dart-sdk/runtime/lib/object.cc
Ryan Macnak 81143e16c4 [vm, gc] Don't perform blocking compactions in response to Dart_NotifyLowMemory.
These GCs usually did not free very much memory but did consume a lot of CPU. They would on low-powered, low-memory devices often take ~1s, during which time the OS might decide the OOM signal wasn't working and kill us before the compaction can complete and free pages. Instead, only release pooled memory.

Also use more appropriate GCReasons in calls of CollectMost/AllGarbage.

TEST=ci
Bug: b/216333343
Change-Id: Ia56b9ca409410f17d40508c69fb1bc9df0ce4028
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/235300
Reviewed-by: Slava Egorov <vegorov@google.com>
Commit-Queue: Ryan Macnak <rmacnak@google.com>
2022-03-08 22:42:46 +00:00

593 lines
22 KiB
C++

// Copyright (c) 2011, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/bootstrap_natives.h"
#include "lib/invocation_mirror.h"
#include "vm/code_patcher.h"
#include "vm/dart_entry.h"
#include "vm/exceptions.h"
#include "vm/heap/heap.h"
#include "vm/native_entry.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/resolver.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
namespace dart {
DEFINE_NATIVE_ENTRY(DartAsync_fatal, 0, 1) {
// The dart:async library code entered an unrecoverable state.
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const char* msg = instance.ToCString();
OS::PrintErr("Fatal error in dart:async: %s\n", msg);
FATAL("%s", msg);
return Object::null();
}
DEFINE_NATIVE_ENTRY(Object_equals, 0, 1) {
// Implemented in the flow graph builder.
UNREACHABLE();
return Object::null();
}
static intptr_t GetHash(Isolate* isolate, const ObjectPtr obj) {
#if defined(HASH_IN_OBJECT_HEADER)
return Object::GetCachedHash(obj);
#else
Heap* heap = isolate->group()->heap();
ASSERT(obj->IsDartInstance());
return heap->GetHash(obj);
#endif
}
DEFINE_NATIVE_ENTRY(Object_getHash, 0, 1) {
// Please note that no handle is created for the argument.
// This is safe since the argument is only used in a tail call.
// The performance benefit is more than 5% when using hashCode.
intptr_t hash = GetHash(isolate, arguments->NativeArgAt(0));
if (LIKELY(hash != 0)) {
return Smi::New(hash);
}
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
return instance.IdentityHashCode(arguments->thread());
}
DEFINE_NATIVE_ENTRY(Object_toString, 0, 1) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
if (instance.IsString()) {
return instance.ptr();
}
if (instance.IsAbstractType()) {
return AbstractType::Cast(instance).UserVisibleName();
}
const char* c_str = instance.ToCString();
return String::New(c_str);
}
DEFINE_NATIVE_ENTRY(Object_runtimeType, 0, 1) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
if (instance.IsString()) {
return Type::StringType();
} else if (instance.IsInteger()) {
return Type::IntType();
} else if (instance.IsDouble()) {
return Type::Double();
} else if (instance.IsType() || instance.IsFunctionType()) {
return Type::DartTypeType();
} else if (IsArrayClassId(instance.GetClassId())) {
const auto& cls = Class::Handle(
zone, thread->isolate_group()->object_store()->list_class());
const auto& type_arguments =
TypeArguments::Handle(zone, instance.GetTypeArguments());
const auto& type = Type::Handle(
zone,
Type::New(cls, type_arguments, Nullability::kNonNullable, Heap::kNew));
type.SetIsFinalized();
return type.Canonicalize(thread, nullptr);
}
return instance.GetType(Heap::kNew);
}
static bool HaveSameRuntimeTypeHelper(Zone* zone,
const Instance& left,
const Instance& right) {
const intptr_t left_cid = left.GetClassId();
const intptr_t right_cid = right.GetClassId();
if (left_cid != right_cid) {
if (IsIntegerClassId(left_cid)) {
return IsIntegerClassId(right_cid);
} else if (IsStringClassId(left_cid)) {
return IsStringClassId(right_cid);
} else if (IsTypeClassId(left_cid)) {
return IsTypeClassId(right_cid);
} else if (IsArrayClassId(left_cid)) {
if (!IsArrayClassId(right_cid)) {
return false;
}
// Still need to check type arguments.
} else {
return false;
}
}
if (left_cid == kClosureCid) {
const auto& left_closure = Closure::Cast(left);
const auto& right_closure = Closure::Cast(right);
// If all the components that make up the instantiated signature are equal,
// then no need to instantiate.
if (left_closure.function_type_arguments() ==
right_closure.function_type_arguments() &&
left_closure.delayed_type_arguments() ==
right_closure.delayed_type_arguments() &&
left_closure.instantiator_type_arguments() ==
right_closure.instantiator_type_arguments()) {
const auto& left_fun = Function::Handle(zone, left_closure.function());
const auto& right_fun = Function::Handle(zone, right_closure.function());
if (left_fun.signature() == right_fun.signature()) {
return true;
}
}
const AbstractType& left_type =
AbstractType::Handle(zone, left.GetType(Heap::kNew));
const AbstractType& right_type =
AbstractType::Handle(zone, right.GetType(Heap::kNew));
return left_type.IsEquivalent(right_type, TypeEquality::kSyntactical);
}
const Class& cls = Class::Handle(zone, left.clazz());
if (!cls.IsGeneric()) {
return true;
}
if (left.GetTypeArguments() == right.GetTypeArguments()) {
return true;
}
const TypeArguments& left_type_arguments =
TypeArguments::Handle(zone, left.GetTypeArguments());
const TypeArguments& right_type_arguments =
TypeArguments::Handle(zone, right.GetTypeArguments());
const intptr_t num_type_args = cls.NumTypeArguments();
const intptr_t num_type_params = cls.NumTypeParameters();
return left_type_arguments.IsSubvectorEquivalent(
right_type_arguments, num_type_args - num_type_params, num_type_params,
TypeEquality::kSyntactical);
}
DEFINE_NATIVE_ENTRY(Object_haveSameRuntimeType, 0, 2) {
const Instance& left =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& right =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
return Bool::Get(HaveSameRuntimeTypeHelper(zone, left, right)).ptr();
}
DEFINE_NATIVE_ENTRY(Object_instanceOf, 0, 4) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const TypeArguments& instantiator_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(1));
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(2));
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments->NativeArgAt(3));
ASSERT(type.IsFinalized());
const bool is_instance_of = instance.IsInstanceOf(
type, instantiator_type_arguments, function_type_arguments);
if (FLAG_trace_type_checks) {
LogBlock lb;
const char* result_str = is_instance_of ? "true" : "false";
THR_Print("Native Object.instanceOf: result %s\n", result_str);
const AbstractType& instance_type =
AbstractType::Handle(zone, instance.GetType(Heap::kNew));
THR_Print(" instance type: %s\n",
String::Handle(zone, instance_type.Name()).ToCString());
THR_Print(" test type: %s\n",
String::Handle(zone, type.Name()).ToCString());
}
return Bool::Get(is_instance_of).ptr();
}
DEFINE_NATIVE_ENTRY(Object_simpleInstanceOf, 0, 2) {
// This native is only called when the right hand side passes
// SimpleInstanceOfType and it is a non-negative test.
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments->NativeArgAt(1));
ASSERT(type.IsFinalized());
ASSERT(type.IsInstantiated());
const bool is_instance_of = instance.IsInstanceOf(
type, Object::null_type_arguments(), Object::null_type_arguments());
return Bool::Get(is_instance_of).ptr();
}
DEFINE_NATIVE_ENTRY(AbstractType_toString, 0, 1) {
const AbstractType& type =
AbstractType::CheckedHandle(zone, arguments->NativeArgAt(0));
return type.UserVisibleName();
}
DEFINE_NATIVE_ENTRY(Type_getHashCode, 0, 1) {
const Type& type = Type::CheckedHandle(zone, arguments->NativeArgAt(0));
intptr_t hash_val = type.Hash();
ASSERT(hash_val > 0);
ASSERT(Smi::IsValid(hash_val));
return Smi::New(hash_val);
}
DEFINE_NATIVE_ENTRY(Type_equality, 0, 2) {
const Type& type = Type::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& other =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
if (type.ptr() == other.ptr()) {
return Bool::True().ptr();
}
return Bool::Get(type.IsEquivalent(other, TypeEquality::kSyntactical)).ptr();
}
DEFINE_NATIVE_ENTRY(FunctionType_getHashCode, 0, 1) {
const FunctionType& type =
FunctionType::CheckedHandle(zone, arguments->NativeArgAt(0));
intptr_t hash_val = type.Hash();
ASSERT(hash_val > 0);
ASSERT(Smi::IsValid(hash_val));
return Smi::New(hash_val);
}
DEFINE_NATIVE_ENTRY(FunctionType_equality, 0, 2) {
const FunctionType& type =
FunctionType::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& other =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
if (type.ptr() == other.ptr()) {
return Bool::True().ptr();
}
return Bool::Get(type.IsEquivalent(other, TypeEquality::kSyntactical)).ptr();
}
DEFINE_NATIVE_ENTRY(LibraryPrefix_isLoaded, 0, 1) {
const LibraryPrefix& prefix =
LibraryPrefix::CheckedHandle(zone, arguments->NativeArgAt(0));
return Bool::Get(isolate->IsPrefixLoaded(prefix)).ptr();
}
DEFINE_NATIVE_ENTRY(LibraryPrefix_setLoaded, 0, 1) {
const LibraryPrefix& prefix =
LibraryPrefix::CheckedHandle(zone, arguments->NativeArgAt(0));
isolate->SetPrefixIsLoaded(prefix);
return Instance::null();
}
DEFINE_NATIVE_ENTRY(LibraryPrefix_loadingUnit, 0, 1) {
const LibraryPrefix& prefix =
LibraryPrefix::CheckedHandle(zone, arguments->NativeArgAt(0));
const Library& target = Library::Handle(zone, prefix.GetLibrary(0));
const LoadingUnit& unit = LoadingUnit::Handle(zone, target.loading_unit());
return Smi::New(unit.IsNull() ? LoadingUnit::kIllegalId : unit.id());
}
DEFINE_NATIVE_ENTRY(LibraryPrefix_issueLoad, 0, 1) {
const Smi& id = Smi::CheckedHandle(zone, arguments->NativeArgAt(0));
Array& units =
Array::Handle(zone, isolate->group()->object_store()->loading_units());
if (units.IsNull()) {
// Not actually split.
const Library& lib = Library::Handle(zone, Library::CoreLibrary());
const String& sel = String::Handle(zone, String::New("_completeLoads"));
const Function& func =
Function::Handle(zone, lib.LookupFunctionAllowPrivate(sel));
ASSERT(!func.IsNull());
const Array& args = Array::Handle(zone, Array::New(3));
args.SetAt(0, id);
args.SetAt(1, String::Handle(zone));
args.SetAt(2, Bool::Get(false));
return DartEntry::InvokeFunction(func, args);
}
ASSERT(id.Value() != LoadingUnit::kIllegalId);
LoadingUnit& unit = LoadingUnit::Handle(zone);
unit ^= units.At(id.Value());
return unit.IssueLoad();
}
DEFINE_NATIVE_ENTRY(Internal_unsafeCast, 0, 1) {
UNREACHABLE(); // Should be erased at Kernel translation time.
return arguments->NativeArgAt(0);
}
DEFINE_NATIVE_ENTRY(Internal_nativeEffect, 0, 1) {
UNREACHABLE();
}
DEFINE_NATIVE_ENTRY(Internal_collectAllGarbage, 0, 0) {
isolate->group()->heap()->CollectAllGarbage(GCReason::kDebugging);
return Object::null();
}
DEFINE_NATIVE_ENTRY(Internal_deoptimizeFunctionsOnStack, 0, 0) {
DeoptimizeFunctionsOnStack();
return Object::null();
}
static bool ExtractInterfaceTypeArgs(Zone* zone,
const Class& instance_cls,
const TypeArguments& instance_type_args,
const Class& interface_cls,
TypeArguments* interface_type_args) {
Class& cur_cls = Class::Handle(zone, instance_cls.ptr());
// The following code is a specialization of Class::IsSubtypeOf().
Array& interfaces = Array::Handle(zone);
AbstractType& interface = AbstractType::Handle(zone);
Class& cur_interface_cls = Class::Handle(zone);
TypeArguments& cur_interface_type_args = TypeArguments::Handle(zone);
while (true) {
// Additional subtyping rules related to 'FutureOr' are not applied.
if (cur_cls.ptr() == interface_cls.ptr()) {
*interface_type_args = instance_type_args.ptr();
return true;
}
interfaces = cur_cls.interfaces();
for (intptr_t i = 0; i < interfaces.Length(); i++) {
interface ^= interfaces.At(i);
ASSERT(interface.IsFinalized());
cur_interface_cls = interface.type_class();
cur_interface_type_args = interface.arguments();
if (!cur_interface_type_args.IsNull() &&
!cur_interface_type_args.IsInstantiated()) {
cur_interface_type_args = cur_interface_type_args.InstantiateFrom(
instance_type_args, Object::null_type_arguments(), kNoneFree,
Heap::kNew);
}
if (ExtractInterfaceTypeArgs(zone, cur_interface_cls,
cur_interface_type_args, interface_cls,
interface_type_args)) {
return true;
}
}
cur_cls = cur_cls.SuperClass();
if (cur_cls.IsNull()) {
return false;
}
}
}
// for documentation see pkg/dart_internal/lib/extract_type_arguments.dart
DEFINE_NATIVE_ENTRY(Internal_extractTypeArguments, 0, 2) {
const Instance& instance =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
const Instance& extract =
Instance::CheckedHandle(zone, arguments->NativeArgAt(1));
Class& interface_cls = Class::Handle(zone);
intptr_t num_type_args = 0;
if (arguments->NativeTypeArgCount() >= 1) {
const AbstractType& function_type_arg =
AbstractType::Handle(zone, arguments->NativeTypeArgAt(0));
if (function_type_arg.IsType() &&
(function_type_arg.arguments() == TypeArguments::null())) {
interface_cls = function_type_arg.type_class();
num_type_args = interface_cls.NumTypeParameters();
}
}
if (num_type_args == 0) {
Exceptions::ThrowArgumentError(String::Handle(
zone,
String::New(
"single function type argument must specify a generic class")));
}
if (instance.IsNull()) {
Exceptions::ThrowArgumentError(instance);
}
// Function 'extract' must be generic and accept the same number of type args,
// unless we execute Dart 1.0 code.
if (extract.IsNull() || !extract.IsClosure() ||
((num_type_args > 0) && // Dart 1.0 if num_type_args == 0.
(Function::Handle(zone, Closure::Cast(extract).function())
.NumTypeParameters() != num_type_args))) {
Exceptions::ThrowArgumentError(String::Handle(
zone,
String::New("argument 'extract' is not a generic function or not one "
"accepting the correct number of type arguments")));
}
TypeArguments& extracted_type_args = TypeArguments::Handle(zone);
if (num_type_args > 0) {
// The passed instance must implement interface_cls.
TypeArguments& interface_type_args = TypeArguments::Handle(zone);
interface_type_args = TypeArguments::New(num_type_args);
Class& instance_cls = Class::Handle(zone, instance.clazz());
TypeArguments& instance_type_args = TypeArguments::Handle(zone);
if (instance_cls.NumTypeArguments() > 0) {
instance_type_args = instance.GetTypeArguments();
}
if (!ExtractInterfaceTypeArgs(zone, instance_cls, instance_type_args,
interface_cls, &interface_type_args)) {
Exceptions::ThrowArgumentError(String::Handle(
zone, String::New("type of argument 'instance' is not a subtype of "
"the function type argument")));
}
if (!interface_type_args.IsNull()) {
extracted_type_args = TypeArguments::New(num_type_args);
const intptr_t offset = interface_cls.NumTypeArguments() - num_type_args;
AbstractType& type_arg = AbstractType::Handle(zone);
for (intptr_t i = 0; i < num_type_args; i++) {
type_arg = interface_type_args.TypeAt(offset + i);
extracted_type_args.SetTypeAt(i, type_arg);
}
extracted_type_args =
extracted_type_args.Canonicalize(thread, nullptr); // Can be null.
}
}
// Call the closure 'extract'.
Array& args_desc = Array::Handle(zone);
Array& args = Array::Handle(zone);
if (extracted_type_args.IsNull()) {
args_desc = ArgumentsDescriptor::NewBoxed(0, 1);
args = Array::New(1);
args.SetAt(0, extract);
} else {
args_desc = ArgumentsDescriptor::NewBoxed(num_type_args, 1);
args = Array::New(2);
args.SetAt(0, extracted_type_args);
args.SetAt(1, extract);
}
const Object& result =
Object::Handle(zone, DartEntry::InvokeClosure(thread, args, args_desc));
if (result.IsError()) {
Exceptions::PropagateError(Error::Cast(result));
UNREACHABLE();
}
return result.ptr();
}
DEFINE_NATIVE_ENTRY(Internal_prependTypeArguments, 0, 4) {
const TypeArguments& function_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(0));
const TypeArguments& parent_type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, smi_parent_len, arguments->NativeArgAt(2));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, smi_len, arguments->NativeArgAt(3));
return function_type_arguments.Prepend(
zone, parent_type_arguments, smi_parent_len.Value(), smi_len.Value());
}
// Check that a set of type arguments satisfy the type parameter bounds on a
// closure.
// Arg0: Closure object
// Arg1: Type arguments to function
DEFINE_NATIVE_ENTRY(Internal_boundsCheckForPartialInstantiation, 0, 2) {
const Closure& closure =
Closure::CheckedHandle(zone, arguments->NativeArgAt(0));
const Function& target = Function::Handle(zone, closure.function());
ASSERT(target.IsGeneric()); // No need to check bounds for non-generics.
const TypeParameters& type_params =
TypeParameters::Handle(zone, target.type_parameters());
if (type_params.IsNull() || type_params.AllDynamicBounds()) {
// The function is not generic or the bounds are all dynamic.
return Object::null();
}
const TypeArguments& type_args_to_check =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(1));
// This should be guaranteed by the front-end.
ASSERT(type_args_to_check.IsNull() ||
type_params.Length() <= type_args_to_check.Length());
// The bounds on the closure may need instantiation.
const TypeArguments& instantiator_type_args =
TypeArguments::Handle(zone, closure.instantiator_type_arguments());
const TypeArguments& function_type_args =
TypeArguments::Handle(zone, closure.function_type_arguments());
AbstractType& supertype = AbstractType::Handle(zone);
AbstractType& subtype = AbstractType::Handle(zone);
for (intptr_t i = 0; i < type_params.Length(); ++i) {
supertype = type_params.BoundAt(i);
subtype = type_args_to_check.IsNull() ? Object::dynamic_type().ptr()
: type_args_to_check.TypeAt(i);
ASSERT(!subtype.IsNull());
ASSERT(!supertype.IsNull());
// The supertype may not be instantiated.
if (!AbstractType::InstantiateAndTestSubtype(
&subtype, &supertype, instantiator_type_args, function_type_args)) {
// Throw a dynamic type error.
TokenPosition location = TokenPosition::kNoSource;
{
DartFrameIterator iterator(Thread::Current(),
StackFrameIterator::kNoCrossThreadIteration);
StackFrame* caller_frame = iterator.NextFrame();
ASSERT(caller_frame != NULL);
location = caller_frame->GetTokenPos();
}
const auto& parameter_name = String::Handle(zone, type_params.NameAt(i));
Exceptions::CreateAndThrowTypeError(location, subtype, supertype,
parameter_name);
UNREACHABLE();
}
}
return Object::null();
}
DEFINE_NATIVE_ENTRY(InvocationMirror_unpackTypeArguments, 0, 2) {
const TypeArguments& type_arguments =
TypeArguments::CheckedHandle(zone, arguments->NativeArgAt(0));
const Smi& num_type_arguments =
Smi::CheckedHandle(zone, arguments->NativeArgAt(1));
bool all_dynamic = type_arguments.IsNull();
const intptr_t len =
all_dynamic ? num_type_arguments.Value() : type_arguments.Length();
const Array& type_list = Array::Handle(
zone, Array::New(len, Type::Handle(zone, Type::DartTypeType())));
AbstractType& type = AbstractType::Handle(zone);
for (intptr_t i = 0; i < len; i++) {
if (all_dynamic) {
type_list.SetAt(i, Object::dynamic_type());
} else {
type = type_arguments.TypeAt(i);
type_list.SetAt(i, type);
}
}
type_list.MakeImmutable();
return type_list.ptr();
}
DEFINE_NATIVE_ENTRY(NoSuchMethodError_existingMethodSignature, 0, 3) {
const Instance& receiver =
Instance::CheckedHandle(zone, arguments->NativeArgAt(0));
GET_NON_NULL_NATIVE_ARGUMENT(String, method_name, arguments->NativeArgAt(1));
GET_NON_NULL_NATIVE_ARGUMENT(Smi, invocation_type, arguments->NativeArgAt(2));
InvocationMirror::Level level;
InvocationMirror::Kind kind;
InvocationMirror::DecodeType(invocation_type.Value(), &level, &kind);
Function& function = Function::Handle(zone);
if (level == InvocationMirror::Level::kTopLevel) {
if (receiver.IsString()) return receiver.ptr();
ASSERT(receiver.IsNull());
return String::null();
}
if (receiver.IsType()) {
const auto& cls = Class::Handle(zone, Type::Cast(receiver).type_class());
const auto& error = Error::Handle(zone, cls.EnsureIsFinalized(thread));
if (!error.IsNull()) {
Exceptions::PropagateError(error);
UNREACHABLE();
}
if (level == InvocationMirror::kConstructor) {
function = cls.LookupConstructor(method_name);
if (function.IsNull()) {
function = cls.LookupFactory(method_name);
}
} else {
function = cls.LookupStaticFunction(method_name);
}
} else if (receiver.IsClosure()) {
function = Closure::Cast(receiver).function();
} else {
auto& cls = Class::Handle(zone, receiver.clazz());
if (level == InvocationMirror::kSuper) {
cls = cls.SuperClass();
}
function = Resolver::ResolveDynamicAnyArgs(zone, cls, method_name,
/*allow_add=*/false);
}
if (!function.IsNull()) {
return function.UserVisibleSignature();
}
return String::null();
}
} // namespace dart