
type.IsLegacy() ? NNBDMode::kLegacyLib : NNBDMode::kOptedInLib;
const bool is_instance_of = instance.IsInstanceOf(
mode, type, Object::null_type_arguments(), Object::null_type_arguments());
return Bool::Get(is_instance_of).raw();
}
DEFINE_NATIVE_ENTRY(AbstractType_toString, 0, 1) {
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments->NativeArgAt(0));
return type.UserVisibleName();
}
DEFINE_NATIVE_ENTRY(Type_getHashCode, 0, 1) {
const Type& type = Type::CheckedHandle(zone, arguments->NativeArgAt(0));
intptr_t hash_val = type.Hash();
ASSERT(hash_val > 0);
ASSERT(Smi::IsValid(hash_val));
return Smi::New(hash_val);
}
DEFINE_NATIVE_ENTRY(Type_equality, 0, 2) {
const Type& type = Type::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& other =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
if (type.raw() == other.raw()) {
return Bool::True().raw();
}
return Bool::Get(type.IsEquivalent(other, TypeEquality::kSyntactical)).raw();
}
DEFINE_NATIVE_ENTRY(Internal_inquireIs64Bit, 0, 0) {
#if defined(ARCH_IS_64_BIT)
return Bool::True().raw();
#else
return Bool::False().raw();
#endif // defined(ARCH_IS_64_BIT)
}
DEFINE_NATIVE_ENTRY(Internal_unsafeCast, 0, 1) {
UNREACHABLE(); // Should be erased at Kernel translation time.
return arguments->NativeArgAt(0);
}
static bool ExtractInterfaceTypeArgs(Zone* zone,
const Class& instance_cls,
const TypeArguments& instance_type_args,
const Class& interface_cls,
TypeArguments* interface_type_args) {
Class& cur_cls = Class::Handle(zone, instance_cls.raw());
// The following code is a specialization of Class::IsSubtypeOf().
Array& interfaces = Array::Handle(zone);
AbstractType& interface = AbstractType::Handle(zone);
Class& cur_interface_cls = Class::Handle(zone);
TypeArguments& cur_interface_type_args = TypeArguments::Handle(zone);
while (true) {
// Additional subtyping rules related to 'FutureOr' are not applied.
if (cur_cls.raw() == interface_cls.raw()) {
*interface_type_args = instance_type_args.raw();
return true;
}
interfaces = cur_cls.interfaces();
for (intptr_t i = 0; i < interfaces.Length(); i++) {
interface ^= interfaces.At(i);
ASSERT(interface.IsFinalized());
cur_interface_cls = interface.type_class();
cur_interface_type_args = interface.arguments();
if (!cur_interface_type_args.IsNull() &&
!cur_interface_type_args.IsInstantiated()) {
cur_interface_type_args = cur_interface_type_args.InstantiateFrom(
cur_cls.nnbd_mode(), instance_type_args,
Object::null_type_arguments(), kNoneFree, NULL, Heap::kNew);
}
if (ExtractInterfaceTypeArgs(zone, cur_interface_cls,
cur_interface_type_args, interface_cls,
interface_type_args)) {
return true;
}
}
cur_cls = cur_cls.SuperClass();
if (cur_cls.IsNull()) {
return false;
}
}
}
// for documentation see pkg/dart_internal/lib/extract_type_arguments.dart
DEFINE_NATIVE_ENTRY(Internal_extractTypeArguments, 0, 2) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& extract =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
Class& interface_cls = Class::Handle(zone);
intptr_t num_type_args = 0;
if (arguments->NativeTypeArgCount() >= 1) {
const AbstractType& function_type_arg =
AbstractType::Handle(zone, arguments->NativeTypeArgAt(0));
if (function_type_arg.IsType() &&
(function_type_arg.arguments() == TypeArguments::null())) {
interface_cls = function_type_arg.type_class();
num_type_args = interface_cls.NumTypeParameters();
}
}
if (num_type_args == 0) {
Exceptions::ThrowArgumentError(String::Handle(
zone,
String::New(
"single function type argument must specify a generic class")));
}
if (instance.IsNull()) {
Exceptions::ThrowArgumentError(instance);
}
// Function 'extract' must be generic and accept the same number of type args,
// unless we execute Dart 1.0 code.
if (extract.IsNull() || !extract.IsClosure() ||
((num_type_args > 0) && // Dart 1.0 if num_type_args == 0.
(Function::Handle(zone, Closure::Cast(extract).function())
.NumTypeParameters() != num_type_args))) {
Exceptions::ThrowArgumentError(String::Handle(
zone,
String::New("argument 'extract' is not a generic function or not one "
"accepting the correct number of type arguments")));
}
TypeArguments& extracted_type_args = TypeArguments::Handle(zone);
if (num_type_args > 0) {
// The passed instance must implement interface_cls.
TypeArguments& interface_type_args = TypeArguments::Handle(zone);
interface_type_args = TypeArguments::New(num_type_args);
Class& instance_cls = Class::Handle(zone, instance.clazz());
TypeArguments& instance_type_args = TypeArguments::Handle(zone);
if (instance_cls.NumTypeArguments() > 0) {
instance_type_args = instance.GetTypeArguments();
}
if (!ExtractInterfaceTypeArgs(zone, instance_cls, instance_type_args,
interface_cls, &interface_type_args)) {
Exceptions::ThrowArgumentError(String::Handle(
zone, String::New("type of argument 'instance' is not a subtype of "
"the function type argument")));
}
if (!interface_type_args.IsNull()) {
extracted_type_args = TypeArguments::New(num_type_args);
const intptr_t offset = interface_cls.NumTypeArguments() - num_type_args;
AbstractType& type_arg = AbstractType::Handle(zone);
for (intptr_t i = 0; i < num_type_args; i++) {
type_arg = interface_type_args.TypeAt(offset + i);
extracted_type_args.SetTypeAt(i, type_arg);
}
extracted_type_args = extracted_type_args.Canonicalize(); // Can be null.
}
}
// Call the closure 'extract'.
Array& args_desc = Array::Handle(zone);
Array& args = Array::Handle(zone);
if (extracted_type_args.IsNull()) {
args_desc = ArgumentsDescriptor::New(0, 1);
args = Array::New(1);
args.SetAt(0, extract);
} else {
args_desc = ArgumentsDescriptor::New(num_type_args, 1);
args = Array::New(2);
args.SetAt(0, extracted_type_args);
args.SetAt(1, extract);
}
const Object& result =
Object::Handle(zone, DartEntry::InvokeClosure(args, args_desc));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
return result.raw();
}
DEFINE_NATIVE_ENTRY(Internal_prependTypeArguments, 0, 4) {
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(0));
const TypeArguments& parent_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, smi_parent_len, arguments->NativeArgAt(2));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, smi_len, arguments->NativeArgAt(3));
return function_type_arguments.Prepend(
zone, parent_type_arguments, smi_parent_len.Value(), smi_len.Value());
}
// Check that a set of type arguments satisfy the type parameter bounds on a
// closure.
// Arg0: Closure object
// Arg1: Type arguments to function
DEFINE_NATIVE_ENTRY(Internal_boundsCheckForPartialInstantiation, 0, 2) {
const Closure& closure =
Closure::CheckedHandle(zone, arguments->NativeArgAt(0));
const Function& target = Function::Handle(zone, closure.function());
const TypeArguments& bounds =
TypeArguments::Handle(zone, target.type_parameters());
// Either the bounds are all-dynamic or the function is not generic.
if (bounds.IsNull()) return Object::null();
const TypeArguments& type_args_to_check =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(1));
// This should be guaranteed by the front-end.
ASSERT(type_args_to_check.IsNull() ||
bounds.Length() <= type_args_to_check.Length());
// The bounds on the closure may need instantiation.
const TypeArguments& instantiator_type_args =
TypeArguments::Handle(zone, closure.instantiator_type_arguments());
const TypeArguments& function_type_args =
TypeArguments::Handle(zone, closure.function_type_arguments());
AbstractType& supertype = AbstractType::Handle(zone);
AbstractType& subtype = AbstractType::Handle(zone);
TypeParameter& parameter = TypeParameter::Handle(zone);
for (intptr_t i = 0; i < bounds.Length(); ++i) {
parameter ^= bounds.TypeAt(i);
supertype = parameter.bound();
subtype = type_args_to_check.IsNull() ? Object::dynamic_type().raw()
: type_args_to_check.TypeAt(i);
ASSERT(!subtype.IsNull());
ASSERT(!supertype.IsNull());
// The supertype may not be instantiated.
// TODO(regis): What is the correct nnbd mode to use here?
if (!AbstractType::InstantiateAndTestSubtype(
NNBDMode::kLegacyLib, &subtype, &supertype, instantiator_type_args,
function_type_args)) {
// Throw a dynamic type error.
TokenPosition location;
{
DartFrameIterator iterator(Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
location = caller_frame->GetTokenPos();
}
String& parameter_name = String::Handle(zone, parameter.Name());
Exceptions::CreateAndThrowTypeError(location, subtype, supertype,
parameter_name);
UNREACHABLE();
}
}
return Object::null();
}
DEFINE_NATIVE_ENTRY(InvocationMirror_unpackTypeArguments, 0, 2) {
const TypeArguments& type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(0));
const Smi& num_type_arguments =
Smi::CheckedHandle(zone, arguments->NativeArgAt(1));
bool all_dynamic = type_arguments.IsNull();
const intptr_t len =
all_dynamic ? num_type_arguments.Value() : type_arguments.Length();
const Array& type_list = Array::Handle(
zone, Array::New(len, Type::Handle(zone, Type::DartTypeType())));
AbstractType& type = AbstractType::Handle(zone);
for (intptr_t i = 0; i < len; i++) {
if (all_dynamic) {
type_list.SetAt(i, Object::dynamic_type());
} else {
type = type_arguments.TypeAt(i);
type_list.SetAt(i, type);
}
}
type_list.MakeImmutable();
return type_list.raw();
}
DEFINE_NATIVE_ENTRY(NoSuchMethodError_existingMethodSignature, 0, 3) {
const Instance& receiver =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(String, method_name, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, invocation_type, arguments->NativeArgAt(2));
InvocationMirror::Level level;
InvocationMirror::Kind kind;
InvocationMirror::DecodeType(invocation_type.Value(), &level, &kind);
Function& function = Function::Handle();
if (receiver.IsType()) {
Class& cls = Class::Handle(Type::Cast(receiver).type_class());
if (level == InvocationMirror::kConstructor) {
function = cls.LookupConstructor(method_name);
if (function.IsNull()) {
function = cls.LookupFactory(method_name);
}
} else {
function = cls.LookupStaticFunction(method_name);
}
} else if (receiver.IsClosure()) {
function = Closure::Cast(receiver).function();
} else {
Class& cls = Class::Handle(receiver.clazz());
if (level != InvocationMirror::kSuper) {
function = cls.LookupDynamicFunction(method_name);
}
while (function.IsNull()) {
cls = cls.SuperClass();
if (cls.IsNull()) break;
function = cls.LookupDynamicFunction(method_name);
}
}
if (!function.IsNull()) {
return function.UserVisibleSignature();
}
return String::null();
}
} // namespace dart