dart-sdk/runtime/platform/growable_array.h
Ryan Macnak afdbce7b13 [vm, isolate] Send large TypedData as ExternalTypedData in isolate messages.
Be careful to free external data when reading or writing a message is interrupted, or releasing messaging without reading on shutdown.

Bug: https://github.com/dart-lang/sdk/issues/31959
Change-Id: Ia39acb9ca0e27cf9e8b83961741e5949b5930266
Reviewed-on: https://dart-review.googlesource.com/41561
Commit-Queue: Ryan Macnak <rmacnak@google.com>
Reviewed-by: Zach Anderson <zra@google.com>
Reviewed-by: Siva Annamalai <asiva@google.com>
2018-02-21 18:57:14 +00:00

214 lines
5.7 KiB
C++

// Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// Defines growable array classes, that differ where they are allocated:
// - GrowableArray: allocated on stack.
// - ZoneGrowableArray: allocated in the zone.
// - MallocGrowableArray: allocates using malloc/realloc; free is only called
// at destruction.
#ifndef RUNTIME_PLATFORM_GROWABLE_ARRAY_H_
#define RUNTIME_PLATFORM_GROWABLE_ARRAY_H_
#include "platform/allocation.h"
#include "platform/utils.h"
namespace dart {
template <typename T, typename B, typename Allocator>
class BaseGrowableArray : public B {
public:
explicit BaseGrowableArray(Allocator* allocator)
: length_(0), capacity_(0), data_(NULL), allocator_(allocator) {}
BaseGrowableArray(intptr_t initial_capacity, Allocator* allocator)
: length_(0), capacity_(0), data_(NULL), allocator_(allocator) {
if (initial_capacity > 0) {
capacity_ = Utils::RoundUpToPowerOfTwo(initial_capacity);
data_ = allocator_->template Alloc<T>(capacity_);
}
}
~BaseGrowableArray() { allocator_->template Free<T>(data_, capacity_); }
intptr_t length() const { return length_; }
T* data() const { return data_; }
bool is_empty() const { return length_ == 0; }
void TruncateTo(intptr_t length) {
ASSERT(length_ >= length);
length_ = length;
}
void Add(const T& value) {
Resize(length() + 1);
Last() = value;
}
T& RemoveLast() {
ASSERT(length_ > 0);
T& result = operator[](length_ - 1);
length_--;
return result;
}
T& operator[](intptr_t index) const {
ASSERT(0 <= index);
ASSERT(index < length_);
ASSERT(length_ <= capacity_);
return data_[index];
}
void FillWith(const T& value, intptr_t start, intptr_t length) {
ASSERT(start >= 0);
ASSERT(length >= 0);
ASSERT(start <= length_);
Resize(start + length);
for (intptr_t i = 0; i < length; ++i) {
data_[start + i] = value;
}
}
const T& At(intptr_t index) const { return operator[](index); }
T& Last() const {
ASSERT(length_ > 0);
return operator[](length_ - 1);
}
void AddArray(const BaseGrowableArray<T, B, Allocator>& src) {
for (intptr_t i = 0; i < src.length(); i++) {
Add(src[i]);
}
}
void Clear() { length_ = 0; }
void InsertAt(intptr_t idx, const T& value) {
Resize(length() + 1);
for (intptr_t i = length_ - 2; i >= idx; i--) {
data_[i + 1] = data_[i];
}
data_[idx] = value;
}
void Reverse() {
for (intptr_t i = 0; i < length_ / 2; i++) {
const intptr_t j = length_ - 1 - i;
T temp = data_[i];
data_[i] = data_[j];
data_[j] = temp;
}
}
// Swap entries |i| and |j|.
void Swap(intptr_t i, intptr_t j) {
ASSERT(i >= 0);
ASSERT(j >= 0);
ASSERT(i < length_);
ASSERT(j < length_);
T temp = data_[i];
data_[i] = data_[j];
data_[j] = temp;
}
// NOTE: Does not preserve array order.
void RemoveAt(intptr_t i) {
ASSERT(i >= 0);
ASSERT(i < length_);
intptr_t last = length_ - 1;
if (i < last) {
Swap(i, last);
}
RemoveLast();
}
// The content is uninitialized after calling it.
void SetLength(intptr_t new_length);
// Sort the array in place.
inline void Sort(int compare(const T*, const T*));
void StealBuffer(T** buffer, intptr_t* length) {
*buffer = data_;
*length = length_;
data_ = NULL;
length_ = 0;
capacity_ = 0;
}
private:
intptr_t length_;
intptr_t capacity_;
T* data_;
Allocator* allocator_; // Used to (re)allocate the array.
// Used for growing the array.
void Resize(intptr_t new_length);
DISALLOW_COPY_AND_ASSIGN(BaseGrowableArray);
};
template <typename T, typename B, typename Allocator>
inline void BaseGrowableArray<T, B, Allocator>::Sort(int compare(const T*,
const T*)) {
typedef int (*CompareFunction)(const void*, const void*);
qsort(data_, length_, sizeof(T), reinterpret_cast<CompareFunction>(compare));
}
template <typename T, typename B, typename Allocator>
void BaseGrowableArray<T, B, Allocator>::Resize(intptr_t new_length) {
if (new_length > capacity_) {
intptr_t new_capacity = Utils::RoundUpToPowerOfTwo(new_length);
T* new_data =
allocator_->template Realloc<T>(data_, capacity_, new_capacity);
ASSERT(new_data != NULL);
data_ = new_data;
capacity_ = new_capacity;
}
length_ = new_length;
}
template <typename T, typename B, typename Allocator>
void BaseGrowableArray<T, B, Allocator>::SetLength(intptr_t new_length) {
if (new_length > capacity_) {
T* new_data = allocator_->template Alloc<T>(new_length);
ASSERT(new_data != NULL);
data_ = new_data;
capacity_ = new_length;
}
length_ = new_length;
}
class Malloc : public AllStatic {
public:
template <class T>
static inline T* Alloc(intptr_t len) {
return reinterpret_cast<T*>(malloc(len * sizeof(T)));
}
template <class T>
static inline T* Realloc(T* old_array, intptr_t old_len, intptr_t new_len) {
return reinterpret_cast<T*>(realloc(old_array, new_len * sizeof(T)));
}
template <class T>
static inline void Free(T* old_array, intptr_t old_len) {
free(old_array);
}
};
class EmptyBase {};
template <typename T>
class MallocGrowableArray : public BaseGrowableArray<T, EmptyBase, Malloc> {
public:
explicit MallocGrowableArray(intptr_t initial_capacity)
: BaseGrowableArray<T, EmptyBase, Malloc>(initial_capacity, NULL) {}
MallocGrowableArray() : BaseGrowableArray<T, EmptyBase, Malloc>(NULL) {}
};
} // namespace dart
#endif // RUNTIME_PLATFORM_GROWABLE_ARRAY_H_