dart-sdk/runtime/vm/os_fuchsia.cc
Tess Strickland b1b3e34b88 [vm] Add non-symbolic stack trace support for deferred loading units.
Dart VM changes:

Note that the following changes are backwards compatible in the
case that a Dart program has no deferred loading units (i.e., the
Dart program is contained in a single shared object snapshot).

When there are non-root loading units, the non-symbol stack trace
header now includes information about loading units as follows:

loading_unit: N, build_id: S, dso_base: A, instructions: A

where N is an integer, S is a string of hex digits (0-9a-f), and A
is a word-sized address printed as a hex string (without prefix).

In addition, all non-symbolic stack frames for isolate instructions
include a unit field, including those for the root loading unit, e.g.,

   #NN abs <address> unit <id> virt <address> <symbol>+<offset>

If there are no non-root loading units, then the non-symbolic stack
trace is unchanged from its previous format.

Adds a build ID to split deferred loading unit snapshots.
Fixes: https://github.com/dart-lang/sdk/issues/43516

If separate debugging information is requested, the loading unit
manifest includes a 'debugPath' field for each loading unit,
which contains the path to its separate debugging information.

Removes the attempt to store the relocated address of the instructions
section when running from an assembled snapshot in the initialized BSS.

Adds OS::GetAppDSOBase, which takes a pointer to the instructions
section and returns a pointer to its loaded shared object in memory.
For compiled-to-ELF snapshots, it does this using the relocated address
of the instructions in the Image, and for assembled snapshots, it
delegates to NativeSymbolResolver::LookupSharedObject.

-----

Changes to package:native_stack_traces:

PCOffset now has two new fields:

* int? unitId: the unit ID of the loading unit, when available.
* String? buildId: the build ID of the loading unit, when available.

For PCOffsets in the VM section, the unitId and buildId are those of
the root loading unit.

The constructor for the DwarfStackTraceDecoder now takes two
additional optional named arguments:

* Map<int, Dwarf>? dwarfByUnitId: A map associating loading unit IDs
  with the appropriate Dwarf object. May or may not contain an entry
  for the root loading unit.
* Iterable<Dwarf>? unitDwarfs: An iterable container holding Dwarf
  objects. May or may not contain an entry for the root loading unit.

The Dwarf object that is passed to the DwarfStackTraceDecoder as a
positional argument is used for all lookups within the root loading
unit. If the dwarfByUnitId or unitDwarfs arguments contain an entry
for the root loading unit, it should be the same as the positional
argument.

When decoding a non-symbolic stack frame with a non-root loading unit
id, the decoder first looks in the map for the appropriate Dwarf object.
If one is not found, the decoder uses the build ID for the loading unit
to find the appropriate Dwarf object in the iterable container. If an
appropriate Dwarf object cannot be found in either manner, the
non-symbolic stack frame is emitted without change.

The native_stack_traces:decode executable now takes two additional
multi-options for the translate command:

* -u, --unit_debug: Takes a path to the associated DWARF information.
* --unit_id_debug: Takes N=FILE, where N is the loading unit ID and
  FILE is a path to the associated DWARF information.

The arguments to -u are collected into an iterable container to be
passed as the unitDwarfs argument to the DwarfStackTraceDecoder, and
the arguments to --unit-id-debug are collected into a map to be passed
as the dwarfByUnitId argument.

TEST=vm/dart/use_dwarf_stack_traces_flag_deferred

Issue: https://github.com/dart-lang/sdk/issues/53902
Change-Id: I210d4f69e4ae9fd37275a96beb1aac55c5e9d080
Cq-Include-Trybots: luci.dart.try:vm-aot-dwarf-linux-product-x64-try,vm-aot-linux-release-x64-try,vm-aot-linux-debug-x64-try,vm-aot-mac-release-arm64-try,vm-aot-mac-product-arm64-try
Reviewed-on: https://dart-review.googlesource.com/c/sdk/+/362380
Reviewed-by: Ryan Macnak <rmacnak@google.com>
Commit-Queue: Tess Strickland <sstrickl@google.com>
2024-04-19 08:10:18 +00:00

682 lines
22 KiB
C++

// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(DART_HOST_OS_FUCHSIA)
#include "vm/os.h"
#include <dlfcn.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <fuchsia/intl/cpp/fidl.h>
#include <lib/async-loop/default.h>
#include <lib/async-loop/loop.h>
#include <lib/async/default.h>
#include <lib/inspect/component/cpp/component.h>
#include <lib/inspect/cpp/inspect.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/sys/cpp/service_directory.h>
#include <zircon/process.h>
#include <zircon/syscalls.h>
#include <zircon/syscalls/object.h>
#include <zircon/threads.h>
#include <zircon/time.h>
#include <zircon/types.h>
#include <set>
#include "unicode/errorcode.h"
#include "unicode/timezone.h"
#include "unicode/umachine.h"
#include "platform/assert.h"
#include "platform/syslog.h"
#include "platform/utils.h"
#include "vm/image_snapshot.h"
#include "vm/lockers.h"
#include "vm/os_thread.h"
#include "vm/zone.h"
namespace {
using dart::Mutex;
using dart::MutexLocker;
using dart::Syslog;
using dart::Zone;
// This is the default timezone returned if it could not be obtained. For
// Fuchsia, the default device timezone is always UTC.
static const char kDefaultTimezone[] = "UTC";
static constexpr int32_t kMsPerSec = 1000;
// The data directory containing ICU timezone data files.
static constexpr char kICUTZDataDir[] = "/config/data/tzdata/icu/44/le";
// An updated location for ICU timezone data files.
// See:
// https://fuchsia.dev/fuchsia-src/development/internationalization/icu_data#timezone_configuration_data
// https://fuchsia.dev/fuchsia-src/concepts/process/namespaces
static constexpr char kICUTZDataDir2[] = "/config/tzdata/icu/44/le";
// This is the general OK status.
static constexpr int32_t kOk = 0;
// This status means that the error code is not initialized yet ("set" was not
// yet called). Error codes are usually either 0 (kOk), or negative.
static constexpr int32_t kUninitialized = 1;
// The status codes for tzdata file open and read.
enum class TZDataStatus {
// The operation completed without error.
OK = 0,
// The open call for the tzdata file did not succeed.
COULD_NOT_OPEN = -1,
// The close call (after tzdata was loaded) did not succeed.
COULD_NOT_CLOSE = -2,
};
// Adds a facility for introspecting timezone data errors. Allows insight into
// the internal state of the VM even if error reporting facilities fail.
//
// Under normal operation, all metric values below should be zero.
class InspectMetrics {
public:
// Takes ownership of the vm_node.
explicit InspectMetrics(std::unique_ptr<inspect::Node> vm_node)
: vm_node_(std::move(vm_node)),
dst_status_(vm_node_->CreateInt("dst_status", kUninitialized)),
tz_data_status_(vm_node_->CreateInt("tz_data_status", kUninitialized)),
tz_data_close_status_(
vm_node_->CreateInt("tz_data_close_status", kUninitialized)),
get_profile_status_(
vm_node_->CreateInt("get_profile_status", kUninitialized)),
profiles_timezone_content_status_(
vm_node_->CreateInt("timezone_content_status", kOk)),
num_get_profile_calls_(vm_node_->CreateInt("num_get_profile_calls", 0)),
num_on_change_calls_(vm_node_->CreateInt("num_on_change_calls", 0)),
num_intl_provider_errors_(
vm_node_->CreateInt("num_intl_provider_errors", 0)) {}
// Registers a single call to GetProfile callback.
void RegisterGetProfileCall() { num_get_profile_calls_.Add(1); }
// Registers a single call to OnChange callback.
void RegisterOnChangeCall() { num_on_change_calls_.Add(1); }
// Registers a provider error.
void RegisterIntlProviderError() { num_intl_provider_errors_.Add(1); }
// Sets the last status code for DST offset calls.
void SetDSTOffsetStatus(zx_status_t status) {
dst_status_.Set(static_cast<int32_t>(status));
}
// Sets the return value of call to InitializeTZData, and the status of the
// reported by close() on tzdata files.
void SetInitTzData(TZDataStatus value, int32_t status) {
tz_data_status_.Set(static_cast<int32_t>(value));
tz_data_close_status_.Set(status);
}
// Sets the last status code for the call to PropertyProvider::GetProfile.
void SetProfileStatus(zx_status_t status) {
get_profile_status_.Set(static_cast<int32_t>(status));
}
// Sets the last status seen while examining timezones returned from
// PropertyProvider::GetProfile.
void SetTimeZoneContentStatus(zx_status_t status) {
profiles_timezone_content_status_.Set(static_cast<int32_t>(status));
}
private:
// The OS metrics node.
std::unique_ptr<inspect::Node> vm_node_;
// The status of the last GetTimeZoneOffset call.
inspect::IntProperty dst_status_;
// The status of the initialization.
inspect::IntProperty tz_data_status_;
// The return code for the close() call for tzdata files.
inspect::IntProperty tz_data_close_status_;
// The return code of the GetProfile call in GetTimeZoneName. If this is
// nonzero, then os_fuchsia.cc reported a default timezone as a fallback.
inspect::IntProperty get_profile_status_;
// U_ILLEGAL_ARGUMENT_ERROR(=1) if timezones read from ProfileProvider were
// incorrect. Otherwise 0. If this metric reports U_ILLEGAL_ARGUMENT_ERROR,
// the os_fuchsia.cc module reported a default timezone as a fallback.
inspect::IntProperty profiles_timezone_content_status_;
// Keeps a number of get_profile update calls.
inspect::IntProperty num_get_profile_calls_;
// Number of "on change" callback calls.
inspect::IntProperty num_on_change_calls_;
// Keeps a number of errors encountered in intl provider.
inspect::IntProperty num_intl_provider_errors_;
};
// Thread-safe storage for the current timezone name.
//
// Keeps an up to date timezone cache, updating if needed through the
// asynchronous update interface. Access to this class is thread-safe.
class TimezoneName final {
public:
// Creates a new instance of TimezoneName. Does not take ownership of
// metrics.
static std::shared_ptr<TimezoneName> New(
fuchsia::intl::PropertyProviderPtr proxy,
std::weak_ptr<InspectMetrics> metrics) {
auto timezone_name =
std::make_shared<TimezoneName>(std::move(proxy), metrics);
timezone_name->InitHandlers(timezone_name);
return timezone_name;
}
TimezoneName(fuchsia::intl::PropertyProviderPtr proxy,
std::weak_ptr<InspectMetrics> metrics)
: m_(),
metrics_(std::move(metrics)),
proxy_(std::move(proxy)),
timezone_name_(kDefaultTimezone) {
ASSERT(metrics_.lock() != nullptr);
}
// Gets the current timezone name. Repeated calls may retrieve updated
// values.
std::string Get() const {
MutexLocker lock(&m_);
// Returns a copy, to avoid a data race with async updates.
return timezone_name_;
}
private:
// Sets the event handlers in this resolver. Intended to resolve a circular
// reference between the shared timezone name and this.
void InitHandlers(std::shared_ptr<TimezoneName> timezone_name) {
ASSERT(timezone_name.get() == this);
timezone_name->proxy_.set_error_handler(
[weak_this =
std::weak_ptr<TimezoneName>(timezone_name)](zx_status_t status) {
if (!weak_this.expired()) {
weak_this.lock()->ErrorHandler(status);
}
});
timezone_name->proxy_.events().OnChange =
[weak_this = std::weak_ptr<TimezoneName>(timezone_name)]() {
if (!weak_this.expired()) {
weak_this.lock()->OnChangeCallback();
}
};
timezone_name->proxy_->GetProfile(
[weak_this = std::weak_ptr<TimezoneName>(timezone_name)](
fuchsia::intl::Profile profile) {
if (!weak_this.expired()) {
weak_this.lock()->GetProfileCallback(std::move(profile));
}
});
}
// Called on a profile provider error in the context of the event loop
// thread.
void ErrorHandler(zx_status_t status) {
MutexLocker lock(&m_);
WithMetrics([status](std::shared_ptr<InspectMetrics> metrics) {
metrics->SetProfileStatus(status);
metrics->RegisterIntlProviderError();
});
}
// Called when an OnChange event is received in the context of the event loop
// thread. The only action here is to trigger an asynchronous update of the
// intl profile.
void OnChangeCallback() {
MutexLocker lock(&m_);
WithMetrics([](std::shared_ptr<InspectMetrics> metrics) {
metrics->RegisterOnChangeCall();
});
proxy_->GetProfile([this](fuchsia::intl::Profile profile) {
this->GetProfileCallback(std::move(profile));
});
}
// Called when a GetProfile async request is resolved, in the context of the
// event loop thread.
void GetProfileCallback(fuchsia::intl::Profile profile) {
MutexLocker lock(&m_);
WithMetrics([](std::shared_ptr<InspectMetrics> metrics) {
metrics->RegisterGetProfileCall();
});
const std::vector<fuchsia::intl::TimeZoneId>& timezones =
profile.time_zones();
if (timezones.empty()) {
WithMetrics([](std::shared_ptr<InspectMetrics> metrics) {
metrics->SetTimeZoneContentStatus(U_ILLEGAL_ARGUMENT_ERROR);
});
// Empty timezone array is not up to fuchsia::intl spec. The serving
// endpoint is broken and should be fixed.
Syslog::PrintErr("got empty timezone value\n");
return;
}
WithMetrics([](std::shared_ptr<InspectMetrics> metrics) {
metrics->SetProfileStatus(ZX_OK);
metrics->SetTimeZoneContentStatus(ZX_OK);
});
timezone_name_ = timezones[0].id;
}
// Runs the provided function only on valid metrics.
void WithMetrics(std::function<void(std::shared_ptr<InspectMetrics> m)> f) {
std::shared_ptr<InspectMetrics> l = metrics_.lock();
if (l != nullptr) {
f(l);
}
}
// Guards timezone_name_ because the callbacks will be called in an
// asynchronous thread.
mutable Mutex m_;
// Used to keep tally on the update events. Not owned.
std::weak_ptr<InspectMetrics> metrics_;
// A client-side proxy for a connection to the property provider service.
fuchsia::intl::PropertyProviderPtr proxy_;
// Caches the current timezone name. This is updated asynchronously through
// GetProfileCallback.
std::string timezone_name_;
};
// The timezone names encountered so far. The timezone names must live forever.
std::set<std::string> timezone_names;
// Initialized on OS:Init(), deinitialized on OS::Cleanup.
std::shared_ptr<InspectMetrics> metrics;
std::shared_ptr<TimezoneName> timezone_name;
async_loop_t* message_loop = nullptr;
// Initializes the source of timezone data if available. Timezone data file in
// Fuchsia is at a fixed directory path. Returns true on success.
bool InitializeTZData() {
ASSERT(metrics != nullptr);
// Try opening the path to check if present. No need to verify that it is a
// directory since ICU loading will return an error if the TZ data path is
// wrong.
//
// Try the new dir first, sub with the old fallback.
const char* tz_dirname = kICUTZDataDir2;
int fd = openat(AT_FDCWD, tz_dirname, O_RDONLY);
if (fd < 0) {
tz_dirname = kICUTZDataDir;
fd = openat(AT_FDCWD, tz_dirname, O_RDONLY);
}
if (fd < 0) {
metrics->SetInitTzData(TZDataStatus::COULD_NOT_OPEN, fd);
return false;
}
// 0 == Not overwriting the env var if already set.
setenv("ICU_TIMEZONE_FILES_DIR", tz_dirname, 0);
int32_t close_status = close(fd);
if (close_status != 0) {
metrics->SetInitTzData(TZDataStatus::COULD_NOT_CLOSE, close_status);
return false;
}
metrics->SetInitTzData(TZDataStatus::OK, 0);
return true;
}
int64_t GetCurrentTimeNanos() {
struct timespec ts;
if (timespec_get(&ts, TIME_UTC) == 0) {
FATAL("timespec_get failed");
return 0;
}
return zx_time_add_duration(ZX_SEC(ts.tv_sec), ZX_NSEC(ts.tv_nsec));
}
} // namespace
namespace dart {
#ifndef PRODUCT
DEFINE_FLAG(bool,
generate_perf_events_symbols,
false,
"Generate events symbols for profiling with perf");
#endif // !PRODUCT
intptr_t OS::ProcessId() {
return static_cast<intptr_t>(getpid());
}
// TODO(FL-98): Change this to talk to fuchsia.dart to get timezone service to
// directly get timezone.
//
// Putting this hack right now due to CP-120 as I need to remove
// component:ConnectToEnvironmentServices and this is the only thing that is
// blocking it and FL-98 will take time.
static fuchsia::intl::PropertyProviderPtr property_provider;
static zx_status_t GetLocalAndDstOffsetInSeconds(int64_t seconds_since_epoch,
int32_t* local_offset,
int32_t* dst_offset) {
const char* timezone_id = OS::GetTimeZoneName(seconds_since_epoch);
std::unique_ptr<icu::TimeZone> timezone(
icu::TimeZone::createTimeZone(timezone_id));
UErrorCode error = U_ZERO_ERROR;
const auto ms_since_epoch =
static_cast<UDate>(kMsPerSec * seconds_since_epoch);
// The units of time that local_offset and dst_offset are returned from this
// function is, usefully, not documented, but it seems that the units are
// milliseconds. Add these variables here for clarity.
int32_t local_offset_ms = 0;
int32_t dst_offset_ms = 0;
timezone->getOffset(ms_since_epoch, /*local_time=*/0, local_offset_ms,
dst_offset_ms, error);
metrics->SetDSTOffsetStatus(error);
if (error != U_ZERO_ERROR) {
icu::ErrorCode icu_error;
icu_error.set(error);
Syslog::PrintErr("could not get DST offset: %s\n", icu_error.errorName());
return ZX_ERR_INTERNAL;
}
// We must return offset in seconds, so convert.
*local_offset = local_offset_ms / kMsPerSec;
*dst_offset = dst_offset_ms / kMsPerSec;
return ZX_OK;
}
// Returns a C string with the time zone name. This module retains the
// ownership of the pointer.
const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) {
ASSERT(timezone_name != nullptr);
// Sadly, since we do not know how long the timezone name will be needed, we
// can not ever deallocate it. So instead, we put it into a a set that will
// not move it around in memory and return a pointer to it. Since the number
// of timezones is finite, this ensures that the memory taken up by timezones
// does not grow indefinitely, even if we end up retaining all the timezones
// there are.
const auto i = timezone_names.insert(timezone_name->Get());
ASSERT(i.first != timezone_names.end());
return i.first->c_str();
}
int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) {
int32_t local_offset = 0;
int32_t dst_offset = 0;
const zx_status_t status = GetLocalAndDstOffsetInSeconds(
seconds_since_epoch, &local_offset, &dst_offset);
return status == ZX_OK ? local_offset + dst_offset : 0;
}
int64_t OS::GetCurrentTimeMillis() {
return GetCurrentTimeNanos() / ZX_MSEC(1);
}
int64_t OS::GetCurrentTimeMicros() {
return GetCurrentTimeNanos() / ZX_USEC(1);
}
int64_t OS::GetCurrentMonotonicTicks() {
return zx_clock_get_monotonic();
}
int64_t OS::GetCurrentMonotonicFrequency() {
return kNanosecondsPerSecond;
}
int64_t OS::GetCurrentMonotonicMicros() {
const int64_t ticks = GetCurrentMonotonicTicks();
ASSERT(GetCurrentMonotonicFrequency() == kNanosecondsPerSecond);
return ticks / kNanosecondsPerMicrosecond;
}
int64_t OS::GetCurrentThreadCPUMicros() {
zx_info_thread_stats_t info = {};
zx_status_t status = zx_object_get_info(thrd_get_zx_handle(thrd_current()),
ZX_INFO_THREAD_STATS, &info,
sizeof(info), nullptr, nullptr);
return status == ZX_OK ? info.total_runtime / kNanosecondsPerMicrosecond : 0;
}
int64_t OS::GetCurrentMonotonicMicrosForTimeline() {
#if defined(SUPPORT_TIMELINE)
return OS::GetCurrentMonotonicMicros();
#else
return -1;
#endif
}
// TODO(5411554): May need to hoist these architecture dependent code
// into a architecture specific file e.g: os_ia32_fuchsia.cc
intptr_t OS::ActivationFrameAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64)
const int kMinimumAlignment = 16;
#elif defined(TARGET_ARCH_ARM)
const int kMinimumAlignment = 8;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default stack alignment for
// testing purposes.
// Flags::DebugIsInt("stackalign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
return alignment;
}
int OS::NumberOfAvailableProcessors() {
return sysconf(_SC_NPROCESSORS_CONF);
}
void OS::Sleep(int64_t millis) {
SleepMicros(millis * kMicrosecondsPerMillisecond);
}
void OS::SleepMicros(int64_t micros) {
zx_nanosleep(zx_deadline_after(micros * kNanosecondsPerMicrosecond));
}
void OS::DebugBreak() {
UNIMPLEMENTED();
}
DART_NOINLINE uintptr_t OS::GetProgramCounter() {
return reinterpret_cast<uintptr_t>(
__builtin_extract_return_addr(__builtin_return_address(0)));
}
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stdout, format, args);
va_end(args);
}
void OS::VFPrint(FILE* stream, const char* format, va_list args) {
vfprintf(stream, format, args);
fflush(stream);
}
char* OS::SCreate(Zone* zone, const char* format, ...) {
va_list args;
va_start(args, format);
char* buffer = VSCreate(zone, format, args);
va_end(args);
return buffer;
}
char* OS::VSCreate(Zone* zone, const char* format, va_list args) {
// Measure.
va_list measure_args;
va_copy(measure_args, args);
intptr_t len = Utils::VSNPrint(nullptr, 0, format, measure_args);
va_end(measure_args);
char* buffer;
if (zone != nullptr) {
buffer = zone->Alloc<char>(len + 1);
} else {
buffer = reinterpret_cast<char*>(malloc(len + 1));
}
ASSERT(buffer != nullptr);
// Print.
va_list print_args;
va_copy(print_args, args);
Utils::VSNPrint(buffer, len + 1, format, print_args);
va_end(print_args);
return buffer;
}
bool OS::StringToInt64(const char* str, int64_t* value) {
ASSERT(str != nullptr && strlen(str) > 0 && value != nullptr);
int32_t base = 10;
char* endptr;
int i = 0;
if (str[0] == '-') {
i = 1;
} else if (str[0] == '+') {
i = 1;
}
if ((str[i] == '0') && (str[i + 1] == 'x' || str[i + 1] == 'X') &&
(str[i + 2] != '\0')) {
base = 16;
}
errno = 0;
if (base == 16) {
// Unsigned 64-bit hexadecimal integer literals are allowed but
// immediately interpreted as signed 64-bit integers.
*value = static_cast<int64_t>(strtoull(str, &endptr, base));
} else {
*value = strtoll(str, &endptr, base);
}
return ((errno == 0) && (endptr != str) && (*endptr == 0));
}
void OS::RegisterCodeObservers() {
#ifndef PRODUCT
if (FLAG_generate_perf_events_symbols) {
UNIMPLEMENTED();
}
#endif // !PRODUCT
}
void OS::PrintErr(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stderr, format, args);
va_end(args);
}
void OS::Init() {
if (async_get_default_dispatcher() == nullptr) {
async_loop_create(&kAsyncLoopConfigAttachToCurrentThread, &message_loop);
async_set_default_dispatcher(async_loop_get_dispatcher(message_loop));
async_loop_start_thread(message_loop, "Fuchsia async loop", nullptr);
}
auto vm_node = dart::TakeDartVmNode();
// TODO(fxbug.dev/69558) allow vm_node to be null and not crash
ASSERT(vm_node != nullptr);
metrics = std::make_shared<InspectMetrics>(std::move(vm_node));
InitializeTZData();
auto services = sys::ServiceDirectory::CreateFromNamespace();
services->Connect(property_provider.NewRequest());
timezone_name = TimezoneName::New(std::move(property_provider), metrics);
}
void OS::Cleanup() {
if (message_loop != nullptr) {
async_loop_shutdown(message_loop);
}
timezone_name.reset();
metrics.reset();
if (message_loop != nullptr) {
// Check message_loop is still the default dispatcher before clearing it.
if (async_get_default_dispatcher() ==
async_loop_get_dispatcher(message_loop)) {
async_set_default_dispatcher(nullptr);
}
async_loop_destroy(message_loop);
message_loop = nullptr;
}
}
void OS::PrepareToAbort() {}
void OS::Abort() {
PrepareToAbort();
abort();
}
void OS::Exit(int code) {
exit(code);
}
// Used to choose between Elf32/Elf64 types based on host archotecture bitsize.
#if defined(ARCH_IS_64_BIT)
#define ElfW(Type) Elf64_##Type
#else
#define ElfW(Type) Elf32_##Type
#endif
OS::BuildId OS::GetAppBuildId(const uint8_t* snapshot_instructions) {
// First return the build ID information from the instructions image if
// available.
const Image instructions_image(snapshot_instructions);
if (auto* const image_build_id = instructions_image.build_id()) {
return {instructions_image.build_id_length(), image_build_id};
}
const uint8_t* dso_base = GetAppDSOBase(snapshot_instructions);
const ElfW(Ehdr)& elf_header = *reinterpret_cast<const ElfW(Ehdr)*>(dso_base);
const ElfW(Phdr)* const phdr_array =
reinterpret_cast<const ElfW(Phdr)*>(dso_base + elf_header.e_phoff);
for (intptr_t i = 0; i < elf_header.e_phnum; i++) {
const ElfW(Phdr)& header = phdr_array[i];
if (header.p_type != PT_NOTE) continue;
if ((header.p_flags & PF_R) != PF_R) continue;
const uint8_t* const note_addr = dso_base + header.p_vaddr;
const Elf32_Nhdr& note_header =
*reinterpret_cast<const Elf32_Nhdr*>(note_addr);
if (note_header.n_type != NT_GNU_BUILD_ID) continue;
const char* const note_contents =
reinterpret_cast<const char*>(note_addr + sizeof(Elf32_Nhdr));
// The note name contains the null terminator as well.
if (note_header.n_namesz != strlen(ELF_NOTE_GNU) + 1) continue;
if (strncmp(ELF_NOTE_GNU, note_contents, note_header.n_namesz) == 0) {
return {static_cast<intptr_t>(note_header.n_descsz),
reinterpret_cast<const uint8_t*>(note_contents +
note_header.n_namesz)};
}
}
return {0, nullptr};
}
} // namespace dart
#endif // defined(DART_HOST_OS_FUCHSIA)